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INTRODUCTION

In References 1 and 2, Bandler and El-Kady have presented the complex Lagrangian
method which exploits the Jacobian matrix of the load flow solution in conjunction with a
compact conjugate notation. The first-order changes of general network functions have been
elaborately investigated to yield generalized sensitivity expressions for practical control
parameters pertaining to various two-terminal power system components. The purpose of
this letter is to present an extension of the previous work'? to cover the domain of
nonreciprocal two-port transmission elements.

We consider a class of phase-shifting transformers which are modelled as an ideal
transformer (having complex turns ratio) in series with an equivalent impedance®*. The y-
matrix description of this model involves the complex turns ratio and the transformer
impedance, and is investigated as a fragment of bus admittance matrix. Exact first-order
sensitivity formulae for the transformer control parameters are derived in an elegant

manner. Numerical results* for the IEEE 118-bus system are also provided.

THE COMPLEX LAGRANGIAN METHOD

Consider an n-node power system containing n, loads, n, generators and a slack
generator. The buses are ordered in a manner that subscripts € = 1, 2, ..., n_identify load
buses, g = n + 1,..,n_+ n, identify generator buses, and n identifies the slack bus. The

power flow equations are expressed compactly as"**
Sy —Ey YoV, =0, 6))
where S is a vector of the bus powers, V, is a vector of the bus voltages, i.e., [V "V 'V I', Y,
is the nxn bus admittance matrix, and E  is a diagonal matrix of components of V  in the
corresponding order. In order to accomodate the unsymmetric y-matrix of phase-shifting
transfomers®*, Y, is assumed unsymmetrical. Furthermore, by using a quasi-complex power
at generator bus g, i.e., §g 4 Pg +j |Vg|, the standard complex form of the perturbed power flow

equations™** is written as



)
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where the £th and gth elements of d 2 (d,"d."d ] are
d, =88, - V, Vi 8y, 3)
and
— ~% _ * T *T * (4)
d, =88 — (V. Vy 8y, +V, Vi by)/2,

respectively, and yiT is the ith row of Y,.. Observe thatd_is simply 8V *.
For a general network function f, we write the adjoint equations following the
complex Lagrangian method"**
KK [V AV, (5)
[R*K*] A*l B [af/av’;,[]’

A"
where the right-hand side vector contains the formal partial derivatives of f w.r.t. the bus
voltages as well as conjugate of the bus voltages. However, for a real f, we observe of/aV =
(af/aVM*)*. The coefficient matrix involved in (5) is the transpose of the Jacobian available at
the load flow solution. Partitioning \Af into subquantities {’L, {’G and \A/'n, we exploit the first-
order change of f expressed in the form'**

sf=VId, +Vid +V d +ViTa] + Viidg+Vid, (6)
where f is assumed explicitly independent of the system control variables. Using (3), (4) and

(6), the sensitivity formula for the ith element in the €th row vector y eT is obtained as

df

— =_V,ViV, (7a)
dyei [
and that in the gth row vector ygT is
df A A % *
— =—-(V +Vg)V V./2. (7b)
dy,, g g i

Note thatdf/dy . = 0 asd_is independent of the nth row vector of Y . Also observe that for the
unsymmetric Y, we have y, # y, and Yo Yy - Hence, for the y-parameter Yoq of a

transmission element connecting buses p and q, we write a general sensitivity expression as

df AR e
—=_VRy'y | (8)
dy P p q

Pq



where
\A/' ¢ forp=¢
SRA S _ 9)
Vp = Re{Vg} forp=g .
0 forp =n

SENSITIVITY EVALUATION OF PHASE-SHIFTING TRANSFORMERS
The y-matrix of the transformer model®** depicted in Fig. 1 is expressed in a matrix

form as

1

«

y= a

o+

L Lo 1] , (10)
Zt

-1
where Z, and a,_are the transformer impedance and complex turns ratio, respectively. The
formal partial derivatives of the y-parameters of (10) with respect to a,, at*, Z and Z* are

listed in the Table. Using the chain rule and the derivatives together with (8), we obtain the

sensitivity formulae for a and Z as

g 11V /v Vo Vi v .
L T [
da, a, Z, a, Z, a,

and

*

a1 /V v, .
L_L(z2ov ) (2w ovim) 12
dZt Zt at q at p qQ q

respectively. In order to get the sensitivities in polar and Cartesian modes, the

transformations are available’?* and are easy to derive.

ANUMERICAL EXAMPLE*
A one-line diagram of the IEEE 118-bus power system is shown in Fig. 2. The system
has two phase-shifting transformers, one connecting buses 59 and 63 (t=188) and the other
connecting buses 61 and 64 (t=192). We consider the slack bus real power P_as the function

of interest. The kth element of the right-hand vector 6f/dV  of (5) pertaining to this function



is

o : S
— =Y, V. +58, > Y V)2,
aVk =1

where §_ stands for the Kronecker delta. The numerical results for Cté [|at| ¢, R, Xt]T are

summarized as

df
—— =1[0.039796 0.239011 1.86075 0.312149]T
¢ g8
and
df
— =1[0.029692 —0.142203 0.000229 —0.009722]T
d<192

where |at|, b, Rt and X, are, respectively, transformer turns ratio magnitude, phase-angle,
resistance and reactance. These results have been verified by small perturbations at the

nominal point.

CONCLUSIONS
We have presented a useful extension of the complex Lagrangian method to obtain
unified sensitivity formulae which are applicable to phase-shifting transformers. The
sensitivity formulae have been derived using the y-matrix of a transformer model frequently
used in the load flow studies. These formulae have been verified for practical purposes and
are capable of providing optimal settings for the real and reactive power flow control in

interconnected power systems.
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TABLE

SHORT-CIRCUIT ADMITTANCE PARAMETERS AND THEIR

PARTIAL DERIVATIVES

Parameter Expression Derivative Derivative Derivative  Derivative
wrt.a wrt.a' w.rt.Z wrt Z’
1 -1 -1 -1 0
Voo Zaa t* Z, atzat* Z.aa :2 Zf atat*
y _—1 0 ! ! 0
" Ze
y -1 1 0 L 0
qp Z KR Zt af Zt a,
1 -1
Yaa 7 0 0 -Z—z— 0
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Fig. 1 A phase-shifting transformer model.



Fig. 2 The IEEE 118-bus system.
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