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Abstract

A new and highly efficient algorithm for nonlinear minimax optimization is
presented. The algorithm, based on the work of Hald and Madsen, combines linear
programming methods with quasi-Newton methods and has sure convergence properties. A
critical review of the existing minimax algorithms is given and the relation of the quasi-
Newton iteration of the algorithm to the Powell method for nonlinear programming is
discussed. To demonstrate the superiority of this algorithm over the existing ones the
classical three-section transmission-line transformer problem is used. A novel approach to
worst-case design of microwave circuits using the present algorithm is proposed. The
robustness of the algorithm is proved by using it for practical design of contiguous and non-

contiguous-band multiplexers, involving up to 75 design variables.
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I. INTRODUCTION

A wide class of microwave circuit and system design problems can be formulated as
minimax optimization problems. Most commonly, the minimax functions result from lower
and/or upper specifications on a performance function of interest. In practice, we form error
functions at a finite discrete set of frequencies and assume that a sufficient number of sample
points have been chosen so that the discrete approximation problem adequately approximates
the continuous problem. This may result in a large number of minimax functions to be
minimized. Therefore, a highly efficient and fast algorithm for minimax optimization is of
great importance to many microwave circuit designers and engineers. [t is the purpose of this
paper to present such an algorithm.

The plan of the paper is as follows. In Section II previous work in the area of
nonlinear minimax optimization is briefly reviewed. The algorithm of this paper is described
in more detail in Section I, where the two methods, namely, the first-order method and the
approximate second-order method are presented and the switching conditions between the
two methods are given. Our attention is focused on explaining the ideas behind the algorithm
and illustrating them with microwave circuit examples. A detailed discussion on the relation
of the quasi- Newton iteration of the algorithm to the Powell method for nonlinear
programming is gis}en in Appendix A. Section IV contains the comparison of the present
algorithm with the existing minimax algorithms using a three-section transmission-line
transformer problem.

A novel approach to worst-case tolerance design of microwave circuits taking full
advantage of the present algorithm is described in Section V. Previous work in this area has
been concentrated on worst-case design techniques disregarding the source of the minimax
functions, i.e., the discretization of a continuous problem. Our approach, which is believed to
be new to the microwave tolerance design area, integrates a search technique for maxima of
the response (a technique based on cubic interpolation) with the worst-case search using

linearly constrained optimization.



In Section VI an optimization procedure for practical design of contiguous and
noncontiguous-band microwave multiplexers using the present algorithm is described and
illustrated by a 5-channel, 11 GHz multiplexer design.

We conclude in Section VII with an assessment of the current applicability and

potential impact of the algorithm in the area of microwave circuit design.

II. REVIEW OF MINIMAX ALGORITHMS

Formulation of the Problem

The mathematical formulation of the linearly constrained minimax problem is the

following. Let
fx)="f(x, ..., x), j=1,...,m,
J i n
be a set of m nonlinear, continuously differentiable functions. The vector x & [xq x9 ... x,|T is
the set of n parameters to be optimized.
We consider the optimization problem

nnnnnmelwx)érnax{g(x)}

X J
subject to
aTerb.:(), i=1,..,¢ ,
1 i eq
a'x+b =0, i=¢ +1,..,¢, (1)
i i eq

where a;and by, i=1,...,¢, are constants.

Methods Based on Linearization

Over the past 15 years this type of problem has been considered by many researchers.
Usually only the unconstrained minimax problem is treated, however. But in the type of
methods to be described in the present paper it is no complication and computationally

costless to add the linear constraints. Many of the minimax papers use the objective function

IA“ (x) & max Ifj(x)|

J



instead of F. There is no significant difference between these two optimization problems. We
prefer (1) since it is notationally easier and more general.

One of the earliest methods for solving the minimax problem was that of Osborne and
Watson [1]. At the kth iterate, xy, their method uses a linear approximation of the nonlinear
minimax problem, namely,

_ ' (2)
minimize F (xk, h) £ max {fj(xk) + fj (xk)Th},

h J

where £’ (xi) denotes the gradient vector of fj w.r.t. x at the point x;. The minimizer hy of (2)
is found using linear programming and it is used in a line search. This method may be
efficient but often is inefficient. No convergence can be guaranteed and the method can even
provide convergence to a non- stationary point. Madsen [2] incorporated trust regions in the
Osborne and Watson method. The linearized problem (2) is solved subject to a local bound on
the variable h, the bound being adjusted during the iteration. No line search is used. This
method has been proved to provide convergence to the set of stationary points and has a
quadratic final rate of convergence when the solution is regular (Madsen and Schjaer-
Jacobsen [3]). However, the rate of convergence may be very slow on singular problems.

The method of Anderson and Osborne [4] is very similar to that of Madsen. The main
difference lies in the way of bounding the step length || hy|. A different approach was used by
Bandler and Charalambous [5]. They presented an approach utilizing efficient unconstrained
gradient minimization techniques in conjunction with least pth objective functions employing
extremely large values of p. Charalambous and Conn [6] apply an active set strategy to
obtain a direction for a line search.

All of these methods are first-order methods, i.e., the search is based on first-order
derivatives only. Therefore, all of these methods have problems with singular solutions and

the rate of convergence may be very slow.



Methods Using Second-Order Information

In order to overcome this problem some second-order (or approximate second-order)
information must be used. Hettich [7] was the first who proposed doing this. He used a
Newton iteration for solving a set of equations which expresses the necessary condition for an
optimum (see (6) below). However, Hettich’s method is only local. It is required that the
initial point is close to the solution and that the set of active functions (and constraints) is
known. Han [8] suggested using nonlinear programming techniques for solving the minimax
problem. He uses a nonlinear programming formulation of the minimax problem which is
solved via successive quadratic programming (Powell [9]). A line search is incorporated using
the minimax objective function as merit function. Overton [10] uses an approach similar to
Han’s but solves equality constrained quadratic problems and uses a specialized line search.

The method of Watson [11] is very similar to the method of this paper. It switches
between a first- and a second-order method. The main differences between our and Watson’s
method are the following. Watson requires the user to provide exact first and second-order
derivatives whereas we only require first-order derivatives. Furthermore, Watson fails to
define a suitable set of criteria for switching between the first- and the second-order method.
Our method has guaranteed convergence to the set of stationary points whereas Watson's
method has no such p}operty. It can even provide convergence to a non-stationary point.

The algorithm of this paper is based on the work of Hald and Madsen [12]. [t is a
combination of the first-order method of Madsen [2] and an approximate second—order method.
The first-order method provides fast convergence to a neighbourhood of a solution. If this
solution is singular then the rate of convergence becomes very slow and a switch is made to
the other method. Here a quasi-Newton method is used to solve a set of non-linear equations
that necessarily hold at a local solution of (1). This method has superlinear final convergence
(see Appendix B). Several switches between the two methods may take place and the

switching criteria ensure the global convergence of the combined method. Notice that the



user of this algorithm is required to supply function values and first-order derivatives
whereas the necessary second derivative estimates are generated by the algorithm.

We show in Appendix A that in the neighbourhood of a local minimum of (1) our
method generates the same points as the method of Powell [9] and Han [8]. However, in the
latter method a quadratic program must be solved in every iteration, whereas we have to
solve only a set of linear equations or, if the solution is regular, a linear programming
problem. Therefore the computational effort used per iteration with our method is normally

much smaller.

III. DESCRIPTION OF THE ALGORITHM
The algorithm is a combination of two methods denoted Method 1 and Method 2.
Method 1 is intended to be used far away from a solution whereas Method 2 is a local method.

We first describe these two methods.

Method 1
This is essentially the algorithm of Madsen [2]. At the kth step a feasible approxi-
mation xy of a solution of (1) and a local bound Ay are given. In order to find a better estimate

of a solution the follov;/ing linearized problem is solved,

C . = A . "\T
minimize F (xk ,h) = max {fj (xk) + fj(xk) h}
h J
subject to
I, <A, ®
T . .
a x +h)+b =0, i=1,..,¢ ,
i Tk i eq
T :
a, (xk+h)+bi20, 1—(€eq+1),...,€.

The solution of (3), denoted hy, is found by linear programming. Notice that xj + hy is
feasible. The next iterate is xx + hy provided this point is better than Xk in the sense of F, i.e.,

if F(xg+hy) < F(xg). Otherwise x¢41=xk. In Fig. 1 an example with one variable, two



functions and no constraints (£=0) is shown. F(x) is the kinked bold-faced curve. At xy linear
approximations of the two functions f; and fy are made and the solution of (3) is hy which is
found at the intersection of the two linear approximations. We assume that the local bound
Ay is so large that it has no influence. The new point is x4 = xi+ hy which is seen to be
close to a local minimum of F.

The local bound Ay is introduced because the linear model (3) is a good approximation
of (1) only in some neighbourhood of xi. Therefore, it makes sense to consider only small
values of | h || in connection with the linear model (3). The size of the bound is adjusted in
every iteration based on a comparison between the decrease in the objective function F and
the decrease predicted by the model (3). If the ratio between the two is small,

F(xi) - F(xc+ hy) < 0.25 [F(xy, 0) - F(x),hy)] (4)
then the bound is decreased, Ag +| = Ay/4. Otherwise, if

F(xy) - F(xic+ hy) = 0.75 [F(xy,0) - F(x), hy) | (5)
then Ag +1=2A. Ifneither (4) nor (5) hold then we leave the bound unchanged, Ay 4= Ag.

Experiments have shown that the algorithm is rather insensitive to small changes in
the constants used in the updating of the bound. This method has safe global convergence
properties (Madsen [2]) and if the solution is regular then the final rate of convergence is
quadratic (Madsen and Schjaer-Jacobsen [13]).

When the solution is singular, however, the final convergence can be very slow.
Consider the example of Fig. 2 in two variables where two functions are active at the solution
z (i.e., fj(z) =F(z) for two values of j). Fig. 2 shows contours for a 2-section transmission-line
transformer problem, where the minimax functions correspond to the reflection coefficient
sampled at 11 normalized frequencies w.r.t. to 1 GHz {0.5, 0.6, ..., 1.4, 1.5}. The optimization
variables are characteristic impedances Z; and Zs. Section lengths €, and €y are kept
constant at their optimal value €4, which is the quarter wavelength at the center frequency.
According to Madsen and Schjaer-Jacobsen [3] this is a singular problem. Above the dotted

line F is equal to one of the functions fj, F(x) =f1(x), and below the dotted line F is equal to



another function, F(x)=fy(x). At the dotted line f;(x)=f5(x)=F(x) and this line represents
the bottom of a valley.

If f; and fy are different then there is a kink at the bottom of the valley and a method
based on linearization, such as Method 1, will provide fast convergence to this kink, as
illustrated by the iterands in the figure (see point number 3). After the dotted line has been
reached, however, the convergence towards z can be slow because the iterands have to follow a
curve which passes the solution z in a smooth manner (with no kink). In the example, over 8
iterations are needed to converge to a region close to the solution. Therefore, a method based
on first derivatives only is not sufficient, in general, to give fast convergence. Some
(approximate) second-order information is needed. Notice that if 3 functions were equal at a
minimum of a two-dimensional problem, then no smooth curve through the solution exists
and Method 1 provides fast (quadratic) convergence to the solution.

Fig. 3 shows contours for the same two-section transformer problem. However, the
optimization variables are now €1/€q and Z1. Characteristic impedance 79 and section length
€9/ are kept at their optimal values (€o/€q = 1,Z3 = 4.472136). Here, the problem is regular

and 5 iterations are sufficient to reach the vicinity of the solution.

Method 2
It is a local method. It is assumed that a point near a solution z is known, and that the
active sets A(z) & {l fj(z) =F(z) } and C(z) 4 {i]| ajTz+b;=0 } are known. At a local minimum z

of (1) the following necessary conditions hold (see, e.g.,[7D),



z )\j f}.'(z) - Z piai:(),

j€A(z) i€C(z)
> A-1=0,
j€A(z) (6)
ij (z) - fj(z) =0, JGA(z)\{]O},
T _ .
a; z +bi—0’ i€C(z),

where the multipliers Aj and p; are nonnegative and jo€A(z) is fixed. Method 2 is an
approximate Newton method for solving the nonlinear system (6) (in the variables (z,A,p)).
Exact first derivatives are used but the matrix & Aifj""(2) is approximated using a modified
BFGS update (see Appendix A for details). In this way an approximate Jacobian Jy is

obtained at the estimate (xj,AK), u(k)) of the solution of (). The next estimate is found by

Axk
Jk AA(k) — - R(Xk , A(k) , ll(k)) (7)
Ap.(k)
(Xk+1,A(k + U),ll(k + 1)): (Xk,A(k), l«l(k)) + (A Xk,AA(k),Al.l(k))

where R(z,A,1) = 0 is the vector formulation of (8).

The Combined Method

The combined method is the algorithm which we recommend and use in this paper.
Initially, Method 1 is used and the active sets used in (6) are estimated. When a singular local
minimum seems to be approached a switch to Method 2 is made. If the Method 2 iteration is
unsuccessful Method 1 is used again. Several switches between the two methods may take
place. When Method 1 is used we say that the iteration is in Stage 1, otherwise it is in Stage

2. A detailed description of the two stages follows.

The Stage 1 Iteration

We have a point xy, a local bound Ay and a matrix J which should approximate the

Jacobian of (6).



10

1. Xp+1 and Ay 41 aré found using Method 1, and approximations Ay 41 and Cy 4 of the
active sets at xi 41 are found via the active sets at the solution hy of the linear model
problem (3).

2. An estimate (Ak+D pk+D) of the multipliers is found through a least squares
solution of (6) with (xy +1,Ak+1,Ck+1) inserted for (z,A(z),C(z)). This estimate is used
for finding a new Jacobian estimate Jy,; by the BFGS update as described in
Appendix A.

3. A switch to Stage 2 is made if the following two conditions hold:

(a) The active set estimates have been constant over 3 consecutive different Stage
1 iterates.

(b) The components of Atk + D and ptk+1 are nonnegative.

The Stage 2 Iteration

Xk, Ak, Ji and active set estimates Ay,Cy are given.

1. Find (xi 4 1, Alk+ D pk+1)) and Jy 4| using Method 2 with (Ay,Cy) inserted for (A(z),
C(z)).
2. Let Ay +1=Agk, Cx+1=Crand Ay 41 =Ax.
3. Switch to Stagefl if one of the following conditions hold:
(a) A function or constraint outside of Ay 1 or Cy 41 is active at Xy 4 ;.
(b) A component of Alk+ 1) or ptk+1) is negative.
(e) | R (xg 4 1, A+ D ple+ D) | > 0.999 || R(xy,A&) nk) || (see (7) for the definition of
R).

This completes the description of the combined method.
[t has been shown [12] that the combined method can only converge to stationary
points and that the final rate of convergence is quadratic on regular problems and superlinear

on singular problems (provided that the Jacobian of (6) is regular).
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The results published by Hald and Madsen [12] correspond to the combined method as
described here except that the PSB (Powell’s symmetric Broyden) formula was used for
updating Ji in Method 2. Our numerical results indicate that the use of the BFGS formula as
described in Appendix A is significantly better (see Table I).

For this paper we have used the MMLC version [14] of the algorithm, based on the

earlier implementation due to Hald [15].

IV. COMPARISON WITH OTHER ALGORITHMS

The Test Problem

To compare the performance of the present algorithm to other minimax algorithms a
3-section 100-percent relative bandwidth 10:1 transmission-line transformer problem has
been chosen (see Fig. 4). It is a special case of an N-section transmission-line transformer.
Originally studied by Bandler and Macdonald [16,17] this type of test problem is now widely
considered.

The problem is to minimize the maximum reflection coefficient of this matching
network. A detailed discussion on the formulation of direct minimax response objectives is
presented in [18].

Formally, the pfoblem is to

(8)

minimize F(x) = max |p(x, ),
X [0.5,1.5]

where
x = [0/q Zy Co/tq Zo €3/€y Z3]T.
The minimax functions represent the modulus of the reflection coefficient sampled at
the 11 normalized frequencies w (w.r.t. 1 GHz) {0.5, 0.6, 0.7, 0.77, 0.9,1.0,1.1, 1.23, 1.3, 1.4,
1.5}. The known quarter-wave solution is given by ¢; = £y = €3 = €, Z1 = 1.63471,Zy =
3.16228, Z3 = 6.11729, where £ is the quarter wavelength at the center frequency, namely,

€q = 7.49481 cm for 1 GHz.
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The corresponding maximum reflection coefficient is 0.19729. Two starting points
have been used
xo! =[0.8 1.5 1.2 3.0 0.8 6.0]T,
%02 = [1.0 1.0 1.0 3.16228 1.0 10.0|T.
Gradient vectors with respect to section lengths and characteristic impedances are obtained

using the adjoint network method.

Performance of the New Algorithm

Table I shows the performance of the new algorithm as compared to other algorithms.
Table I also shows results obtained using the present algorithm with a cubic interpolation
search for maxima of the response. Using this technique the number of sample points can be
reduced form 11 to 4 and we do not have to know in advance the location of frequency points
corresponding to the maxima of the response. More information on the cubic interpolation
search technique is given in Section V in the context of a new approach to worst-case design of
microwave circuits.

To show the influence of the parameters DX (initial step length of the iterative
algorithm) and KEQS (the number of successive iterations with identical sets of active
residual functions that is required before a switch to Stage 2 is made), the optimization has
been performed several times for different values of DX and KEQS. The resulting numbers of
residual function evaluations required to achieve the accuracy EPS = 10-6, as well as the
numbers of shifts to Stage 2 are summarized in Table II (the numbers of shifts are given in
parentheses).

It can be observed that the increasing values of KEQS correspond to slightly increased
numbers of function evaluations. Moreover, too small and too large values of DX require
more residual function evaluations because of adjustments which are performed by the

algorithm. From other experiments it was observed that the increasing values of KEQS
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correspond, generally, to smaller numbers of shifts to Stage 2 (some too early shifts are

eliminated).

V. WORST-CASE NETWORK DESIGN

Preliminary Remarks

In this section we will formulate the fixed tolerance problem (FTP) [23,24] embodying
worst-case search and the selection of sample points for the discrete approximation of a
continuous problem. As mentioned in the introduction, the discretization of a continuous
problem may result in a large number of minimax functions to be minimized. The size of the
problem increases dramatically if we want to consider tolerances on network parameters
since for each frequency point selected to represent the response 2" (n is the number of
network parameters) minimax functions have to be created if we want to consider all vertices
of the tolerance region.

A number of methods have been proposed for solving worst-case problem. Schjaer-
Jacobsen and Madsen [24] suggest the application of interval arithmetic. Bandler et al. [25]
and Tromp [26] described methods which rely on the assumption that the functions considered
are one-dimensionally convex.

Our approach to the fixed tolerance problem is a double iterative algorithm. For each
outer iteration of minimization first a search using cubic interpolation is done to determine
frequency points which are candidates for active functions and then a number (equal to the
number of selected minimax functions) of inner loop optimizations are performed to
determine the worst case for each of the minimax functions.

The advantage of our approach is that the worst-case search (done by means of
linearly constrained optimization) and the actual minimization are linked together such that

each worst-case calculation affects immediately the outer iteration of minimization.
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Cubic Interpolation Search Technique

The cubic interpolation technique allows us to consider the minimum number of
frequency points to adequately approximate the continuous problem. In many cases the
discretization of a continuous problem may not be adequate to give the continuous minimax
solution. As illustrated in Fig. 5, the solution obtained using uniformly spaced sample points
may not be optimal in the continuous minimax sense since some of the peaks of the response
(or error function) have been missed. One way to overcome this difficulty is to use densely
spaced sample points. This, however, may result in a prohibitively large number of minimax
functions to be optimized. Therefore, it is desirable to develop a technique to locate the
maxima of the response w.r.t. frequency and to track these maxima during the optimization
process as they shift along the frequency axis due to the changes in the values of optimization
parameters. Such a technique has been developed by Bandler and Chen [27]. It is based on
the cubic interpolation formulas of Fletcher and Powell [28]. For convenient reference the

formulas are given in Appendix C.

Fixed Tolerance Problem

To present the method for worst-case tolerance design we will introduce
some notation which basi>cally follows that of [23].

A design consists of design data of the nominal point $02 [$10 §90 ... $,0]T and a set of
associated tolerances ¢ 2 [e1 eg ... e,]T, where n is the number of network parameters. An
outcome of a circuit is any point ¢ & [b1 d2... dnlTsuchthat gy = ¢0 + gjp;, -1 = p; = 1,i =
1,2,..., n. The tolerance region R_ is defined as R, 8{¢ | i = i + gy, i=1,2,...,n}). The
extreme points of R_ are called the vertices and are obtained by setting p; = £ 1.

We consider a set of m nonlinear functions

£i(0) 2 (0, wp), j€IJL{1,2,..,m}, 9)
where w;, j € J, is an independent parameter (frequency). The number of functions m is equal

to



m = Mpyuy + 2,
where mpy,x is the number of the maxima of the response and 2 represents the edges of the
frequency interval [we, w,].
The fixed tolerance problem can be defined on the basis of the worst-case objective
function [24] as that of determining
min F(q)o) = min max {max fj (P)}. (10)
¢" ¢ jeJ  PER
For each outer iteration of minimization w.r.t. $0 m frequency points are determined
(by a search technique based on cubic interpolation) and m linearly constrained optimizations
are performed to find the worst cases.
At the kth outer iteration of minimization we have an approximation ¢i0 of the

solution and we solve m linearly constrained optimizations, where the jth problem, j € J, is

minimize (= ( d)k))

j (11)
&,

subject to
@), —e =), =@ +¢ i=1,2, .n
i’k T 5 T P TP TE S
Once ¢ * for the jth function is determined we can identify whether the worst-case occurred
at a vertex using the following criteria.
Let
— * (12)
(v =1 @D, —@),].
If (yi)x = 10-5, we assume that the worst-case is not at a vertex and if |(y;)x — & < 10-5, then
the worst-case occurred at a vertex, for which y;, i€, are easy to determine
1 if ) < @Y
- (@), = (@), (13)

+1 otherwise

no=

The function values fj, j € J, and the gradients of f;, j € J, which are returned to the

outer iteration are evaluated at a point (d*)k, i.e., were the jth worst-case occurred.
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[llustration of the Approach

The 3-section transmission-line transformer is used to illustrate the approach and its
validity for worst-case design. Numerical results are summarized in Table III. As expected
the nominal parameter values are different from the values obtained for the nominal design
problem. The location of the two internal maxima of the response has also changed as
compared to the nominal design problem. Each linearly constrained optimization to
determine worst-case for the particular frequency with the accuracy 10-3 requires about 4

iterations of the algorithm.

VI. CONTIGUOUS AND NONCONTIGUOUS-BAND MULTIPLEXER DESIGN

Introductory Remarks

Practical design and manufacture of contiguous and non-contiguous band multi-
plexers consisting of multi-cavity filters distributed along a waveguide manifold has been a
problem of significant interest [29-31]. Recently, a general multiplexer design procedure
using an extension of the normal least squares method has been described [32].

We present here a general multiplexer optimization procedure exploiting exact
network sensitivities. The simulation and sensitivity analysis aspect of the problem together
with a number of examﬁles of multiplexer optimization (including a 12-channel, 12 GHz
multiplexer without dummy channels) have been described in [33]. All design parameters of
interest, e.g., waveguide spacings, input-output and filter coupling parameters, can be

directly optimized. A typical structure under consideration is shown in Fig. 6.

Formulation of the Problem

A wide range of possible multiplexer optimization problems can be formulated and
solved by appropriately defining specifications on common port return loss and individual
channel insertion loss functions. The minimax error functions are created using those

specifications, simulated exact multiplexer responses and weighting factors.



17

The minimax functions f(x), j € J, are of the form

w bk () ( Fll((x,wi)— Sbk @), (14)

- w, @) (F) (x,0)-S! (@), (15)
we (@) (F? (x,0)-S7 (@), (16)
= wr (@) (F? (x,0)- 8% (@), (1)

where Fl (x,w;) is the insertion loss for the kth channel at the ith frequency, F2 (x,w;) is the
return loss at the common port at the ith frequency, Sykl(wy) (Spkl(w;) is the upper (lower)
specification on insertion loss of the kth channel at the ith frequency, Sy2(w;) (S1.2(w;)) is the
upper (lower) specification on return loss at the ith frequency, and wukl, wiil, w2, w2 are

the arbitrary user-chosen non-negative weighting factors.

5-Channel 11 GHz Multiplexer Design

The procedure is illustrated by designing an 11 GHz, 5-channel multiplexer having
the center frequencies and bandwidths (similar to those of [32]) given in Table IV.

Suppose we want to design this multiplexer such that certain specifications on the
common port return loss and individual channel insertion loss functions are satisfied. A
lower specification of 20 dB on return loss over the passbands of all 5 channels should be
satisfied. We want also to control return loss between channels 1 and 2,2and 3,4and 51in a
similar way. We impose also additional specifications on insertion loss for all channels, ie,
we want the insertion loss in the transition bands not to drop below 20 dB.

We start the design process with five identical six-pole, pseudo-elliptic function
filters. Starting values of the coupling coefficients for the filters are given in the following

matrix [31]:
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[_ 0 0.62575 0 0 0 0 i
0.62575 0 0.57615 0 0 0
0 0.57615 0 0.32348 0 -0.74957
M= 0 0 0.32348 0 1.04102 0
0 0 0 1.04102 0 1.04239
0 0 -0.74957 0 1.04239 0 ]

The initial spacing lengths are set equal to Ag /2 (half the wavelength corresponding
to the kth center frequency). The filters are assumed lossy and dispersive. Waveguide
junctions are assumed nonideal.

Fig. 7 shows the responses of the multiplexer at the start of the optimization process.
As we see the specifications on the common port return loss are seriously violated.

The optimization process is performed in several steps. First we select only non-zero
couplings, input/output transformer ratios and filter spacings as optimization variables. This
gives a total of 45 optimization variables. The error functions resulting from the multiplexer
responses and specifications are created at 51 nonuniformly spaced frequency points. An
improved design is obtained after 30 function evaluations (230s on the Cyber 170/815). The
responses corresponding to the first step of the optimization process are shown in Fig. 8.

In order to comple}tely satisfy the design specifications we perform a second step of
optimization in which we release additional optimization variables, i.e., cavity resonances.
This gives a total of 75 nonlinear optimization variables. Using the same frequency points as
in step 1 and results of the first optimization as a starting point we continue the optimization
process. After 30 additional function evaluations (and 470s 6f CPU time on the Cyber
170/815), the design specifications are satisfied and the optimized responses of the 5-channel
multiplexer are shown in Fig. 9. To improve the return loss response of the multiplexer, the
third step of optimization is performed in which a search technique for maxima of the

response is employed. This gives 66 minimax functions and the same number of variables as
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-previously. After 25 additional function evaluations (and 360s of CPU time on the
Cyber 170/815) we obtain the final optimized responses as shown in Fig. 10.

In the approach presented the emphasis is on achieving a maximally effective set of
early iterations of optimization using a subset of all possible optimization variables. This
subset should correspond to “dominant” variables of the problem. Initial selection of the
variables can be facilitated by the full knowledge and experience of the designer and by an

initial sensitivity analysis at selected frequency points.

VII. CONCLUSIONS

We have described a new and highly efficient algorithm for nonlinear minimax
optimization problems which arise in microwave circuit design. The algorithm combines
linear programming methods with quasi-Newton methods and the convergence is at least
superlinear. Comparison made with the existing minimax algorithms on the classical 3-
section transmission-line transformer problem shows clearly that this algorithm is better in
terms of the number of function evaluations required to reach the solution with a desired
accuracy.

We have presented a novel approach to worst-case tolerance design of microwave
circuits integrating a cubic interpolation based search technique for maxima of the response
with the worst-case search using linearly constrained optimization. The validity of the
approach has been demonstrated by solving a fixed tolerance problem for a 3-section
transmission-line transformer. We emphasize that our approach does not require the
designer to know in advance the location of frequency points corresponding to the maxima of
the response and significantly reduces the number of sample points adequately
approximating the continuous response. This aspect of our approach is particularly
important since it can significantly reduce the number of minimax functions for which the

worst cases have to be found.
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The robustness of the -algorithm- presented makes possible practical design of
contiguous and noncontiguous-band microwave multiplexers. To our knowledge our work is
the first successful attempt to use gradient-based optimization for multiplexer design as well
as being the largest nonlinear optimization process ever demonstrated on microwave circuit
design for a reasonable computational cost.

We feel that the algorithm presented will have a significant impact on microwave
circuit design techniques and practices allowing the designer to consider problems of greater

size than usually done in the past, including tolerances on circuit parameters.
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APPENDIX A
QUASI-NEWTON ITERATION AND THE POWELL METHOD

Here the details of the approximate Newton iteration used in Method 2 are given.
Furthermore it is shown that close to a local minimum Method 2 generates the same points as
Powell’'s sequential quadratic programming method [9] applied to the nonlinear
programming formulation of (1). Therefore our method has the same local convergence
properties as that of Powell.

We consider one iteration of Method 2. For simplicity we use the notation x=xy,

A=Ay, p=pk, A=A(z), and C=C(z). In a Newton iteration for solving (6) we should use the

Jacobian

F’V " n

2 )\j fj (x) E -F

JEA
' 00...0 11...1 00...
R (x,A,p) = 0 (A1)

G! 0 0

| F 0 0 |

where E has the columns fj'(x), j € A, F has the columns a;, i € C, and G has the columns
fi,'(x) - £i'(x), j € A\{jo}. Only the upper left hand block involves more than first derivatives.
In Method 2 this block is approximated by an updating formula whereaVs the exact values are
used in the other blocks of R,

The Lagrangian function corresponding to (1) is

m 4
N\ T
LagAw = > A - > ulax+b],
i=1 i=1
so the upper left hand block of (A1) is Lyx'" (x,A,p) since Aj=0 for j¢A.

(A2)

This block is approximated by the BFGS formula with the modifications of Powell [9]

that keep the approximation positive definite. Thus the matrix Jy of (7) is
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[ B, E -F
00..0 11..1  00..0 (A3)
J, = T ,
G 0 0
| F' 0 0 |

where B, is updated through
Bi+1 = Bk - BrssTB/[sTBys| + yy1/[sTy]
with S = Xp+1-X (A4)
¥y = Ly (X4 1,A 1) - Ly (x,A,p)
An iteration of Method 2 is now given by (A3), (7) and (A4) with
(L, AW
Roo A =| 2 ! (A5)
e

- f
where e has the components fip(x)-fj(x), j€ A\{jo} and f has the components a;Tx+b;, i€C.

Now consider the nonlinear programming formulation of problem (1),

minimize G(x, §) 85

(%,8)
subject to
8§-fj(x) =0, j=1,...,m
ajTx+b; =0, i=1,..,0q (AB)
a;Tx+b; =0, 1=eq+1),--,L.

Assume that Powell’s sequential quadratic programming method is used to solve (A6). At the
iterate (x, §) = (xx, 8y) the following subproblem is solved,

minimize Q(h,p)=p + h' Ekh
(h,p)

subject to
8+p-[fj(x)+fj'(x)ThJ =0, j=1,..,m
aiT(x+h)+b; =0, i=1,..,0q (A7)

a;T(x+h)+b; =0, 1=(leq+1),...,L,
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with By being a positive definite estimate of the Hessian of the Lagrangian. By has the
dimensions n x n. Actually it should be (n+1) (n+ 1) but the row and column corresponding to
p are left out for notational convenience since they have no influence. The next iterate is
(Xk+1, Ok +1) = (x,8) + a(h,p) where (h,p) denote the solution of (A7), and close to a solution
a=1 is necessary for fast convergence. We assume that (x,8) is close to a solution (z,§*) and
that a=1. Assume further that x is so close to z that the active constraints at the solution of
(A7) are the same as at the solution of (A6). These are identified by the indices j€ A= A(z) and
i€C=C(z).

Using these assumptions we can find the solution of (A7) using the Kuhn-Tucker

conditions. They give

B, h _ [ -f.(x) | a 0
k _ j _ i _
DR I BT I BN
jEA 1 ieC
p - [§(x)+£'(x)Th] = 0, JEA, (A8)
a;T(x+h)+b; =0, 1€C .

This is equivalent to the system

Bh+ > Xjfj(x)_ > ma =0

jEA ieC
DAt —0 (A9)
JEA
f@+f &) 1-f®@+f®Thi=0, j¢ AV}
JO ]0 J J

al(x+h)+b =0, i€C.
Using (A3), (A5) and (A2) and a small calculation it is seen that (A9) is the same as (7) with
h = Axi, A = Ak+1D and B = pk+1 (provided that Ek = Byg). Thus the point x+ h found by
Powell’s méthod is the same as the point xy + 1 found by Method 2. Furthermore Powell uses A
and W as the new multiplier estimates so also here there is coincidence with Method 2.

Finally, the matrices Ek and By are updated through the same formula. This is seen

from the fact that the Lagrangian of (A6) is
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m ¢
T _ N N T
L(wApw=38 - > NIB - £ (] - D wlax+ b1
j=1 i=1
with w=(x,8). In Powell’s method 1_3k is updated by (A4) with L instead of L. Therefore, it is

(A10)

seen from (A2) and (A10) that the updates of Ek and By are identical.
Consequently Method 2 is identical to Powell’s method in its final stages provided

that the matrices to be updated are initialized in the same way.

APPENDIX B
SUPERLINEAR CONVERGENCE

[fthe sequence {ri} converges to r* in such a way that

k—x

the sequence is said to converge linearly to r* with convergence ratio f.

The case where f=0is referred to as superlinear convegence.

APPENDIX C
CUBIC INTERPOLATION FORMULA
As a well-known fact, a maximum of a continuous differentiable function e (w) is
characterized by e’ & e/dw = 0 and 82e/d0w2 < 0. This implies a change in the sign of de/dw
and, in the neighbourhood of the maximum, de/dw decreases as frequency increases. It follows
that if there exist two points w; < wg such that

’

e >0 and e <0
“y ©9

at least one maximum of e (w) lies between w; and we. If w; and wg are close enough to
exclude the existence of multiple maxima, the location of the detected maximum can be
estimated by the cubic interpolation formula [28]

(mz—-ool) X—y —e_

2 (C1)

e, —e + 2x
1 %9
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where

, , e(w,) — e(w)) (C2)

y=—-e¢ —e +3—mm—

(;J1 mz 0)2 — (‘01

and
1/2
X = y2 — e e (C3)
“1 Q9




28

TABLE ]
COMPARISON OF ALGORITHMS FOR THE 3-SECTION TRANSFORMER

(NUMBER OF FUNCTION EVALUATIONS)

Algorithm Starting Point xo1 Starting Point xo2
This algorithm! 18 * 21 **
Hald and Madsen [12] 21 46
Agnew [19] Alg. T 23 64
Alg. II 20 109
Bandler and Charalambous [20] 95 155
Charalambous and Conn [21] 162 67
Conn[22] 67 80
Madsen [2] 253 707
Madsen and Schjaer-Jacobsen [3] 29 48
This algorithm? 15 * 22+ +

Execution times on Cyber 170/815 in seconds are *0.6, **0.7, 1 0.57, ** 0.85

"Active" frequency points selected by ! without cubic interpolation
the cubic interpolation search
0.50000, 0.76999, 1.23001, 1.50000 2 with cubic interpolation
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TABLE II
THE INFLUENCE OF THE CONTROLLING PARAMETERS DX AND KEQS

ON THE NUMBER OF FUNCTION EVALUATIONS

KEQS
DX 2 3 4
0.1 21(2) 23(2) 24(2)
0.25 19(2) 18(2) 19(2)
0.5 18(2) 20(2) 22(2)
0.75 18(2) 18(2) 20(2)

1.0 21(2) 22(2) 23(2)




30

TABLE II1

FIXED TOLERANCE PROBLEM FOR THE

THREE-SECTION 10:1 TRANSFORMER

Number of Minimax Functions

Number of Variables

Required Accuracy of the Solution

Assumed Tolerances

Step Size in the Cubic
Interpolation Search

Solution Vector

"Active" Frequency Points

Maximum Refl. Coefficient

Number of Function Evaluations

Execution Time on Cyber 170/815
(in seconds)

4

6
10-5
5%

0.1

€1/€q = 0.96373 Zo = 3.22493
7, = 1.67797 £3/6, = 0.96483
€2/€q = 0.98720 Z3 = 6.04817
0.50000, 0.78726, 1.27242, 1.50000
0.33589

32

8.1
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TABLE IV

MULTIPLEXER CENTER FREQUENCIES AND BANDWIDTHS

Channel  Center Frequency Bandwidth

(MHz) (MHz)
1 10992.5 81
2 11075.0 76
3 11155.0 76
4 11495.0 76
5 11618.5 154
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F(x)

Fig. 1 An example with one variable and two functions illustrating a Method 1
iteration of the algorithm.



Fig. 2
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Two-dimensional singular minimax problem arising from optimization of a two-
section 10:1 transmission-line transformer with optimization parameters Z, and
Z,. The first 6 iterations are performed using Method 1 of the algorithm.
Iterations 7 and 8 are performed using Method 2. The total number of iterations
(function evaluations) to reach the solution with the accuracy of 107° is 11 (0.49s
on Cyber 170/815). If Method 2 is not used 25 iterations (1.14s of CPU time) are
required to reach the solution.



Fig. 3
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3.5

Two-dimensional regular minimax problem arising from optimization of a two-
section 10:1 transmission-line transformer with optimization parameters ¢,/¢_and
Z,. The first 5 iterations shown are performed using Method 1. The total number
of iterations to reach the solution with the accuracy of 1078 is 8 (0.37s of CPU time
on Cyber 170/815).



Fig.4
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1

) Z, .4, Zp.dy Z,.4,

o)
o}
¢

o
Q

Three-section, 10:1 transmission-line transformer used as a test problem to
compare the performance of minimax algorithms.

10
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