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Abstract

An interesting study of the development of 10th order multi-coupled cavity filters is
presented. The dual-symmetrical coupling configuration is considered. Examples include a
fully-elliptic filter with optimum amplitude and a quasi-elliptic self-equalized filter obtained
from simultaneous optimization of group delay and amplitude. Both filters are synchronously

tuned. Network variables as well as data related to the optimization process are provided.
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I. INTRODUCTION

An approach to interactive design optimization of multi-coupled cavity microwave
filters has been proposed in [1]. Implementing our approach on a CDC 170/730 digital
computer, a computer program has been constructed and successfully tested for various filter
design problems. An efficient method of filter simulation and sensitivity evaluation, namely
the loaded filter approach, as presented in Section IV of [2], is utilized. Some selected
numerical examples have been reported previously in [3].

Here, an interesting case study of the development of 10th order multi-coupled cavity
filters is presented. Starting from an initial guess a primitive design is obtained using only
amplitude specifications. Then by introducing phase and amplitude specifications
simultaneously, a nonminimum-phase quasi-elliptic self-equalized design is generated which
has superior group delay characteristics and is less sensitive to cavity dissipations. Based
upon observation of the responses of the primitive design, the specifications are refined in
order to overcome the stumbling-block of a local minimum and a fully elliptic filter with
optimum amplitude is achieved by sequential optimization.

A review of the dual-symmetrical coupling pattern employed here can be found in
Section IIT of [2]. In describing the filter responses, the following abbreviations are used:

RC - reflection coefficient, RL — return loss, [L - insertion loss and GD - relative group delay.

II. THE FILTER MODEL
All the examples presented are based on a 10th order model, centered at 4000 MHz
with 1% (40 MHz) bandwidth. The structure of the filter network is shown in Fig. 1. The
nonzero elements of the coupling matrix M, as used for our examples, are illustrated in Fig. 2.
The filter cavities are coupled in a dual-symmetrical pattern. This implies, in terms of the
elements of M, that
My =M, ,=M_=M_, (1)

whereo = n+1—€andt = n+1—k, nbeing the order of the filter.



The solutions of the examples are given in terms of the nonzero couplings and
transformer ratios. Since the couplings are related by (1), only the distinct coupling values
are given, e.g., for M|, = My, = Mg, = M, 4, only M,, is given. The terminations, as

shown in Fig. 1, are normalized such that we have the load resistor R, = 1 Q and the voltage

source E = 1 V with a resistor RS =1Q.

III. THE PRIMITIVE DESIGN

Solution
M,, = 0.81128
My, = 0.58034
M,, = 0.52498
M, = 0.52622
Mg, = 0.56002
M, ;o= —0.00731
M,q = 0.04929

M,g = —0.17571
M,, = 0.09306

n,? = n,% = 0.96994

Simulated Responses

Lower stopband: — 3976 MHz, minimum IL 61 dB
Passband: 3980 — 4020 MHz, minimum RL 20 dB
Upper stopband: 4024 — MHz, minimum IL 61 dB

The simulated responses are also shown in Figures 3 and 4.



Starting Point

M,, = 0.8
My, = 0.5
M,, = 0.55
M, = 0.6
M, = 0.5
M, ;o= 0.1
My = —0.1
Myq = —0.4
M,, = 0.4

Table of Subinterval Data

Frequency edges No. of Step-length of Specification Weighting
of subinterval (MHz) sample points extrema location factor
3950 — 3970 5 2.0 RC = 0.999995 —100.0
3970 — 3976 5 0.6 RC = 0.999995 —-100.0
3980 — 3986 5 0.3 RC = 0.1 1.0
3986 — 4001 6 0.5 RC =0.1 1.0

Optimization Parameters

. . 2
Variables: M12, M23, M34, M45, M56’ Ml,lo’ M29, M38’ M47, n,”,
Initial step-length: 0.005

Accuracy requirement: 1.0x 10 -6

Solution obtained after 150 iterations with 140 CPU sec.



Transfer Function Analysis

The voltage transfer ratio H(s) & ¢ N(s)/D(s), where

10 8
D) =[] s=p,) , N9 = [| (5—2) and ¢=0.007094
i=1 i=1
The poles p;: -0.033692 * j1.028190, —0.121206 = j0.961854, —0.252062 * j0.776306

-0.342901 £ j 0.404486, -0.220079 + j0.081191
The zerosz;:  0.000000 * j 1.836340, 0.000000 * j1.341250, -0.000000 * j1.216028
+ 0.283128 + j 0.000000
The pole-zero pattern of H(s) is shown in Fig. 5.
Real frequency loss poles (MHz): 3963.4,3973.3,3975.8,4024.4, 4026.9, 4036.9.
Reflection zeros (MHz):  3980.2, 3981.8, 3985.7, 3997.6, 4002.4, 4008.3, 4014.3,

4018.2, 4019.9.

IV. A QUASI-ELLIPTIC SELF-EQUALIZED FILTER

Filter Type

Nonminimum-phase, quasi-elliptic self-equalized filter obtained from simultaneous

optimization of group delay and amplitude.

Solution
M,, = 0.84424
M,, = 0.59318
M,, = 0.54438
M, = 0.53059
M, = 0.46916

M, |, = 0.01597
My, = -0.02673

M, = -0.05570



M, = 0.13067

n,? = n,? = 1.04566

Simulated Responses

Lower stopband: — 3976 MHz, minimum IL 45.6 dB
Passband: 3980 — 4020 MHz, minimum RL 22 dB
Upper stopband: 4024 - MHz, minimum IL 45.6 dB
Group delay: 3985 — 4015 MHz, maximum variation 4 ns
3991 — 4009 MHz, maximum variation 1.5 ns

The simulated responses are also shown in Figures 6 and 7.

Starting Point

The solution of the primitive design.

Table of Subinterval Data

Frequency edges No. of Step-length of Specification Weighting
of subinterval (MHz) sample points extrema location factor
3950 — 3968 4 fixed points RC = 0.999995 —1000.0
3969 — 3976 4 1.0 RC = 0.999995 —1000.0
3980 — 3984 4 0.5 RC = 0.08 50.0
3984 - 4000 6 1.0 RC = 0.08 50.0
3985 — 4000 4 fixed points GD=15 1.0




Comment
The optimization of group delay is formulated using equations (10), (11) and (13) of
[1], where the relative responses are defined as the magnitude of the difference between the

average group delay and the group delay at the sample points.

Optimization Parameters

. ) 2
Variables: My, Myg, Mgy, Myg, Mg, My 1o, Mog, Mgg, M7, m,
Initial step-length: 0.005
Accuracy requirement: 1.0 x 108
Solution obtained after 24 iterations with 17.7 CPU sec.
Transfer Function Analysis
The voltage transfer ratio H(s) £ ¢ N(s)/D(s), where
10 8
D) =[] 6-p,) , N6 = ﬂl (s—z) and c¢=j0.0166951

The poles Dy -0.044646 = j1.040871, —0.160270 % j0.954745, —0.274477 + j0.712155
—0.278207 + j0.414431, —0.288059 *+ j0.149511

The zerosz;:  0.000000 * j 1.459862, 0.000000 £ j1.2222694, + 0.523371 + j0.328333

The pole-zero pattern of H(s) is shown in Fig. 8.

Real frequency loss poles (MHz): 3970.9, 3975.6,4024.5, 4029.3.

Reflection zeros (MHz):  3980.2, 3982.2, 3986.4, 3991.7, 3997.2, 4002.8, 4008.3, 4013.7,

4017.8,4019.9.

Comment
Among the eight zeros of the transfer function, four are realized in real frequency as
the attenuation poles and the other four form a complex quad in the s-plane. Such a

nonminimum-phase design shows superior delay and amplitude characteristics. It is proved



that the sensitivity of the gain response w.r.t. dissipations is proportional to the group delay
(see, for example, [4]). Hence a filter design with flat delay is also less sensitive to the cavity
dissipations. Fig. 9 shows the insertion loss of our design with Q = 10,000. The loss variation

is less than 0.1 dB over 80% of the passband.

V. AFULLY-ELLIPTIC FUNCTION FILTER
Comment

Elliptic function filters are known to have optimum amplitude characteristics in both
the passband and the stopband. For these filters, all possible transmission zeros are realized
in real frequency. But for the primitive design obtained previously, only six attenuation poles
have presented themselves as shown in Fig. 3. We find, by inspection of the transfer function,
that the missing pair of zeros are somehow located undesirably. Restart of optimization
without any modification of the specifications has been attempted but failed to give a better
solution. It turns out that the primitive design is a trapping local minimum. This is not too
surprising since the starting point was almost arbitrarily chosen.

At this stage, some knowledge of the physical property of nonminimum- phase
networks is quite helpful. As can be seen in Fig. 4, a group delay ripple is quite noticeable.
Unmistakably, this ripple is the effect of the misplaced zeros. It is reasonable to believe that
if we can suppress the group delay ripple by imposing an appropriate delay specification, a
more desirable pole-zero pattern may result. The following data contains the refined

specifications and the corresponding optimization results.

Starting Point

The solution of the primitive design.



Table of Subinterval Data

Frequency edges No. of Step-length of Specification Weighting
of subinterval (MHz) sample points extrema location factor
3950 — 3970 5 2.0 RC = 0.999995 —100.0
3970 — 3976 5 0.6 RC = 0.999995 —100.0
3980 — 3981.5 3 0.3 RC = 0.05 1.0
3981.5 -4000 7 0.5 RC = 0.05 1.0
3994, 4000* 2 fixed points GD = 2.0 0.01

*  Only two points near the center frequency are taken for group delay, since we are not

optimizing the group delay over the passband but trying to suppress the ripple.

Optimization Parameters

- . 2
Variables: My, Mo, Mgy, M5, Mg, My 15, Myg, Mg, M7,
Initial step-length: 0.01

Accuracy requirement: 1.0 x 10-%

Solution obtained after 37 iterations with 30 CPU sec.

Solution

M,, = 0.91078
M,, = 0.61214
M,, = 0.55449
M, = 0.51756
M, = 0.67820

M, |, = -0.00306
My, = 0.02713
Mg = -0.08288
M,, = -0.09156

4
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n 2= n,” = 1.2015

Simulated Responses

Lower stopband: — 3976 MHz, minimum IL 54 dB

Passband: 3980 — 4020 MHz, minimum RL 26 dB

Upper stopband: 4024 - MHz, minimum IL 54 dB

Group Delay: © 3994 - 4000 MHz, maximum variation 4 ns
Comment

The group delay ripple has been suppressed as expected. The simulation shows a
smooth delay response in the vicinity of center frequency. Taking this result as a starting
point, we now release the delay specification and tighten the amplitude specifications, hoping

that the next iteration will lead to an optimum amplitude design.

Table of Subinterval Data

Frequency edges No. of Step-length of Specification Weighting
of subinterval (MHz) sample points extrema location factor
- 3930 — 3954 4 fixed points RC = 0.99999995 —-1000.0
3959 — 3970 3 1.0 RC = 0.99999995 —1000.0
3970 — 3976 4 0.4 RC = 0.99999995 -1000.0
3980 - 3981.5 3 0.3 RC = 0.032 1.0
3981.5 — 4000 7 0.5 RC = 0.032 1.0

Optimization Parameters

Variables: Mlz,M23,M34,’Vl 5,1 56’M110’ ‘79’M:38’M47’

Initial step-length: 0.01
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Accuracy requirement: 1.0 x 10 ~°

Solution obtained after 190 iterations with 192 CPU sec.

Solution
M,, = 0.97284
M,, = 0.63006
M,, = 0.54981
M, = 0.39867
My, = 0.88914

M, ;o = 0.00298

M,, = -0.02422
Mgg = 0.15196
M,, = -0.49440

n,? = n,% = 1.3415

Simulated Responses

Lower stopband: — 3976 MHz, minimum IL 70 dB
Passband: 3980 — 4020 MHz, minimum RL 30 dB '
Upper stopband: 4024 — MHz, minimum IL 70 dB

The simulated responses are also shown in Figures 10 and 11.

Transfer Function Analysis

The voltage transfer ratio H(s) 2 ¢ N(s)/D(s), where

10 8
DE) = [[ s—p,) , N& = [| 6-2) and c=;0.003996
j=1 i=1

The poles p;’ -0.031290 * j1.041456, -0.109003 £ j1.003058, -0.231187 + j0.899743

-0.406584 * j0.671067, -0.563434 *+ j0.258380.
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The zerosz;:  0.000000 * j2.247661, 0.000000 * j1.514408, 0.000000 + j1.287780
0.000000 * j1.211824.
The pole-zero pattern of H(s) is also shown in Fig. 12.
Real frequency loss poles (MHz):  3955.3, 3969.8, 3974.3, 3975.8, 4024.3, 4025.8, 4030.4,
4045.2
Reflection zeros (MHz): 3980.1, 3981.3, 3984.0, 3988.8, 3995.9, 4004.1, 4011.2, 4026.1,

4018.8,4019.9.

VI. CONCLUSION

The practical application of optimization techniques is sometimes obstructed by the
difficulty of local minima, especially when problems of large sizes and high nonlinearity are
to be handled and/or the starting points are poorly chosen. Although a general solution is not
available, in a particular case the difficulty can often be overcome by a combination of an
adequate understanding of the problem with the CAD techniques. We have provided an
illustration via the design of a high order elliptic function filter. We have also presented a
nonminimum-phase example by which optimal tradeoffs between amplitude and group delay
responses have been achieved. From these examples the flexibility and convenience in the
treatment of various engineering specifications using modern CAD techniques can be better

appreciated.
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