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Abstract

This paper presents a novel approach to the simulation and sensitivity analysis of
multiplexing networks. All computations are performed efficiently utilizing the concept of
forward and reverse analysis which is elegant and effective in cascaded circuit analysis.
Formulas are derived for such responses as input or output reflection coefficient, common port
and channel output port return losses, insertion loss, gain slope and group delay. Exact
sensitivities w.r.t. all variables of interest, including frequency, are evaluated. The funda-
mental assumption is that the transmission matrices for the individual components of the
network and their sensitivities w.r.t. possible variables inside them are available. An explicit
algorithm is provided describing the details of the computational aspects of our theory. The
formulas are applied to the optimal design of practical contiguous or non-contiguous band
multiplexers consisting of multi-cavity filters distributed along a waveguide manifold. An
example for optimizing a practical 12 channel, 12 GHz contiguous band multiplexer without
dummy channels, which is the state-of-the-art structure used as the ouput multiplexer in

satellite transponders, is presented.
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I. INTRODUCTION

The design of contiguous band multiplexers consisting of multi-coupled cavity filters
was a problem of significant theoretical interest for several years [1],[2], however, the
manufacturing of such structures with more than 5 channels did not appear to be feasible.
Recently, the subject has turned into an important development area in microwave
engineering practice due to reports by leading manufacturers of successful production of 12
channel contiguous band multiplexers for satellite applications [3]-[6]. The employment of
optimization techniques to determine the best multiplexer parameters has been an
indispensable part of the design procedures reported [4]-[9]. The use of a powerful gradient-
based minimax optimization technique [8]-[9] has reduced the CPU time required in the
design procedure significantly.

The implementation of a gradient based optimization technique in multiplexer design
requires, as a vital step, a robust and efficient algorithm for simulation and sensitivity
analysis. In this paper, we present a new and elegant approach to the simulation of such
responses as common port and channel output port return losses, insertion loss and group
delay between source and channel output ports and their first-order sensitivities w.r.t. all
network parameters and frequency. Our approach can be applied to any network in the
general category of multiplexing or branched cascaded structures [10]. Each basic component
of the structure is either a 2-port model or a 3-port junction and can contain variables or be
constant. The fundamental requirement for the approach is that the transmission matrix
description of all basic components and their derivatives, if they contain variables, are
provided. This information is utilized in a systematic and efficient scheme which leads to the
evaluation of various responses of the network at all ports of interest. An important feature of
our approach is that the network structure is fully exploited and an effective cascaded
analysis method, namely, the forward and reverse analysis method [11], [12] is extended and

applied. Components of various complexity are permitted and nonideal effects such as losses



and dispersion can be directly taken into account. The approach handles contiguous and non-
contiguous band designs in a unified manner.

The presentation is organized in the following way. In Section II, we describe the
basic cascaded analysis approach as applied to a general branched cascaded circuit. Formulas
for Thevenin equivalents, reflection coefficients and branch output voltages as well as their
first- and second-order sensitivities w.r.t. design variables and frequency at any reference
plane are developed. In Section III, we consider multiplexers consisting of multi-cavity filters
distributed along a waveguide manifold. Transmission matrices and sensitivity expressions
for typical components in a multiplexer, which are required by our approach, are tabulated.
Response and sensitivity formulas, applicable in the multiplexer design, are also listed. In

.
Section IV, an algorithm based on the theory discussed in Sections II and III is presented.
Finally, in Section V, we consider a practical 12-channel 12 GHz multiplexer and apply our

theory to optimize such a structure, taking into account many nonideal effects, using a

gradient-based optimization procedure.

II. BRANCHED CASCADED NETWORKS
A multiplexer falls into the category of a general class of networks, namely, branched
cascaded structures as shown in Fig. 1. For such structures, we develop a novel procedure to
calculate the reflection coefficients at the common port and branch output ports as well as
branch output voltages. Simultaneously, first- and second-order derivatives are evaluated.
The approach is based on the computation of Thevenin source and impedance equivalents and
their first- and second-order sensitivities w.r.t. design parameters and frequency at the ports

of interest.

Models of Basic Components

Although the basic components of a branched cascaded circuit are 2-port elements or

3-port junctions, internally they can be complicated subnetworks characterized by



admittance, impedance or hybrid matrices. An example of such a subnetwork is the multi-
coupled cavity filter described by an impedance matrix and containing many design
variables. As a prerequisite step towards using our theory, the transmission matrix for each
2-port element should be deduced either by a reduction procedure or by direct measurements.
Also, if variables exist in a subnetwork, the derivative of the corresponding transmission
matrix should be provided. For the 3-port junctions, however, a 3-port description in the form

of an arbitrary hybrid matrix, is sufficient.

Reference Planes

Consider the branched cascaded network of Fig. 1, which consists of N sections. A
typical section, e.g., the kth one, has a junction, n(k) cascaded elements of branch k and a
subsection along the main cascade, as shown in Fig. 2. All reference planes in the entire
network are defined uniformly and numbered consecutively beginning from the main cascade
termination, which is designated reference plane 1. The source port is at reference plane
2N +2. The termination of the kth branch is called reference plane t(k) and the branch main
cascade connection (branch input port) is reference plane o(k), k=1,2,...,N, where

t(1) = 2N+3
o=t +nk), k=1,2,.,N )
tk)=ok-1)+1, k=2,3,..,N.

Reduction of Junctions to 2-port Representations

Bandler et al. [11],[12] introduced the concept of forward and reverse analysis for
cascaded networks. To simplify the structure under consideration to a cascade of 2-ports for
which the forward and reverse analysis is applicable, the 3-port junctions are reduced to 2-
port representations.

Consider the 3-port junction shown in Fig. 3. To carry the analysis through the

junction along the main cascade, we terminate port 3, e.g., by calculating the equivalent



admittance seen at this port given by Y3 = (~I3)/V3 and represent the transmission matrix
between ports 1 and 2 by A. The analysis can also be carried through the junction into the
branch by terminating port 2, e.g., calculating Yo = (-I2)/Vg2 and denoting the transmission
matrix between ports 1 and 3 by D.

As an example, suppose the 3-port junction is characterized by a hybrid matrix H such

that
T _ T 2
v, L I3] =H[V, I, V3] , (2)
where H = [hjjl3x3. Then A = [ajjlox2 can be found from
=(—1y~! - (3)
8, = (-1Y [hij hi3h3j/(Y3 + h33)].

For various forms of hybrid matrices H, the 2-port representation A or D is evaluated

in a similar manner using elements of H and the equivalent termination at port 3 or 2.

Cascaded Analysis

Having reduced the junctions to 2-port representations, the network structure
between any two reference planes is transformed to a simple cascade of two-ports. Assuming
that the transmission matrices for all 2-ports are given, we define the equivalent

transmission matrix between reference planes i and j by

o [Hi5 Bij @
TR U c. D I’

A B..
o a2
Pii= Le 1> %57 Llp, 1

1] ij
In a forward (reverse) analysis, Q;j is computed by initializing row vectors e;T and e;T

Q.%(p

1j=

where

(column vectors e; and eg) at reference plane i(j) and successively premultiplying
(postmultiplying) each transmission matrix by the resulting row (column) vector until
reference plane j(i) is reached. e; and ey are unit vectors given by [1 0]T and [0 1]T,

respectively.



Let ¢ be a generic notation that can be used to represent any design variable in the
network. Sensitivities of Q;; w.r.t. any variable ¢ located between reference planesiand j are

evaluated as

Q.. 5
ij ¢ (6)

—_ = — Q) ,

w iz w

where Iy is an index set whose elements identify the transmission matrices containing ¢ and
9Q;jt/0¢ is the result of a forward or reverse analysis between reference planes i and j with the
€th matrix replaced by its derivative w.r.t. . Second-order sensitivities can be derived in a

similar manner as

62 Ql] _ Z Z 62 Qle;n )
3 dw €€I¢ mEIm 3 dw ,

where I3 and I, are index sets, not necessarily disjoint, identifying those matrices which are

functions of ¢ and w. Also, we define 92 Q;;fm/(3} dw) as the second-order sensitivity of Q;; as if

¢ and w exist only in the €th and mth matrices, respectively.

Thevenin Equivalent Circuits and Basic Responses

To calculate the input reflection coefficient at the common port, the output reflection
coefficients at the branch output ports, as well as the branch output voltages and their sensiti-
vities in a unified manner, we employ Thevenin equivalents at the ports of interest evaluated
by the method of forward and reverse analysis [11]. Denoting the Thevenin equivalent

voltages and impedances at reference planes iand j by Vgi, Zgi, Vgi and Zgj, we have

i
i Vs (8)
S~ i
A . +7Z.C..
ij S 7ij
and
i
7i _Bij+ZSDij 9)
L=

A +7.C
ij S 7ij



where reference plane i is located towards the source w.r.t. j, as shown in Fig. 4. The
sensitivities are obtained as

(Vg =LA, ), + 25 (C, ), + @), €, VL 10)

(Vi) = ;
S'e A +7.C.
ij S Tij

and

j
i —4g . .
o ZS](Qij)(b': 1 ]+(zls)¢ o, -7 c,)

(11)

where subscript ¢ denotes /9.
If the reflection coefficient at the kth branch output port and its sensitivities are to be

calculated, then (9) and (11) are specialized to

zitl= B (12)
A
and
t+1
(Z‘“) _ (B)q) - (A)¢ZS (13)
S ‘¢ A ’

where A = AgN4+21+1, B = Ban+2,+1 and t = t(k). This is simply due to the fact that there
is no impedance to the left of reference plane 2N +2, i.e., ZgZN+2 = 0. The corresponding
output reflection coefficient is defined as

+1 k
Zg™ - Ry (14)

ka S
t+1 k'’
ZS + RL
where Rk is the load resistance at the kth channel output. Clearly, (13) is utilized in the
evaluation of (pk)4 as
(ZI+ 1) (1 _ pk)
S (15)
(0", = ’

¢ T+1 k
ZS +RL

Channel output voltage is also computed by utilizing the Thevenin equivalent voltage

source and impedance at the branch output port. At the kth channel we have

k
R; (16)

Vk: k T+1
AR+ 7L



assuming a normalized excitation at the source port. This can be easily explained by noticing
that Vk is evaluated using a voltage divider once Vgt*1 is known. Using (8) and taking into

account that Vg2N+2 = 1and Zg2N+2 = 0, we have Vgt+1 =1/A. Also

t+1
k k vk 04)¢ (2 )¢ an
(V)cb:—RLV A + V|-
R + 7
The second-order sensitivity of Vk w.r.t. ¢ and w, i.e., 32Vk/(dpdw) is obtained via
evaluation of 92 Zgt +1/(3¢ dw). Substituting w for ¢ in (13) and differentiating w.r.t. , gives

+1 +1 +1
(B, — 25" (A, — (W) @™, - g™, @), (18)

t+1 _
gy = " :

where double subscript ¢w denotes 92/(d¢ dw).

Now, replacing ¢ by @ in (17) and differentiating w.r.t. ¢, we have

v (vE AA), —A A
wvh, = ——= “’-Rkvk[ o o,
dw Vk L A2

(19)

t+1 k t+1 t+1 T+1
(ZS )qm(RL +Zg ) — (ZS )w (ZS )q) ‘J
k T+1,2
(RL + Zg )
Norton equivalent admittances and current sources are calculated similarly to the
Thevenin equivalents. Denoting the Norton equivalent currents and admittances at

reference planesiandjby I i, Y i, Ijand Yij, we have

Vi Ci; + YLDy (20)
LA +Y B,
ij L7ij
and
[ =L =0. (21)
Also,

1
i j i

YL

yhH = _
L'e A +Y B
ij L 7ij

As special cases of (20), the equivalent admittances Y3 and Yg required in the

reduction of junctions to 2-port representations are calculated as



Co(k), (k)

YE = yo = ,k=1,2,.,N (23)
o(k), t(k)
and, for a short-circuit main cascade termination,
D
yeoyZx- ZL o192 N. (24)
2 B
2k,1

The common port reflection coefficient is also computed using the Norton equivalent

(at the source reference plane) as

pg —1_ 2 RSD2N+2,1 (25)
Bon+ 21
Its sensitivity is given by
B),D - (D) B
0, =2 Ry ———"— (26)

B2

where B = BzN+2,1 and D = D2N+2’1.

III. ANALYSIS OF SPECIFIC MULTIPLEXER STRUCTURES

While the approach developed in Section II is general, as a special case, the design of
multiplexers consisting of coupled cavity filters distributed along a waveguide manifold is
considered here in more detail. Contiguous or non-contiguous band multiplexers are treated
in a similar manner. Fig. 5, which is a special case for the structure in Fig. 1, illustrates a
typical circuit equivalent for a multiplexer. A branch consists of a coupled-cavity filter,
together with input-output transformers, and an impedance inverter. A subsection is the
waveguide section separating two adjacent filters and the junction is the equivalent circuit
model for the physical junction between channel filters and the manifold. The main cascade is
short-circuited and the responses of interest are common port return loss, channel output
return loss, insertion or transducer loss, gain slope and group delay between common port and
channel output ports.

To apply the general method of Section II, the subnetworks, namely, channel filters,

waveguide spacings and junctions should be represented by 2-port transmission matrices.
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Recently, a comprehensive set of formulas for reduction of multi-cavity filters to two-port
equivalents which also provides sensitivities w.r.t. variables of interest in the filter structure,
has been presented [13]. The formulas evaluate short-circuit admittance parameters and
their sensitivities w.r.t. all couplings as well as frequency for the unterminated filter model
and take many nonideal effects such as losses, stray couplings and dispersion into account.
Evaluation of transmission matrices from short-circuit admittance matrices is straight-
forward. Here we describe the essential information in [13] which is appropriate to this
paper.

The symmetrical impedance matrix for a narrow-band lumped model of an

unterminated filter is given by

Z =il +M)+rl @n
where 1 denotes an n X n identity matrix and s is the normalized frequency variable given by
800 ( @ ‘i) 28)
Aw o, o/’

®, and Aw being the synchronously tuned cavity resonant frequency and the bandwidth

parameter. We assume uniform dissipation for all cavities indicated by parameter r where

po o (29)

B Acon ’

Qr representing the unloaded Q-factor. In equation (27), M is the coupling matrix whose (i, j)
element represents the normalized coupling between the ith and jth cavities and the diagonal
entries M;; represent the deviations from synchronous tuning. Dispersion effects on the filter
are modelled by a frequency dependent M matrix. It is easy to prove [13] that to calculate the
short-circuit admittance parameters and their sensitivities w.r.t. all couplings and frequency,

we only need the solution of two systems of equations, namely,

Zp = e, (30)

and
Zq = e 3D

wheree; =[1 0...0]Tande, =[0...0 1]T.
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In Table 1, the transmission matrices for the individual components of the
multiplexer structure shown in Fig. 5, have been listed. The series 3-port junctions are
reduced to 2-port equivalents using the method described in Section II. Table 2 lists the
sensitivities of transmission matrices in Table 1 w.r.t. relevant parameters and frequency.

In Table 3, various frequency responses of interest in a multiplexer structure and
their sensitivities w.r.t. design parameter ¢ have been summarized. It is clear that the
evaluation of reflection coefficients at the common port and channel output ports (po and pk),

channel output voltages (Vk) and the first- and second-order sensitivities

(ap" apk avk avk PVE
T ’ and >3
. od 9D ad 0w o) dw

as described in Section II, is sufficient to compute all responses and sensitivities tabulated.

b

IV. ALGORITHM FOR CALCULATION OF THEVENIN
EQUIVALENTS AND THEIR SENSITIVITIES
The following algorithm can be used to obtain Thevenin equivalents at output ports
and their sensitivities w.r.t. any variable. The algorithm assumes that the transmission
matrices for all 2-port elements and the hybrid matrices for all junctions, as well as their
sensitivities are given. The reverse analysis along the main cascade is initialized by eg for a
short circuit termination or, e; for an open circuit termination. Correspondingly, the

resulting analysis is represented by g vectors (as in the algorithm) or p vectors.

Step 1 Fork=1,2, ..., N, set 0 and t to a(k) and t(k), respectively, and execute Steps
1.1to1.7.
Step1.1 Calculate Qi ;+1 by reverse analysis fori = t+1,t+2, ..., 0. Calculate Qg by

forward analysisforj=0,0-1, ...,t+1.
Comment Cascaded analysis is performed on the kth branch. The reverse (forward)
analysis starts from the branch output (input) port and is carried to the

branch input (output) port.



Step 1.2

Comment

Step1.3

Comment

Step 1.4

Comment

Step 1.5

Comment

Step 1.6

Comment

Step 1.7

12

Por < Qor+1Acer.

Calculate Ysk using (23).

The equivalent admittance of the kth branch, looking from the branch input
port, is computed. This admittance is utilized in the 2-port representation of
the kth junction.

Calculate dpy/dd using (6) and 3Y3k/a from (22) for all the variable ¢’s in the
kth branch.

Sensitivities of the branch equivalent admittance w.r.t. all variables in the
branch are calculated. In evaluating dY3k/ap, we use a special case for (22)
which corresponds to Y3k given in (23).

Calculate Agy using (3). Calculate dA9/dd for all the variable ¢’s in the kth
junction and the kth branch.

The 2-port representation of the kth junction, when terminating its port 3, is
computed. The sensitivities of the resulting transmission matrix are readily
obtained.

Calculate qgk 1 by reverse analysis and Yok from (24).

The equivalent admittance at port 2 of the kth junction, looking towards the
main cascade termination, is calculated after a reverse analysis from
reference plane 1 to reference plane 2k.

Calculate dqg,1/3¢ using (6) and 3Y2k/ap using (22) for all variables ¢ in
section k', k' < k and in the kth spacing.

The sensitivities of the equivalent admittance Yok, w.r.t. all variables
geometrically located to the right of junction k, are computed. In evaluating
8Y9k/a¢, we use a special case for (22) which corresponds to Yok, given in (24).
Calculate Dgj using the method described in Section II. Calculate dD9y/d¢ for
all the variable ¢’s in the kth junction and spacing, as well as in all k'

sections, k' < k.



Comment

Step 2

Comment

Step 3

Step 3.1

Comment

Step 3.2

Comment

Step 3.3
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The 2-port representation of junction k when terminating its port 2, is
computed. The sensitivities of the resulting transmission matrix w.r.t. all
variables, included in or located to the right of the junction, are computed.
Calculate qon+2,1 by extending the reverse analysis already performed up to
reference plane 2N in Step 1.5, to reference plane 2N +2. Note that Agyn has
been evaluated in Step 1.4.

Calculate dqaN +2,1/0) using dqaN,1/99 (d belongs to the set of all variables to
the right of section N and the Nth spacing), which has been evaluated in
Step 1.6 and dA9n/dd (¢ belongs to the set of all variables in the Nth branch
and Nth junction), which has been evaluated in Step 1.4.

The reverse analysis from the main cascade termination is carried back to the
source port. The corresponding sensitivities are also calculated. These results
are used to calculate the common port reflection coefficient and its
sensitivities w.r.t. all variables in the entire network.

For k = N, N-1, ..., 1, set 0 and t to o(k) and t(k), respectively and execute
Steps 3.1 to 3.3.

Calculate Q2N +2, 2k +1 by forward analysis.

The forward analysis is carried along the main cascade from the source port to
the input port of junction k.

QaN+2,1+1 < QaN+2,2k+1 D2k Qo+ 1.

Calculate 0QaN+2, t+1/0¢ using (6) for all the variable ¢’s in the entire
multiplexer.

A cascaded analysis from the source port is carried through the kth junction
into the kth branch. The sensitivities w.r.t. all variables are computed.
Calculate Vgt+1 and Zgt+1 using (8) and (9). Also, calculate aVgt+1/d¢p and

8Zst*+1/0¢ using (10) and (11) for all variables ¢ in the entire multiplexer.
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Comment Thevenin equivalents and their sensitivities are computed for the kth branch

output port.

V. EXAMPLE

A wide range of possible multiplexer optimization problems can be formulated and
solved by appropriately defining specifications on various frequency responses of interest.
The sensitivities are used in conjunction with the gradient-based minimax algorithm of Hald
and Madsen [14] to ensure the fastest possible solutions.

As an example, we have used our simulation and sensitivity formulas to optimize a
12-channel, 12 GHz multiplexer without dummy channels. Waveguide spacings, input and
output transformer ratios, cavity resonant frequencies as well as intercavity couplings are
used as optimization variables.

The details of the problem are as follows. There are twelve 6th-order multi-cavity
filters mounted on the waveguide manifold. The transmission matrix deduced from the
commonly used impedance matrix description of these filters has been formulated in Table 1.
An optimization on a singly terminated filter was performed to obtain the starting values for
the non-zero couplings Mjg, Mg3, Mg4, M3g, My5, Msg and the same values were assumed for
all filters. The unloaded Q-factor is estimated at 12000 and dispersion effects consistent with
the models in use at ComDev Ltd. [15] are included. In selecting the starting values of
waveguide spacings, for each section the half guide wavelength evaluated at the center
frequency of the corresponding channel filter, as suggested in the literature [1], was used.
The model for the nonideal junctions, i.e., the equivalent admittances Y, and Y. of Fig. 5,
which have also been assumed in the transmission matrix description of junctions as
appearing in Table 1, are consistent with the models suggested by Chen et al. [2] following the
formulas by Marcuvitz [16]. Fig. 6 shows the common port return loss and channel insertion

loss responses at the starting point for the optimization of the whole structure. -
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The specific optimization problem considered in this example was to satisfy a lower
specification of 20dB on the common port return loss over the entire frequency bandb of
interest for the multiplexer. From Table 3 it is clear that the evaluation of common port
return loss and its sensitivities w.r.t. the generic optimization variable ¢ is straight-forward
once the common port reflection coefficient po and its sensitivities (p0)y are known. We will
describe the particular variables considered in this example later. Recalling equations (25)
and (26) and the definition of qj; in (5), po and (po) are evaluated from qan+2,1 and its sensi-
tivities. Finally, by referring to the algorithm and specifically Step2 in this case,
92N +2,1,9q2N +2,1/dd are calculated.

The optimization was performed in several stages with the judicious addition of new
variables at each stage to improve the overall response or the response over some specific
portions of the total frequency band. In particular, the first stage was the optimization w.r.t.
only waveguide spacings, i.e., 12 variables, and the last stage involved 60 variables, namely,
12 section lengths, 14 variables for each of channels 1 and 12 (all 6 possible intercavity
couplings, 6 cavity resonant frequencies, input and output transformer ratios) and 4 variables
for each of channels 2, 8, 9, 10, and 11 (input and output transformer ratios, resonant
frequency of the first cavity and coupling M;9). In selection of the frequency points, uniformly
distributed points, 10 MHz apart over the whole 500 MHz band, are taken in the early stages.
However, a simple interpolation technique effectively treating sample points 1 MHz apart is
introduced in the final stages of the optimization. The total CPU time on the Cyber 170/815
system was about ten minutes. The results of the final optimization are shown in Fig. 7.
Equi-ripple return loss response satisfying the requirements over the entire communication
band has been achieved.

The results presented in this paper verify a highly efficient, state-of-the-art computer
program package for simulation, sensitivity analysis and optimization of multiplexers called

MXSO0S2. That package was developed by Optimizations Systems Associates [17] for
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ComDev Ltd. [15]. MXSOS2 was tested in close cooperation with members of ComDev Ltd.,

directly involved in multiplexer design and postproduction tuning [8].

VI. CONCLUSIONS

We have presented a new approach to simulation and sensitivity analysis of
multiplexing networks. By utilizing our formulas of Thevenin equivalents and their
sensitivities w.r.t. network parameters as well as frequency, various frequency responses and
their sensitivities at arbitrarily chosen reference planes are evaluated. The method
presented has been utilized in the optimal design of a state-of-the-art 12 channel contiguous
band multiplexer. Attractive and fast computer results obtained using a gradient-based
optimization technique justify our treatment of sensitivity evaluation as an integral part of
the analysis. All the sensitivity formulas presented in this paper can be verified
independently. Actual implementation of our approach, however, requires only an
understanding of the definitions of the responses, formulas for which are available in Table 3.
For more theoretically oriented researchers or engineers, our method of dealing with the
sensitivities (Section II) is straightforward and should be applicable to almost any complex

linear circuit structure in the frequency domain.
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TABLE 1

EXAMPLES OF TRANSMISSION MATRICES FOR SUBNETWORKS

IN THE MULTIPLEXER OF FIG. 5

Transmission Matrix
Subnetwork
Expression Notation
n 0
output transformer 2 A
ng:1 1
O —
Ty
. —-q -1
multi-coupled [ n :l A
ity filter' a | .2
cavity filter q le?-pq, P,
. 1
input transformer — 0 A
1m nl .
0 n,
series junction v
terminated at port 3 1 [ Y+Y, 1 :| A
by Y3, (Y=Yc+Y3) YLloy y+Y2 Y+Y
a a a
series junction
terminated at port 2 1 [ Y+ Yc 1 ] D
by Yz, (Y=Ya+Y2) YLY(Y +Y)+Y. Y Y+Y
a [4 a ¢ a
0 jZ_sin®
waveguide spacing™ €08 JZysin A
j sinB
! Z cosB
0
T pi(q;) is the ith element of vector p(q) which is the solution of Zp = e; (Zq = ey),

where Z = j(s1 + M) + rl and s = (wo/Aw)(w/wy - wo/w) for a filter with coupling
matrix M centered at wg and having a bandwidth parameter Aw and a uniform cavity
dissipation parameter r.

Tt a waveguide section has a characteristic impedance Zy and 8 = B¢, B = 2n/Ag, where €
is the section length and Ay is the guide wavelength.
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TABLE 2

FIRST-ORDER SENSITIVITIES OF THE TRANSMISSION
MATRICESIN TABLE 1

Subnetwork Identification Sensitivity of the
Transmission Matrix

output transformer 3A 1 01
an, 0 - :g

mu!ti-if)lllpled 3A ch

cavity filter E 2_‘11 (pq,+ qp) A+

je [ 49y 0 ]
q, Lpagq, +qpp -9, +pr4q) PP,

T
A SQ<TA'[ qq 0
—\Paat T T T T
o  q P9 q+q P P-29,P4q PP

. 1
input transformer IA - E 0
an 1 1
0 1
series junction
- dA
terminated at — , €Y g Y 3) K1
port 3™ ad ®
i J K Y) K
a(b,cpe )y Ky + (V) Ky
dA

— (Y3 + Yc)m K + (Ya)m K,
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TABLE 2 (continued)

Subnetwork Identification Sensitivity of the
Transmission Matrix

series junction
. oD
terminated at — , €Y 9 Y 2) Ll
port 2 ad ¢
oD Y ) (L Y) L
a¢,¢€J ( a)cb( 1+L2)+( c)q) 3
aD
5;; (YZ + Ya)o) Ll + (Ya)w L2
+ (Yc)m L3
. . —sin® jZ_cosB
waveguide spacing aA 0
— B} jcosB .
at 7 —sinB
0
—sinB jZ0 cosB
dA ¢@) |j coso
— co
Jw o | L1222 —sinf
ZO
2 ifa=b
T c= )
1 ifa=b

P
PRy v STy L
a a

1 0
I:Y +Y OJ
a

Ht L, = —— oo ! R Il
1= YY Y 1 2Ty LY +Y 1]y
a c a ¢
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TABLE 3

VARIOUS FREQUENCY RESPONSES AND THEIR SENSITIVITIES

Response Expression for
Type Formula Sensitivity w.r.t. ¢
return loss Py
(common port or —20log 10|p| cRe [—]
channel output port) p
4 [V¥Rg v,
transducer loss f -10log ( > cRe [ :l
k k
R/ \Y
k k k
VIR, + R))
insertion loss * 20 log,, [I |®s + By :| Re [(V )<b:l
k k
R, \Y
k k k k
) ; V), \" )cbm v )¢(V ),
gain slope cRe cRe -
Vk Vk (Vk)2
k k k k
V9, v )d)w v )Q(V ),
group delay —Im —Im -
vk vk (k)2
20
c= —
¢n10

-t between common port and channel k output port
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transmission reference

matrix plane
VA
..___._o_.__(?.____ T
R(
Ar K
——=—0---0———— Tt1+ti
element
Arfj-‘l i

S B

A element
o-1 n(k)
——————————— o
: | |
— =
l i ! Sk |
] BN 7
I | |
| | |
|
: Azk | Azk-1 |
2k+1 2k 2k-1
Dak
Fig. 2. Detail of the kth section of a branched cascaded circuit showing reference planes

along the branch where v = t(k) and ¢ = o(k).
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+ V3 -
13
I, Iz
+ O—»— —=——0 +
V, junction Vo
Fig. 3 A 3-port junction in which ports 1 and 2 are considered along a main cascade and

port 3 represents a channel or branch of the main cascade.
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reference reference
plane i plane j
Rg
- — — —<:>— o — — o
E 5 I Qyj I E]
- - o
i j
Zs | Zs
1 . ]
Vs ( ; ! 1 [
]
I ]
] [}
I ] ;
| ”YLl | HY,_'
| |
| |
(a)
ﬁ'r (o}
g
i
Y,
L
I
! l reference
B ___‘f__ " plane j
zg
]
Vs
reference
Rs .
plune‘ i Qij
| p— _— — __o...__l
EQ |
- |
Zs

Yi

|
|
|
|
1
|
|
|
I
|
| L

0

(b)

Thevenin and Norton equivalents at reference planes i and j, where reference
plane i is towards the source w.r.t. reference plane j. (a) reference plane j is in
the main cascade. (b) reference plane jisin a branch.

Fig. 4
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