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Abstract

A powerful model parameter identification technique employing the €; norm is
described. The technique is based on a novel approach which utilizes multiple sets of
measurements on microwave devices. Each new set of measurements corresponds to a circuit
model with one or a few parameters changed as a result of deliberate adjustments on the
device under consideration. The technique has been tested on realistic examples of multi-
coupled cavity filters.

Introduction

Consider a microwave device modelled by a two-port equivalent for which
measurements are performed at the input and output ports. Typical responses, in practice,
are input or output reflection coefficients and corresponding return losses, insertion loss and
group delay between source and load. As an example, here we consider input reflection
coefficient denoted by R, insertion loss denoted by L. and group delay represented by D. The
responses are functions of the parameters of the network model.

The motivation for the development of the approach presented in this paper is that
using input and output port measurements, it may be difficult, if not impossible, to identify
model parameters uniquely. The choice of an optimal set of frequency points at which
measurements are to be performed becomes critical. Since the approaches for such a selection
are heuristic and usually difficult to achieve, we develop and formulate a new method for
identification which intuitively makes the problem better-conditioned and more independent
of frequency points selected.

The approach can be summarized as follows. After taking measurements on the
device at a number of frequency points, from which the model parameters can not be
identified successfully, we vary one or a few of the model parameters by physically making an
easy-to-achieve adjustment on the device, and take another set of measurements. The
amount by which the model parameters have changed due to such a physical adjustment may
not be known, however, in practice it is not a restriction to assume that it is known which
parameters have changed. Adding a complete new set of measurements with the addition of
only one or a few new variables should facilitate the identification. If not successful, we keep
making adjustments one or a few at a time and record measurements until the model
parameters are uniquely identified.
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The L’lﬂ)proximation Problem

The problem of approximating a measured (or specified) response by a network or
system response can be formulated as an optimization problem.

Let
fm(w) é lflm fzm [-km]'l' 1)

be a measured or specified response corresponding to measurements (or observations) at data
(frequency) points w;, i=1, 2, ..., k, where

£ ™), i=1,2,.,k. 2)
Let
fex,0) 2 [f,°x0) £,5x) .. f4x|" (3)

be the response of an appropriate model which depends nonlinearly on a vector of parameters
x2 [x1 x9 ... xulT, where

£:5(x) 8 rex, w), i=12, . k. (4)

The approximation problem may be stated as follows

minimize ||f]] , (5)
X
where
£21f f, .. 1 and (6)
£2EC0-fM i=1,2,..,k. (7)

[t is usually assumed that the expected values of the components of f are zero, but due
to the presence 6f measurement errors in observing f', this cannot be realized in practice.
The particular norm to be used depends on the distribution of these errors, represented by the
components of f [1]. [t is commonly supposed that the values of f; are independent and
normally distributed, when the maximum likelihood estimate of the data is given by choosing
the norm to be the least squares norm. The data, however, might contain some wild points or
isolated gross errors, and in this case, minimization of the €| norm residual is superior to
using other norms €, with p > 1 [2]. The larger the value of p, the more focus is put on the
data points with largest deviation from the approximating function. With €., the maximum
deviation will be minimized.

Using the €] norm we wish to solve the problem,

k
minimize, [fx)] 2 2 | £.(x)
X i=1

The necessary conditions for optimality of the nonlinear ¢; problem [3] indicate that
zeros of the nonlinear functions fi(x) play an important role in the characteristics of the €;



objective function. This fact has been used in fault isolation techniques for linear analog
circuits [4]. The €1 norm is used to isolate the most likely faulty elements.

Another important application of the €; norm is the functional approach to post-
production tuning [5], where the €; norm is used to select the number of tunable parameters

needed to tune all possible outcomes of a manufactured design.

[n this paper the €£{ norm is employed in a general model parameter identification
technique.

The €L Algorithm

The unconstrained € optimization problem is formulated in (8). In this paper we use
an iterative algorithm for solving (8) which requires the user to supply function and gradient
values of the nonlinear functions fj(x). The algorithm is also using some second-order
information, which is approximated from the user supplied gradients.

The algorithm is similar to that of Hald and Madsen in [6]. It has been reported by
Hald in [7], which describes and lists a Fortran program implementing a version of the
algorithm. Hald and Madsen [8] have proved that the algorithm has sure convergence
properties.

The algorithm is a two stage one. [t always starts in Stage 1, which is a first-order
trust region method similar to that of Madsen [9]. Often this method has quadratic final
convergence, but in some cases (called singular, see Madsen and Schjaer-Jacobsen [10]) the
final convergence is slow. Therefore, Stage 2 is introduced. Here, a quasi-Newton method is
used to solve a set of nonlinear equations which express the necessary conditions for a local
minimum of (8).

[f the Stage 2 iteration is unsuccessful, then a switch is made back to Stage 1. Several
switches between the two stages are allowed. The switching criteria ensure that the global
convergence properties of the Stage 1 iteration are not wasted by the Stage 2 iteration.
Experiments show that usually very few switches are performed.

Formulation Using Multiple Sets of Measurements

The problem of model parameter identification using multiple sets of measurements
is formulated as follows. We use superscript 1 to denote the original circuit model and
superscript j to denote the model after the (j-1)th set of adjustments, i.e., the jth circuit.
Consider vector x! = [x;1 x9! ... x,!|T representing the parameters of the original circuit
model. We have measurements on reflection coelficient, insertion loss and group delay
denoted by Rml Lml and Dml, where taking reflection coefficient for instance, we have

Rm! — [... Riml “.]T, 1€{1, ..., MRl}, 9)

with i identifying the frequency point at which the measurement is taken. MR! is the total
number of frequency points at which reflection coefficient of the first (original) circuit has
been measured. Lml, Dml MLL and MDP! are defined in a similar way. The identification
based on one set of measurements is formulated as the following optimization problem



MRl MLl MDI
e N Rl |pcl _ ml \ Ll;cl _ ml X Dljpyel _ ml
minimize, > w7 [RT - R+ > w LS = LY+ > wo DS = DM, (10)
w.r.t.x1 i=1 i=1 i=1

where Re, Le and D¢ represent calculated (based on the model) responses and w denotes the
weighting factor. After making the first set of adjustments we have model parameter vector
x2 = [x12 x92 ... x,2], however, since some of the parameters in x2 have the same values as
the ones in x1, we introduce a new vector x,2 which contains the values of only those
parameters that have changed after the first set of adjustments. Therefore, x,2 has only one
or a few elements compared to n elements in x2. Generalizing the idea to t circuits, i.e., t-1
adjustments on the original circuit model, the optimization problem is

; Yo vl v
L. ’ Rj ) mj N Ljycj mj \" Dj 11y mj
minimize, . [}_ wRT - RM + > wHILI — LY+ > wPpd - ™
w.r.t. x j=1 "i=1 i=1 i=1
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9
X
a
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Examples

We consider multi-coupled cavity filters used in modern communication systems, e.g.,
satellite multiplexing networks. The symmetrical impedance matrix for a narrow-band
lumped model of an unterminated filter is given by [11-12]

JZ2i(s1+ M) +rl | (13)

where 1 denotes an nxn identity matrix and s is the normalized frequency variable given by s
8 (wo/Aw)w/wy-wy/w), w, and Aw being the synchronously tuned cavity resonant frequency
and the bandwidth parameter, respectively. Uniform dissipation by all cavities is indicated
by parameter r. M is the coupling matrix whose (i,j) element represents the normalized
coupling between the ith and jth cavities and the diagonal entries M;; represent the
deviations from synchronous tuning. Element M;j does not necessarily correspond to a
desirable and designable coupling. It may as well represent a stray coupling which is
excluded from the nominal electrical equivalent circuit. Dispersion effects on the filter can be
modelled by a frequency dependent M matrix.



As applications for our identification technique, we have considered the identification
of coupling parameters from simulated measurements on reflection coefficient for multi-
cavity filters centred at 4 GHz with a bandwidth of 40 MHz.

Case 1

A 10th order detuned filter with @ = 10,000 has the reflection coefficient response as
shown in Fig. 1(a) where the response has been deliberately contaminated by a Gaussian
noise having a maximum value of 0.01. This is to emulate the limits on accuracy of measure-
ment equipment. By varying My and Mg 1 the response of Fig. 1(b) is obtained and a further
adjustment on Myg and Mgg results in the response of Fig. 1(c). Both responses of Figs. 1(b)
and 1(c) have also been contaminated. Selecting 20 frequency points between 3960 and 4000
MHz from the response of Fig. 1(a) and using the same frequencies for responses of Figs. 1(b)
and 1(c), we identify the non-zero parameters of the filter as

mEomlb oomb o ml oMb Mt

1 Ml
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The problem involves 17 variables and an €, sum of 60 functions. The solution is reached in
about 8 minutes of CPU time on the VAX 11/780 system.

Case 2

A 4th-order detuned lossy filter with Q = 10,000 has the response shown in Fig. 2(a).
Besides the dominant couplings My, Mgg, M3q and M4, stray coupling M3 and two diagonal
elements My; and My representing the deviations of electrical cavities 1 and 4 from
synchronous tuning exist. By varying M,,, we obtain the response of Fig. 2(b). To prove the
insensitivity of the ¢, algorithm to few isolated gross errors or wild points, we deliberately
change the measurement data as illustrated by the dashed lines in Figs. 2(a) and 2(b).
Selecting 14 uniformly spaced frequencies between 3960 and 3999 MHz (error = 0.1 at
3993 MHz) from the response of Fig. 2(a), and another 14 points between 3961 and 4000MHz
using the response of Fig. 2(b) (error = 0.07 at 3994 MHz), we identify the dominant and stray
couplings and cavity resonant frequencies as

.
1 1 1 1 1 1 1 1
x = M, My, M, Moy Mg, My, My
T
= [ 0.2 0.2 0.5 0.5 0.5 -0.4 0.02

and




A value of 0.2 for a diagonal element corresponds to a deviation of about 10% of the bandwidth
from the synchronous tuning. The problem involves 8 variables and an €, sum of 28 functions
and the solution is reached in about 8 seconds.

Summary

A powerful and efficient model parameter identification procedure for microwave :

devices has been presented. A fast and robust gradient-based €, algorithm has been employed
to optimally process multiple sets of measurements.

This work is a part of a cooperative effort with ComDev. Ltd. of Cambridge, Ontario,

Canada towards modelling and tuning of microwave filtering and multiplexing systems.

References

[1] G.A. Watson, "Discrete €| approximation by rational functions", IMA J. of Numerical
Analysis, vol. 4, 1984, pp. 275-288.

[2] R.H. Bartels and A.R. Conn, "An approach to nonlinear €, data fitting", University of
Waterloo, Computer Science Department, Report CS-81-17, 1981.

[3] C. Charalambous, "On conditions for optimality of the nonlinear €; problem",
Mathematical Programming, vol. 17, 1979, pp. 123-135.

(4] J.W. Bandler, R.M. Biernacki, A.E. Salama and J.A. Starzyk, "Fault isolation in
linear analog circuits using the €1 norm", Proc. IEEE Int. Symp. Circuits and Systems
(Rome, [taly), 1982, pp. 1140-1143.

[5] J.W. Bandler and A.E. Salama, "Functional approach to microwave postproduction
tuning"”, to appear in the [EEE Trans. Microwave Theory and Techniques.

[6] J. Hald and K. Madsen, "Combined LLP and quasi-Newton methods for minimax
optimization", Mathematical Programming, vol. 20, 1981, pp. 49-62.

[7] J. Hald, "A 2-stage algorithm for nonlinear €, optimization", Report No. NI-81-03,
[nst. for Num. Analysis, Tech. University of Denmark, 1981.

[8] J. Hald and K. Madsen, "Combined LP and quasi-Newton methods for nonlinear ¢,
optimization”, SIAM J. on Numerical Analysis, to be published.

[9] K. Madsen, "An algorithm for minimax solution of overdetermined systems of
nonlinear equations”, J. IMA, vol. 16, 1976, pp. 321-328.

[10] K. Madsen and H. Schjaer-Jacobsen, "Singularities in minimax optimization of
networks", IEKE Trans. Circuits and Systems, vol. CAS-23, 1976, pp. 456- 460.

[11] A.E. Atia and A.E. Williams, "New types of waveguide bandpass filters for satellite
transponders", COMSAT Technical Review, vol. 1, 1971, pp. 21-43.

(12]  J.W.Bandler, S.H. Chen and S. Daijavad, "Exact sensitivity analysis for optimization

of multi-coupled cavity filters", Department of Electrical and Computer Engineering,
McMaster University, Hamilton, Canada, Report SOS-85-2, 1985.



o

.

»
T
|

o
.
-

0u2f \ / N
0l \\ m//l\ \\\/ 'p\/t |

1 1 1 1 1
3960 3370 3380 3930 4000 4010 4020 4030 4040
FREQUENCY (MHZ)

\ _
0.6 | _
\ |
\
0abf- -
0.3 _
0.2F .
0.1 \]I -

Q
REFLECTION COEFFICIENT
Q
o
T
1

o
REFLECTION COEFFICIENT
-

&

T

00 1 1 1 L L 1 Il 1 1
3960 3970 3380 3930 4000 4010 4020 4030 4040
FREQUENCY (MHZ)

1.0 T T T T T
0.9 —
0«8 -

S 0.7} -

wl

o

L.k —

g

(=} L .

c - 0.5

2

D04 ' -

w

: | \

W3l ! | -
02 —
Oelf- -1
0e0 1 1 1 1 1 1 1 ] L

3960 33970 3980 3990 4000 4010 4020 4030 4040
FREQUENCY (MHZ)
Fig.1 Reflection coefficient responses of a detuned 10th order lossy filter with Q =
10,000. The responses have been contaminated by noise.
(a) Original or first response.
(b) Response after varying M, and M 10

(e) Response after varying My, and MSE) w.r.t. (b).
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