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Abstract

An approximate method, based on the Neumann series expansion, of calculating the
input impedance and its sensitivities of multi-coupled cavity channel filters is described. Its

application to the simulation and sensitivity evaluation of microwave multiplexers leads to
significant computational savings.

Introduction Microwave multiplexers consisting of multi-cavity channel filters have become
an important subject of satellite communication practicel’z. Figure 1 shows a block
representation of an €-channel multiplexer, where the kth channel filter, characterized by an
impedance matrix Z, is terminated at the output end by a load R, and, at the other end,
merges into the waveguide manifold. Each channel output is active over only a portion of the
operating frequency band of the multiplexer. Suppose that the kth channel output is of
interest at a particular frequency. We can represent the other channels by their input
impedances as seen from the waveguide manifold, as illustrated in Fig. 2. This being done,
the network is basically of a cascaded structure to which the theory of cascaded analysis, as
developed by Bandler et al.3, can be applied directly. To do this, however, the input
impedance of each channel and its sensitivities with respect to design variables associated
with that channel have to be made available. [n this paper, we first describe an exact method
to show that the channel input impedance and its sensitivities can be evaluated utilizing one
solution of the filter. However, carrying such an exact analysis through the whole frequency
band of a multiplexer becomes expensive and unnecessary. To improve computational

efficiency, a novel approximate solution is presented.



An Exact Method Consider a lumped model of an nth order singly terminated multi-coupled

cavity filter? as
Z1 =V, (1)
where
Z2j(s1+ M)+ diag{0...0R}. (2)
In eqn. (2), 1 denotes an nxn identity matrix, M is the real symmetrical coupling matrix. R is

the load and s is the normalized frequency variable defined by
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where 0, and Aw are the center frequency and the bandwidth, respectively.
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Letting e, 211 0 ... 0]T represent a unit voltage excitation, we can solve eqn. (1) for

the currents as

[=2Z"e,. (4)
The input impedance Z. is obtained by
1 1
Zin = [_ - _'F-—l 5)
1 e, Z e,
and its sensitivity with respect to a variable ¢ contained in Z is given by
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Formulas (5) and (6) show that the evaluation of Z, and its sensitivities at one
frequency requires one solution of (4). When a large number of frequency points are
considered, the matrix analyses such as LU factorization involved in obtaining exact
solutions can be very time-consuming. In order to improve computational efficiency, we

present an approximate solution of eqn. (4).



An Approximate Method We assume that the frequency w under consideration is sufficiently

far away from the center frequency w,- This will be described more precisely as we proceed.
Another assumption is that at such frequencies the input impedance of the filter is virtually

purely reactive, i.e., Re (Z;) = 0. The second assumption leads to an approximation of (4) as

1 1 .
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From matrix theory we have the Neumann series? as

1+A)1T=1-A+ AZ_A3 + . (8)

which is valid for

1 > max ])\m.], ©)

1<i<n

where A,;1s an eigenvalue of the nxn matrix A.
Taking a truncated Neumann expansion of (1 + (1/s) M)™!, we obtain an approximate

solution of (7) as
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where the coefficients b, are calculated recursively by
b,=Mb, ,, i=2,.,m (11)
and b is the first column vector of M. Such an approximation is valid if, following (9),
A 12
1> max |—|, ie., [|f> max ‘}‘il’ (12)
S
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where A, is an eigenvalue of M. Condition (12) describes more precisely our assumptions.

Approximate Sensitivity Analysis The accuracy of the approximate Zin and its sensitivities

depends on the factor m in formula (10). Here, some interesting results are obtained by

taking m=1, which leads to a rough approximation as
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where M, = 0 for a synchronously tuned filter. Also, we have
LM (14)
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From equation (6) we have, using the above results,
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Formulas (15) and (16) show that the couplings related to the first cavity (input
cavity), namely M,, and M,,, play an important role in sensitivity analysis, particularly

when w is far away from w,,. Also, for a large |s|, we have
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The implication is well-known, namely that the couplings closest to the input dominate the

out-of-band performance of the filter. This is also verified numerically in Table .

Examples and Computational Advantages A 6th-order filter is chosen to illustrate our

method. The filter is centered at 4 GHz and has a 40 MHz bandwidth. Its input reactance
(ie., Im(Z; ) is shown in Fig. 3. Some typical sensitivity results are given in Table I.

The coefficients b, as given by (11), are frequency independent and need be computed
only once, which requires (m-1) n? multiplications. Then at each frequency mxn
multiplications are needed to obtain the approximate solution by (10), whereas the exact
solution requires n®/3+n%-n/3 multiplications. The saving in computational effort is best
illustrated by considering a multiplexer example.

Assume that a contiguous-band multiplexer consists of 5 channels and each channel

contains a 6th-order multi-cavity filter of 40 MHz bandwidth. The exact simulation for each



channel at one frequency requires 106 multiplications, whereas an approximate solution with
m =4 involves only 24 multiplications. Suppose we want to simulate such a multiplexer over
a 240 MHz band. Taking a 1 MHz interval, each channel filter has to be solved for at 240
frequency points. The approximations can be applied to 180 out-of-band points per channel.
Therefore, using the approximate method leads to a saving of 5x (180x(106-24)-108) = 73260
multiplications, which is equivalent to more than 57% of the total multiplications. Notice
that 108 multiplications are needed for the recursive caleulation of the coefficients b.. For
multiplexers consisting of more channels for which each channel is active over a smaller
portion of the total frequency band, the computational saving becomes even more significant.
An important and realistic case, namely, the solution of a lossy filter, is readily
accommodated by replacing s in (10) by s—jr (i.e., replacing js by js+r), where r represents the
uniform cavity dissipation. Also, it should be noted that the approximate method can be
generalized to the case of dispersive filters, for which the coupling matrix and consequently

the coefficients b, are frequency dependent.

TABLE [ SOME TYPICAL RESULTS OF SENSITIVITIES

ollm(Z, )l/oM ,, dllm(Z; )V/oM,,
Frequency
(MHz)
Exact Approximate* Exact Approximate*

3930 0.477 0.474 0.0004 0.0004
3940 0.564 0.556 0.0009 0.0008
3950 0.692 0.673 0.0026 0.0019
3960 0.903 0.845 0.0096 0.0056

*m=4
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Fig. 1 Block representation of a multiplexer consisting of € channels.
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Fig. 2 The reduced network. A channel filter is represented by its input impedance
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Fig. 3 The input reactance (Im(Z; ) of a 6th order filter.

a) By exact method. Re (Z;,) = 0.0005 (not shown).

b) By approximate method with m=4.



