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Abstract

This paper describes an efficient approach to the simulation and exact sensitivity
evaluation of multi-coupled cavity filters. The approach utilizes sensitivity formulas for such
responses as input or output reflection coefficient, return loss, insertion loss, transducer loss,
gain slope and group delay, which are derived for a two-port equivalent of a general network
described by its symmetrical impedance matrix. The formulas are specialized to the case of
multi-coupled cavity filters, using a filter model which takes into account many nonideal
factors such as losses, frequency dependent coupling parameters and stray couplings. The
formulation also treats synchronously or asynchronously tuned structures in a unified
manner. Explicit tables of first- and second-order sensitivities w.r.t. all variables of interest,
including frequency, are presented. Three problems of significant practical value in
manufacturing of multi-cavity filters are solved with the direct application of our formulas. A
10th order filter is considered for all three cases. The first case is simultaneous optimization
of the amplitude and delay responses to obtain a self-equalized filter. The second case is
accurate prediction of the responses for a lossy ﬁiter by simulating a lossless filter. The third
case involves parameter identification of the filter from simulated measurements on its

responses.
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I. INTRODUCTION

The application of multi-coupled cavity microwave filters in modern communication
systems has received increasing attention. The theory originated by Atia and Williams [1]
has inspired many advances in this area. These advances have been responsible for many of
the improvements in satellite multiplexing networks, as has been extensively discussed in
the literature. See, for example, Atia and Williams [1,2], Chen et al. [3], Cameron [4] and
Kudsia [5].

The growing variety and complexity of the design and manufacture of these filters
necessitate the employment of modern computer-aided design techniques. For example, the
traditional approach to an analytical solution may become inappropriate when asynchronous
tuning realizing asymmetric characteristics or nonminimum-phase designs necessary to meet
tight amplitude and delay specifications are of interest. Furthermore, CAD techniques can be
used to predict the effects of nonideal factors such as modelling or manufacturing
imperfections which are not to be ignored in microwave devices. Unfortunately, and as not
infrequently encountered, the practicality of the CAD approach could be fatally degraded by
an inefficient simulation method and/or the lack of exact sensitivity information.

This paper describes a systematic and efficient approach to the simulation and exact
sensitivity evaluation of narrow-band multi-coupled cavity microwave filters. The approach
is based on the development of a set of response and sensitivity formulas for a two-port model
of a general network described by its symmetrical impedance matrix. The responses of
interest are input or output reflection coefficient, return loss, insertion loss, transducer loss,
gain slope and group delay. The formulas are then specialized to the case of multi-cavity
filters.

The presentation is organized in the following way. First, a brief description of the
notation used throughout the paper is given in Section II. Then, in Section III, a compre-

hensive set of formulas for the simulation and sensitivity evaluation of various amplitude and



phase responses of interest are derived which apply to a general class of networks
characterized by their symmetrical impedance matrices. Derivations are detailed and the
systems of equations to be solved for a complete analysis are defined in a natural way as the
derivation proceeds. In Section IV, after the description of a model for multi-coupled cavity
filters which takes into account such nonideal effects as losses, frequency dependent coupling
parameters and stray couplings, the general formulas for a two-port are specialized to the case
of the filters. Synchronously and asynchronously tuned structures are treated in a unified
manner. Practical formulas which can be readily implemented are tabulated. Computational
considerations for various models of the filter are also discussed.

In Section V, our sensitivity formulas are applied directly to solve three problems of
current interest in manufacturing of multi-cavity filters. A 10th order filter is considered for
all three cases. The first problem involves the simultaneous optimization of amplitude and
delay responses, i.e., design of self-equalized filters. To take advantage of state-of-the-art
gradient-based optimization techniques, it is required to evaluate the responses as well as
their sensitivities for this problem. This is a direct application of our formulas for the first-
order sensitivity w.r.t. design variables, frequency and the second-order sensitivities.
Although CAD based on frequency response is practical only if discrete frequency points are
selected, sensitivities w.r.t. frequency are also used in conjunction with a cubic interpolation
technique to optimally select sample frequency points which effectively transform the
discrete frequency response design to a continuous one. The second problem is the prediction
of responses for a filter which takes into account a nonideal but realistic effect, dissipation in
this case, by simulation of the ideal filter. This is a case for which sensitivities w.r.t. non-
existing parameters, i.e., the parameters that for an ideal design are not present, have to be
used. The third problem involves parameter identification of the filter from simulated
measurements on its responses. Once again to apply gradient-based optimization techniques,
it is required to evaluate the responses used for identification and their sensitivities w.r.t. the

parameters to be identified.



II. NOTATION

Unless otherwise specified, the notation used in this paper is as follows. Boldface
lower-cases p, q, etc., denote column vectors. Boldface capitals, M, Z, etc., denote matrices
except I and V, which are reserved to denote current and voltage vectors, respectively. A
letter with a double subscript denotes an element of the corresponding matrix, e.g., M ok
denotes the element at the fth row and kth column of matrix M. A letter with a single
subscript denotes a component of the corresponding vector, e.g., p, denotes the nth component
of vector p. A letter with a single or double Greek subscript represents a first- or second-order
derivative, respectively, e.g., Z<b denotes the first-order derivative of Z w.r.t. design variable ¢
and (Il)w denotes the second-order derivative of [, w.r.t. ¢ and frequency w. 1 denotes an
identity matrix of appropriate dimension. e, denotes a vector whose components are zero
except the kth component which is 1. 1 denotes a rotation matrix of zero entries except the

anti-diagonal elements which are 1.

III. AGENERALIZED TWO-PORT MODEL
Narrow-band multi-coupled cavity filters belong to a more general class of networks
characterized by their symmetrical impedance matrices. If only input and output responses
are of interest, an elegant approach to the analysis of such networks is to construct their two-
port equivalents. In this section, using compact matrix notation, we develop a comprehensive
set of formulas for simulation, first- and second-order sensitivities of a general two-port

equivalent circuit.

Unterminated Two-Port

Consider a circuit described by

JZT = V', 1)



where V' é[VI’ 0..0 Vn’]T and I' & (" Ly .. In']T are the voltage excitations and the
currents, respectively. We use j Z to denote the nxn symmetrical impedance matrix where Z
is a real matrix for a lossless circuit. Fig. 1 shows a block representation of the circuit and its
two-port equivalent.
Denote the two-port currents and voltages by Ip’ = [0’ In']T, Vp’ = [V, Vn']T. By
defining
Ulle, e], 2)
where e; and e are unit vectors consistent with the definition in Section II, we can express

the relationship between the two-port and mesh currents and voltages as

P,
[p =U"I 3)
and
V' = UVp’. (4)
From (1), (3) and (4) we can solve for
, . Ty — ' . ' '
Ip:—JUZIUVp:—Jpr, (5)
where
e Z_lel eer—len
yeu'z lu= ©
elZ le e'Z e
n 1 n n

In equation (5), —j y' is the conventionally defined short-circuit admittance matrix. Denote
the two vectors Z™! e, and 7! e_, which are required to evaluate y’, by p and q. We can
obtain p and q by solving the systems of equations

Zp=e, (7)
and

Zq=e, (8)

respectively. The elements of y' are then given by

=1

T T

e,p eal [p, q |[p, P

y, = = = 5
T T

enp enq pn qn pn q

9)

=}

wherep_ = q, because matrix Z is symmetrical.



We can now show that the solutions of (7) and (8) also provide sufficient information
for first-order sensitivity calculations. Differentiating (6) w.r.t. a variable ¢ in Z, we have
vy =-UT2'Z,27'U=-p qI"Z,[p al, (10)
where y(b' and Zq) denote the first-order derivatives of y' and Z w.r.t. $ and we have utilized
the identity
Z'U=1(z"e Z'e|=Ip ql. (11)
For computation of gain slope and group delay sensitivities, second-order derivatives,
namely yq)w’, are needed. First, we obtainy 'from (10) by letting ¢ =w, as
v, =-U2'z z7'vU. (12)
Then, differentiation of (12) w.r.t. ¢ gives
Voo =UTZN2Z, 22 -2, + 2,272 )27 U
=lp a"2,2'2,-2, +Z,27'Z)[p al, (13)
where y(bw’ and qu denote the second-order derivatives of y' and Z. Denote Z™! Z [p qlin

equation (13) by [B a-]. We can obtain Eand a by solving the systems of equations
- _ 14
Zp Zu) p (14)
and
~ 1
Zq =7 q, (15)
respectively. Equation (13) can then be rewritten as

T (16)

r -~ 4T _ T - -
Yoo P al'ZIpal-Ipal'Z [pql+ipalZlp ql.
From a computational point of view, we notice that the systems of equations (7), (8), (14) and
(15) have the same coefficient matrix Z. Therefore, their solutions require only one LU

factorization of Z.

Terminated Two-Port

The two-port terminated, through input and output transformers, by an arbitrary

load Z; and a voltage source E = 1V with an impedance ZgisshowninFig. 2. InFig. 2,1, [ ,

V, and V_ are the currents and voltages that correspond to a two-port which includes the



transformers. We define Ip 4 [I1 In]T, Vp 4 v, Vn]T and

N & "0 (17)
0 n, ’

where n, and n, are the input and output transformer ratios, respectively. Consequently, Ip
and Vp are related to lp’ and Vp' by
I =N Ip (18)
and
V' =NV . (19)
p p
Also, as given in equation (5), Ip’ and Vp’ are related by Ip' = —jy’Vp’. It follows that
Ip:—jNy va:—Jpr, (20)
where
y&Ny' N. (21)
For the circuit under consideration, the terminating conditions are
V, =1-%Z], (22)
and

[ . (23)

Z, 0

S 24
Té[ ] (24)

0 7,

we write (22) and (23) in a compact form, as

Denoting

Vp: el—TIp. (25)
Equation (20), subject to the terminating conditions (25), can be solved for Ip as follows:
Ip=—j(1—ij)‘1ye1:—ijel, (26)
where
H2(1-jyD)!. | 27)

Furthermore, the first-order sensitivities of Ip can be derived as



(Ip)cb = —j[ch y+H yq)] e,
=j(HH) Hy-Hy,le,
= jH[—j(ych + qu)) H y-—yq)] e,
=jHljyT,Hye -y, (1 +jTHy)e,l
=JHly Ty [ -y, (e, -TIL)]
:jH(qu)Ip—-ycb Vp). (28)
By the definition of y, given in equation (21), it is clear that y o is given by N y q>’ N
where y q>, has already been evaluated (cf. equation (10)).
We have shown the derivation of (Ip) o in an explicit manner. The derivation of the
second-order derivatives is similar but lengthy. Therefore, we only state the result as follows:
(Ip)(bw = jH{yw[Tq) Ip + T(Ip)¢] + y(b[Tw [p + T(Ip)w]

FYITYL), + T (L), |+ y T, 1

p'w w pd b p_ydmvp}' (29)

Sometimes, as for the evaluation of the output reflection coefficient, it is also of
interest to solve the network excited at the output port. The solution, denoted by fp, can be
obtained by simply replacing e, by e_in (26), where e, = 1[0 11T, The sensitivity expressions
of fp are the same as those of Ip except that e, Ip and Vp are replaced by e, i\p and {\’p, as

appropriate.

Various Frequency Responses

In practice, the performance of a two-port network is often evaluated via some
conventionally defined frequency responses such as the input and output reflection
coefficients, input and output return losses, transducer loss, insertion loss, gain slope and
group delay. These frequency responses and their sensitivities can be calculated utilizing the
formulas which were obtained for the two-port. Table 1 summarizes various frequency
responses of interest and their sensitivities. The formulas for return loss, transducer loss,
insertion loss, gain slope and group delay are clear from their conventional definitions,

whereas the formulas for reflection coefficients are derived as follows.



Consider the input reflection coefficient defined as

A Zin—ZS (30)
Pin = 7 47
in S

where Z, is the input impedance as shown in Fig. 2. From (30) it follows that

2Re(Z.)
_ - S _ (31)
b, =1- 57— =1-2]Re(zy).
in S

The formula for the output reflection coefficient is derived in a similar way.

IV. ANALYSIS OF MULTI-COUPLED CAVITY FILTERS

Basic Model and Sensitivities

The approach which was developed for analysing a generalized two-port can be
utilized most beneficially for the case of multi-coupled cavity filters. The symmetrical
impedance matrix for a narrow-band lumped model of an unterminated filter is given by

JZ8js1+ M) +rl (32)

where 1 denotes an nxn identity matrix and s is the normalized frequency variable given by

S

A‘*’O(m ‘*’0“) (33)
@, w /)’

:X; — —

w, and Aw being the synchronously tuned cavity resonant frequency and the bandwidth
parameter, respectively. We assume uniform dissipation for all cavities indicated by
parameter r. In equation (32), M is the coupling matrix whose (i, j) element represents the
normalized coupling between the ith and jth cavities, as illustrated in Fig. 3, and the diagonal
entries M;; represent the deviations from synchronous tuning. Element Mij does not
necessarily correspond to a desirable and designable coupling. It may as well represent a
stray coupling which is excluded from the nominal electrical equivalent circuit. Dispersion
effects on the filter can be modelled by a frequency dependent M matrix.

The ideal model, namely the non-dispersive and lossless filter of Atia and Williams

[1], isrecovered by considering a frequency independent M matrix and letting r be zero.
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Having modelled the multi-coupled cavity filter by its impedance matrix, we can
calculate y' and y, their first- and second-order sensitivities and hence various frequency
responses and sensitivities from the formulas developed for the two-port equivalent. More
specifically, we can use equations (9), (10), (16) and (21) for calculation of y’, its first- and
second-order sensitivities and y. The sensitivities of y are obtained by pre- and post-
multiplying by N of the corresponding formulas for y’. If the input or output transformer
ratio is the variable of interest, ie., ¢ € {n,, n,}, the sensitivities of y are obtained in a
different but straight-forward way. In this case, y q> and y oo aT€ derived from y' and y_',
appropriately pre- and post-multiplied by N ® and N matrices.

Tables 2-4 summarize the first- and second-order sensitivity expressions for variables
of interest in multi-coupled cavity filters. The tables correspond to the case in which M is
frequency independent. The formulas derived for the generalized two-port can be directly
utilized when dispersive effects are taken into account, namely, for the case of a frequency
dependent M matrix.

A special class of filters, namely the filters with dual-symmetrical impedance
matrices are distinguished in Tables 2-4. In this paper a filter is said to be dual-symmetrical
if its coupling matrix M is symmetrical w.r.t. its anti-diagonal as well as its diagonal. For

such a filter we have

M,, = Mij, (34)
where
if8n+1-k and j2n+1-¢, (35)
or, using the matrix notation,
1M1 =M. (36)

Computational Considerations

For a generalized two-port, it was established that solving four systems of equations,

namely Zp = e, Zq = e, Zi; =1Z, pand Za = Z  q, provides sufficient information for
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evaluation of input and output responses and their first- and second-order sensitivities. From
a computational point of view, this means one LU factorization of matrix Z followed by four
forward and backward substitutions. For a matrix Z given by (32), we consider three special
cases with each one leading to significant computational savings.

Case 1 corresponds to a lossless filter, for which r is zero in equation (32). This implies
that Z is a real matrix which itself leads to p, q, p and q being real. It is clear that solving real
systems of equations and manipulating real arrays enjoy significant computational
advantages over the complex calculations.

In Case 2, M is assumed to be frequency independent. In this case Z , which for a
general dispersive filter is given by s, 1 + M, reduces tos 1. This implies that matrix by
vector multiplications of the form Z pandZ q,reduce toscalar by vector multiplications.

In Case 3, M is dual symmetrical as described by (36). This leads to Z also being dual

symmetrical, or

Z=1171. 7
Considering (37) and the four systems of equations required for the analysis, we have
- T T (38)
Zlp=1Zp = 1e1—en,
which gives
- (39)
q=1p
ie.,
4 = Ppyq_i- i=1,2,..n. (40)
Similarly, it can be shown that
- (41)

q=1p.
The implication of (39) and (41) is that the two systems of equations involving q and a

need not be solved since they only contain reordered elements of p and ;)_
We conclude that the computational effort varies from solving two real systems for the
case of a dual-symmetrical, lossless and non-dispersive filter, to solving four complex systems

for the most general case.



12

Comparison with the Traditional Approach

Having discussed some computational aspects of our approach, it is also necessary to
describe rigorously the advantages of the approach over the more traditional analysis
methods for multi-coupled cavity filters.

Considering Fig. 2 and Table 1, it is clear that all frequency responses of interest are
evaluated via the calculation of I1 and I,. In a direct and traditional approach, I; and I, can

be calculated by solving the system of equations

1 ,
—Z1I=e, (42)
n 1
1
where
. 2 T, 2 T (43)
Z=jsl1+M)+rl+ ny ZSe1e1+ n, ZLenen,

with Z representing an impedance matrix which takes into account terminations Zg and Z, by
appropriately adjusting the impedance matrix defined by (32). I and I, are then given by
=nl, (44)
I =nl
and

'

_ 45
In - nZIn (45)

The first-order sensitivities of I; and I, with respect to any of the variables, e.g.,
elements of the coupling matrix, input-output transformer ratios, frequency or dissipation
parameter, are simply evaluated by the well-known finite difference method. Each variable
candidate is perturbed by a small amount once in the positive direction and once in the
negative direction and two additional solutions of (42) are computed. Neglecting the
calculations in (44) and (45) and considereing n,, frequency points and ng variables, a total of
n, (2ng + 1) LU factorizations plus forward and backward substitutions are required to
complete the evaluation of Iy, I, and their first-order sensitivities. The total number of

complex multiplications and divisions is estimated as
n’ 2 1 (46)
Np:nm(2n¢+ 1)(-3— +n°— g).
A typical formula for ny is

n¢=n+(n——1)+m+4, (47)
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with n diagonal elements of the coupling matrix, i.e., deviations from synchronous tuning for
each cavity, n—1 superdiagonal couplings and m cross-couplings taken as variables. The
other four variables are input and ouput transformer ratios, dissipation parameter and
frequency. For a 6th order filter with one cross-coupling, we have N, = 3498 n,.

Without going into details, an estimated number of multiplications and divisions for
evaluation of I, I, and their first-order sensitivities, by using our approach and having

similar variables as the previous case, is
3
n 2 n 2
N =n |[(—+n"==)+n"+4(n-1+m)+ 3n+ 8n_|.
e w 3 3 (b

(48)
(See (7), (8) and (28), and Table 2.) Forn=6 and m=1, we have N, = 312 n,,. Although a few
overhead calculations have been neglected in deriving (48), it can be safely said that using our
approach achieves an approximate 10-fold reduction in the number of operations over the
direct approach.

Evaluation of second-order sensitivities by perturbations is not only cumbersome but

also not sufficiently accurate in some cases. Our exact formulas which basically add two more

forward and backward substitutions to previous calculations become very attractive.

V. APPLICATIONS

Three examples of significant practical value are selected to illustrate the direct
application of the approach presented. A 10th order multi-coupled cavity filter with a center
frequency of 4 GHz and a bandwidth of 40 MHz is considered. The coupling matrix of the filter
is dual-symmetrical, as described in Section IV. The first example describes a nonminimum-
phase self-equalized design achieved by simultaneous optimization of the amplitude and
group delay responses. For the second example, the sensitivities w.r.t. cavity dissipation are
utilized to predict the amplitude response of a lossy filter. The parameter identification of the

filter from simulated measurements is described in the third example. These problems reflect
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typical situations in engineering practice where the tremendous advantage of modern CAD

techniques can be exploited.

A Quasi-Elliptic Self-Equalized Filter

Nonminimum-phase function filters can be designed to achieve optimal tradeoffs
between the attenuation and group delay characteristics as required for high fidelity signal
transmission. A 10th order quasi-elliptic, self-equalized filter has been obtained from
simultaneous optimization of the amplitude and delay responses. A powerful gradient-based
minimax optimization method [6] is employed. The objective functions to be optimized are
formulated from the filter responses including the reflection coefficient for both the passband
and the stopband and the relative group delay for the passband. Fig. 4 shows the amplitude
and group delay responses of the filter designed. The optimization directly solves for the non-
zero couplings and transformer ratios as

Mg = Mgy = Mg 190 = Myg,9 = 0.84424
Mog = M39 = Mgg = Mgg = 0.59318
M34 = Myg = Myg = Mgy = 0.54438
Mys = Msyq = Mg7 = My = 0.53059

Ms = Mgs = 0.46916
M 10 = Mjp,1 = 0.01597
Mgg = Mgy = -0.02673
M3zg = Mgg = -0.05570
My7 = Mqyq = 0.13067

n12 = ny2 = 1.04566

The exact gradients required for optimization are provided utilizing our first- and
second-order sensitivity formulas. Some typical results of the sensitivities are shown in Table

5.
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In practical design optimization of networks in the frequency domain, the responses
are discretized by selecting sample frequency points. This is an important but difficult task,
since in many situations a poor selection may degenerate the efficiency and accuracy of the
algorithm. We have adapted cubic interpolation formulas which utilize the exact derivatives
w.r.t. frequency to detect and locate the ripples of the amplitude response, whereby the
sample frequency points can be automatically and optimally selected. As can be seen in Fig.

4, an equal-ripple amplitude solution, optimal in the continuous sense, is virtually ensured.

Prediction of the Effect of Cavity Dissipation

Ideal lossless models are often used to obtain nominal designs. In reality, the actual
devices are subject to certain imperfections such as dissipation. The performance of a lossy
filter can, of course, be re-evaluated by exact simulation. This, however, requires complex
matrix analyses and, if different values of the quality factor are considered, such complex
analyses have to be repeated for each Q. A much more efficient method of predicting thé non-
ideal response is utilizing the sensitivities to obtain a first-order estimation. We have used
this method to compute the response of the 10th order filter given in the first example with
Q = 10,000. Fig. 5 shows the predicted passband insertion loss, which is indistinguishable
from the exact simulation of the lossy filter (the numerical difference is less than 0.001 dB).

It has been proved (see, Bandler et al. [7]) that the sensitivity of the amplitude w.r.t.
dissipation is proportional to the group delay. Hence a filter with flat delay is also less
sensitive to the dissipation. Fig. 5 shows that with @ = 10,000 the insertion loss variation is

less than 0.1 dB over 80% of the passband.

Parameter Identification Using Simulated Measurements

Identification of network parameters from external measurements provides the
necessary guidance for post-production tuning. The objective of such identification is to

obtain by optimization an electrical equivalent circuit capable of reproducing frequency
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responses which correlate accurately with the measurements. An identification algorithm
will necessarily involve extensive network analyses. Our simulation and sensitivity analysis
approach, with its computational efficiency and flexibility, is most beneficial in the
development of a practical identification algorithm. Such an algorithm has been
implemented and tested on the following problem. It is desired to identify the parameters of
the filter that deviate from their nominal values and are given by
Mig = Mgy = Mg 10 = Mjo,9 = 0.8
Mgg = M3g = Mgg = Mgg = 0.6
M4 = Myg = M7g = Mg7 = 0.5
Mys = Msq = Mg7 = M76 = 0.5
M5 = Mgs = 0.5
Mi,10 = Myg,1 =-0.1
Mgyg = Mgy = 0.1
M3g = Mgg = -0.2
My7 = M74 = 0.1
ni2 =ng2 =1.0,
using the amplitude responses shown in Fig. 6 as simulated measurements.
Employing gradient-based optimization techniques and using starting values or
initial guesses for variables that vary from the required solution by up to 50%, all parameters

are accurately identified.

VI. CONCLUSION
An efficient and flexible approach to the simulation and exact sensitivity analysis of
multi-coupled cavity filters has been presented. The basic theory of this approach has been
derived, using an elegant and compact notation, for a two-port equivalent. The results
actually apply to a class of general networks. By specializing this theory to the case of multi-

coupled cavity filters, explicit formulas and tables have been given in a self-contained form.
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Since dissipation, dispersion and stray couplings have been accommodated by our filter
model, the application is not restricted to an idealized situation. Also, synchronously or
asynchronously tuned structures are treated in a unified manner. Simultaneously, special
features of some particular cases have been exploited to minimize the computational effort.
Illustrative examples of practical engineering problems solved by the actual implementation
of our approach have also been provided. With its computational efficiency and structural
flexibility, the approach presented provides, for the first time, a basis for the development of
more advanced CAD software for automatic design, modelling and tuning of multi-coupled
cavity filters and multiplexing networks [8]. Such a prospect makes this work extremely

attractive.
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TABLE 1
SENSITIVITY EXPRESSIONS FOR VARIOUS FREQUENCY RESPONSES

Response Expression For
Type Formula Sensitivity w.r.t. ¢
Input Reflection
- —2[R.(
Coefficient 1-2 RS L [RS( 1)¢> + (RS)<b Bt
Output Reflection A A A
Coefficient 1-2R T —2[R, (@) o R,) o L]
Input or Output® 201 | | R (P in,out’d
Return Loss =20 108101Pin out € 0
in,out
Transducer Loss a) Ry (R,)
—~10 log, @I [’RgR)) cRe| =% _S¢ L@
nt STL I 2R 2R
n S L
aT) v/
Insertion Loss —201log, |Z1I | cRe[ ne . ﬁ
10T 'n I ZT
Gain Slope @, @, (In)(boo (In)q)(ln)w (ZT)cpm (ZT)¢(ZT)w
cRe —I‘— + —Z'—' cRe - 5 + - 5
n T In In ZT ZT
Group Delay i (In)w N (ZL)m _ Im{ (In)m _ (In)d)(ln)m .\ (ZL)cpw _ (ZL)cp(ZL)w
In ZL n Ii ZL Zi
f Pin.out denotes input (output) reflection coefficient.
Auxiliary notation
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A A A
R=Re(Z)) R =Re?) Z,=7,+7 ¢
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TABLE 2
FIRST-ORDER SENSITIVITY EXPRESSIONS FOR
(a) SYMMETRICAL AND (b) DUAL-SYMMETRICAL COUPLING MATRICES
Basicsolutions(a)Zp = e,,Zq = e, (bZp=e,q= Tp

Variable First-Order Sensitivity Expression (yg)
()] Symmetrical Case Dual-Symmetrical Case
‘anpp n n,(p,q, +p q, n2<pp+pp) n. n,(p, p. + p,p)
1P P 172 P A ™ Py 1'Pe P T PPy 172 P BT PBy
Moy T ¢, [ 2cl‘
2 2
By 0glPp Ay Py ) ya,ay 0y ng(Pp Pyt PP My (PP + ;P
2 T T 2 T T'l‘
nyp P nngp q nip p nyn,p 1p
w, Aw, wg Tt -8 l -5
qJ n 2 ¢ n TI n2 T
N nypP q n,49 q 10gP lp 9P P
T n 2 T TT
np P nn, P q njp p nyn,p lp
r J J
T I 2 T
11 n2 P q llzq q nl 112[) P nzp P
[2“1p1 n2":1] Myp NPy
ny
Ny b, 0 Ny P 0
0 np, 0 n e,
NPy 2099, 0Py 20gPg
1 . .
sl =3 if €=k (for the dual—symmetrical case, also if  +k=n+1)
T ¢ =
—1 otherwise
and i8n+1-k,j8n+1-¢
ds
Tt s, = —

¢>—aq)
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TABLE 3
SOME SECOND-ORDER SENSITIVITY EXPRESSIONS FOR
A SYMMETRICAL COUPLING MATRIX
Basic solutionsZp =e;,Zq = e, Z];: p, Z(;: q

Second-Order Sensitivity Expression (yg)

Variable
(P
202p,0. + D) N, n(p,q, +p, d,+ P, + P,
NP P T P Py 172 Pp A TP Ap™ Py T Py
;
M Cy B o . , - _
Ny P d P dp + Ppdy + Pyay) nylap a ) +ay q,)
2 T- N s 9 - L
mpp 1%P 4 " Py 172 Py
w, Aw, wq T 2s, s -s [ I
¢ T - 2 T - bl - 2 -
NP oA "pq 4 e Py fo 4y
2 T- -
njp p nn, P q
r —-2js {
(‘0 — —
nn,p q n,4 q
2nlpl n2 n
nj — S [
W -
nzpn 0
) 0 nyp,
ng S [
(@) - 9 -
nop ny 4,
! if =k
s _
LAl
2- -
s otherwise
(0]
aJs a2s
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TABLE 4

SOME SECOND-ORDER SENSITIVITY EXP?ESSIONS FOR
A DUAL-SYMMETRICAL COUPLING MATRIX

Basic solutionsZ p = e, Z p=p

Variable Second-Order Sensitivity Expression (y )
(})
20, B+, D, +P. b +D ) n.n.(p,p. +p. p,+p, p.+p.p
ny(Pp P + Py Pp P PHD P 1P PP; TP; Pt Py PP, Py
Moy T 202 [ ]

- -— - -— 2 - - - -
nlnz(pepi+ pi pe +pk pj+pjpk) nz(pepk+pk p€,+pi Pj+Pj pi)

and ié n+1—

S =

i »

s
o’

2 T- Ti= 2 - -~
L TP TP "1 Py 1% Py
w0, Aw, wo 2s. s -5
¢ T 2 T - o - 2 -
npngp 1p foP P MM Py fo Py
12 T— n TI_
PP (hy P 1p
-, o
2sz[ . .
n ny p lp nyp P
ey nypy
ny _s
w -
Ny Dy, 0
) 0 ngpy
ng s [
(0] - 9 -
P1Pa 22 Py
1 )
—s iff€=k orf+k=n+1
T c é 92 W
2_ .
S, otherwise

k, j&n+1-¢

Js 325

A
d®  9p dw

s = —
@ Jw
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TABLE 5

SOME TYPICAL RESULTS OF SENSITIVITIES

Frequency Response Sensitivity w.r.t.

(MHz) Mig Mi. 10 Msg Mag* w
3965 Insertion loss (dB) 22.1 -1365.5 -0.9 -313.9 0.49
3990 Return loss (dB) 189.7 -126.0 -278.5 -201.9 3.41
3995 Group delay (ns) -20.1 46.5 1.3 -180.3 0.09

Myg represents a stray coupling whose nominal value for a synchronously tuned design is zero.
One of the advantages of the approach presented is that the sensitivities w.r.t. certain non-
existing elements can be evaluated. This permits the prediction of the effect on responses due to

small deviations of such elements.
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Fig. 1 Block representation and two-port equivalent of a circuit characterized by its impedance

matrix.
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Fig. 2 Representation of the overall network showing the two-port and the terminations.
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Fig. 3

Unterminated coupled-cavity filter illustrating the coupling coefficients.
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Fig. 4 Responses of the 10th order quasi-elliptic self-equalized filter showing optimized
amplitude and group delay.
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Fig. 6 Return loss and insertion loss responses of a 10th order detuned filter. The parameters
capable of reproducing such responses are identified.



