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Abstract

This paper investigates multiparameter large change sensitivity problems in linear
systems by a set of generalized Householder formulas. The newly developed Rectangular
Formulas can accommodate large, small and zero parameter changes directly by avoiding a
critical matrix inversion as compared to the traditional Square Formulas. Possible
determination of a minimum order reduced system, whose solution procedure constitutes the
major work in large change evaluation is discussed. Applications to linear systems are
considered for the original and adjoint systems w.r.t. single as well as multiple input-output
cases. This approach makes it possible to use large change analysis algorithms even if many

parameters are changed.
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I. INTRODUCTION

In computer aided circuit design, it is often required to calculate network responses
after a certain set of parameters are changed. This problem, referred to as large change
sensitivity analysis, has been studied by many people. Fidler [1] and Singhal et al. [2],
considered single and multiple parameter changes, respectively, and developed methods to
calculate the response function as a multilinear form in variable parameters. Another
method is to formulate a reduced system, whose solutions are then used to update the
responses. This method has been treated from different angles, e.g., the current source
substitution approach of Leung and Spence [3], the adjoint network approach of Temes et al.
[4], the Householder formula approach [3,5], the scattering matrix approach of Haley [6-7]
and the matrix partitioning approach of Vlach and Singhal [8]. Hajj has derived and sum-
marized a set of algorithms where finite, infinite and zero parameter changes are all
permitted and sparsity is exploited [5]. A recent overview of this area is given by Haley and
Current who presented general approaches encompassing most of the previous methods [7].

As already noticed [3,5], large change analysis algorithms will lose efficiency when
too many parameters are changed. This is mainly because the algorithms involve the solu-
tion of a reduced system of order ng, the number of variables. However, cases exist where this
system is larger than needed. Also, in a Monte-Carlo analysis or in an optimization pro-
cedure, it is possible that some variables change slightly while others change substantially.
In this case, the small parameter changes may cause ill-conditioning in a non-iterative
method [3-5] and the large parameter changes may affect the convergence rate in an iterative
method [5].

In this paper, we present a set of generalized Householder formulas which is capable
of handling complicated cases encountered in practice. The problem of determining a min-
imum reduced system is investigated. Different aspects of the basic set of formulas are dis-
cussed in terms of duality property and operational count. Applications to general linear

systems are considered for original and adjoint responses with single and multiple input and



output situations. Also, as a special case, a series of first-order sensitivity expressions are
obtained without reference to Tellegen’s theorem. Numerical examples are given for a

general system of linear equations and for an arbitrary 10 node electrical circuit.

II. ASET OF GENERALIZED HOUSEHOLDER FORMULAS
Let the linear system be characterized by an n x n matrix A. Suppose the parameters
& of the system are changed by Ad. The system matrix A will then be affected by AA. We can
express
AA =VDWT, (1)
where V, D and W are n xry, r; xro and n x ro matrices, respectively. For a network example,
D can be an ngy x ng diagonal matrix containing variables and V and W are n x ng matrices
containing + 1 and -1 [5,8].
The effect of A in the response matrix A™! is defined as
AATHAA +AA)T-ATL @)
For the calculation of A(A™)), commonly suggested is the Householder formula [9], which can
be represented by
AAD =-ATvDT + WAt V)T wT AL, (3)
In this formula, D is required to be a square and non-singular matrix. Even if this can
be satisfied, ill-conditioning may still happen when D is inverted. In fact, cases exist where D
is simply not invertible and additional measures such as the partitioning procedures
developed by Hajj [5], Vlach and Singhal [8] must be applied. Another formula by
Householder is [10]
AAT) =-A1VDD + DWT A1 vD) ! DWT AL (4)
This formula avoids actually performing the inversion of D. But it still has the same
limitation as that of (3).
According to the formulation of D, we refer to (3) as Square with Inversion Formula

(SIF) and (4) as Square without Inversion Formula (SF).



To alleviate the limitations, corresponding formulas can be derived as [11]

AA™H =-A'vDA + WAL vD) T wT AL (5)
and
AA™H =-A1va + DWT AL V)l DWT AL, (6)

These two formulas permit D to be singular or even rectangular. Thus, more freedom
can be exploited using different formulations of D and ill-conditioning can be avoided.

The reduced systems in (5) and (6) are the order of ro and ry, respectively, where ry is
the number of rows of D and ry is the number of columns of D. Therefore, (5) may be preferred
ifry > rg, otherwise (6) should be used. It is reasonable to refer to (5) as Vertical Rectangular
Formula (VRF) and (6) as Horizontal Rectangular Formula (HRF), respectively, reflecting the
form of D.

The case of a rectangular D may occur, e.g., when we construct a minimum order
reduced system involving variables that are active element parameters, and when large
change algorithms are applied to algebraic linear systems other than electrical networks [11].
In those cases, the rectangular D may be used in VRF and HRF without modification leaving
V and W free of values A¢. Hence, V and W need to be preprocessed only once.

It should be noted that mathematically, the Square Formulas are special cases of the

Rectangular ones. Computationally, the latter have good stability.

III. PROPERTIES OF THE SET OF GENERALIZED HOUSEHOLDER FORMULAS

Duality Property

The HRF and the VRF can be considered as dual to each other. If we apply the

following interchanges

Ao AT, (7

Do DT (8)
and

VoWw, 9)

then the two formulas, i.e. (5) and (6), are completely interchanged.



This duality property can be employed to save our analytical effort by half. Unless
otherwise stated, we will focus on the Vertical Formula in the ensuing sections. Results for

the Horizontal ones can be similarly obtained.

The Minimum Order of the Reduced System

Using the scattering theory approach, Haley has found that the order of the reduced
system can be as low as rank (AA). Using our approach of only simple matrix manipulations

one can also verify that [11]

min r,= min r,=rank(AA). (10)

(V,D, W) (V,D, W)

This equation yields the conclusion that, for evaluating large change effects involving
Householder formulas, the minimum order of the reduced system is equal to the rank of AA.

Consider the circuit of Fig. 1 in which 7 parameters are changed from their nominal
values. By the methods of [3-5,8], the reduced system is 7 x 7. However, the rank of the nodal
admittance deviation matrix is 4. Thus, an even smaller system of size 4 x 4 is sufficient for

this problem.

Operational Count

Consider the computation of A(A™!). Suppose r; + rg < n and the matrix A has al-
ready been LU factorized. Usually, V, D and W are formulated such that D contains vari-
ables and V and W indicate the positions of the variables and are constant. Preparatory cal-
culations involving V and W are performed only once for each set of variables. Table I gives
operational counts (number of operations, i.e., multiplications or divisions) for the set of gen-
eralized Householder formulas. As shown in the table, the computational stability of the HRF
and the VRF is achieved at the cost of one more matrix multiplication, as compared with the
SIF. It should be noticed that these operation counts are for arbitrary algebraic linear equa-
tions. When linear circuits are concerned, the operational count is reduced as discussed in

Section IV.



IV. COMPUTATIONS OF ORIGINAL AND ADJOINT LINEAR SYSTEM
RESPONSES CORRESPONDING TO DIFFERENT NUMBERS
OF INPUTS AND OUTPUTS
In this section, we examine the computations of large change sensitivities in different
input and output cases. The VRF is applied. All results of Forward and Backward
Substitutions (FBS) involving A are calculated in the preparatory step and are represented by
P and p for the original system (coefficient matrix A) and by Q and q for the adjoint system
(coefficient matrix AT). To distinguish these solutions for different R.H.S., we use the

characters, similar to the R.H.S., as subscript. For example, Py is the solution of

APy =V (11)
and qy, is the solution of
ATq, =b. 12)
Case 1: Response Matrix A~}
AA™Y) = - Py DSQyT, (13)

where S is the inverse of (1 + WT Py D).

Case 2: System Responses for a Single Excitation Vector ¢

Suppose the response vector corresponding to excitation ¢ is x = [x xg ... xn]T, ie.,

Ax=c. (14)
We have
Ax = A(Al¢)
= _PyDs, (15)

where s is the solution of

1+ WI'PyD)s = Wix. (16)



Case 3: Adjoint Responses for a Single Excitation Vector b

Suppose the adjoint response vector corresponding to excitation bisy = [y; yo ... yalT,

ie.,
ATy=b. 17
We have
Ayt =AbTA™Y
— _gT ;rv ’ (18)
where s’ is the solution of
1+ Qw VD)Ts' =DTVvTqy,. (19)

Case 4: Response of Single-Input and Single-Output (SISO) System

If we use vector b to select the desired output from response vector x, then

AbTx) = AbTA Le)

where s is defined in (16) and by equals Py b and is obtained in the preparatory step.

Case 5: Responses of Multi-Input and Multi-Output (MIMO) System

Suppose C is an n x n" matrix whose columns represent different excitation vectors
and B is an n x m' matrix whose columns select the desired output measurements. Then the
n' - input m’-output case can be expressed, formally, by BT A1 C. Thus

ABTA1C) =-BTA'vDO + wrAlvD)lwTA-lC. (21)

We notice that the term BTA™1V can be computed either as BT Py or QgTV with a

difference of operational count as n2 (r; — m'). Therefore, comparing r; and m’, we can

calculate (BT A"l V) as
BTP ifr, <m’ (22a)
Qll; vV, ifr1 >m'. (22b)

Similarly,



WTPC, ifr, > n’ (232)
wlia-lc =
QTWC , ifr,=n’". (23b)

Also, at least one of (22a) and (23b) should be used in order to yield either Py or Qw which is
required in calculating
1+ WTAlVD) =(1+ Qw VD)
=(1+W'PyD). (24)
Hence, according to the values of r{, r9, m’ and n’, we can choose appropriate formulations.
For example, whenm’ < n’"and m’ < r9, we use
ABTAlC) =-8TQyTC, (25)
where S is the solution to
(1+Qw vD)TSs = (Qg" VvD)T. (26)
This approach requires m’ + ro FBS in the adjoint system for Qg and Qw as preparatory

calculations, one LU factorization and m' FBS in the reduced system of (26).

Expressions for Different Cases of Large Change Evaluation

In Table II, we summarize the various cases of the above discussion. Different
situations of the MIMO case are distinguished so that the number of FBS in the n x n system
equals the minimum of m' + r9, n’ + ry and r; + r9 and the number of FBS in the reduced
system equals the minimum of rq, r9, m’ and n’, as shown in Table III. This minimum FBS
criterion can be used as a guide to select appropriate expressions for the calculation of
ABT AL C).

When the number of FBS exceeds the order of the system, a matrix inversion may be

directly performed.



Computational Cost Consideration

In Section III, the operational count has been discussed for a general linear system of
equations. However, when an electric circuit is concerned, the cost is much less. We consider
the SISO network as an example. Suppose the reduced system is of order r. In the
preparatory step, we calculate Py whose operational count is rn2 and PTy b, WT Py and WT x
which are simply element selections and additions. Then, for each set of parameter changes,
we formulate and solve the reduced system by at worst 4r3/3 - r/3 + r2 operations. The

operational count for updating the output is r for the SIF and r + r2 for the HRF and the VRF.

Special Case: First-Order Sensitivity

As a special case of large change sensitivity analysis, small change sensitivity
computations can be deduced from our large change formulas without reference to Tellegen’s
theorem. Table IV gives examples of such first-order sensitivities w.r.t. components of a
matrix. Table V lists formulas w.r.t. variables. These results are obtained by putting A¢ into
the denominator of large change formulas and then letting the parameter change A¢
approach zero. The formulas in Tables IV and V are consistent with the existing ones derived

using other approaches, e.g. [12].

V. EXAMPLES

Example 1: A System of Linear Equations With Rectangular D

Consider a 10 x 10 system of linear equations with coefficient matrix as A. Supose the
intersection elements of rows 2,59 and columns 3 and 6 are constantly changed. We
formulate V, D and W such that

V={ugusugl], (27)
W =[ug ugl (28)

and
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-
AA 23 AA

AA53 AA

AA,, AA

—

—

26
56

96
-

(29)

where u; ,1=2,3,5,6,9, is a unit 10-vector containing 1 in the ith row and zeros everywhere

else. In this way, no additional effort is involved when applying the VRF and HRF. If we use

the Square Formulas, elementary transformations must be employed in order to obtain a

square matrix D.

Numerical solutions as well as intermediate results are shown in Fig. 2.

Example 2: An Electrical Network with Its Minimum Order System Achieved

The 10-node circuit of Fig. 1 is solved using the generalized Householder formulas

with simultaneous changes of 7 variable components. The minimum order of the reduced

system is 4, which is achieved by formulating V, D and W as

and

1

r

[ 8¢, +20,+ A0,
__A(b4
—Ag,

0

0 0
0 0
1 0
0 1
0 0
0 0
0 0
0 0
-1 ~1
0 0
—AC[)4
Ap,+Ad +Ad,
—A(I)5
0

—J

0 0
0 0
0 0
0 0
0 1
0o -1
0 0
1 0
1 0
0 0
_..Aq)z
_.Acl)s
A, +Ad,+Ad,
0

(30)

(31)
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The —-1's in V and W correspond to reference nodes associated with the variables. If a loop or
several connected loops are formulated by the variable branches, a common reference node is
appointed for all the variables contributed to the loop or loops. For example, node 9 in Fig. 1 is
chosen as the common reference node for variables ¢, d9, ..., g and -1 appears in the 9th row
of V accordingly. The 1's in V and W correspond to the non-reference nodes associated with
the variable branches, e.g., nodes 3, 4, and 8 in Fig. 1. With respect to each reference node, a
submatrix is formulated using A in just the same way as if a nodal admittance matrix is
formulated using ¢ w.r.t. a ground node. D is a block diagonal matrix containing those
submatrices.

The changes of variables range from 0.00001 to 90. Zero changes are also included as
shown in Table VI. These simultaneous small, large and zero changes are handled directly by
the VRF [11]. For the two extreme cases of A, the SIF can handle A¢p—» while the VRF and
HRF accommodate A¢p—0. In a Monte-Carlo analysis, network optimization, identification
and tuning, various unpredictable patterns of A¢—0 in multiparameter changes may be
possible while Ap— is often limited by, e.g., tolerances and tuning ranges or by step size
constraints. For 100 sets of variable changes of ¢1 to ¢, the operational count for our method
using SIF, VRF, the existing method of [3-5,8] and the direct method are in the order of 8430,

10030, 27730 and 43430, respectively.

VI. CONCLUSIONS
We have presented a multiparameter large change sensitivity analysis approach for a
general system involving solutions of linear equations. Particular attention has been devoted
to the formulation and order of the reduced system, which in turn affects the stability and
efficiency of the system response evaluation. The mathematical essence of the generalized
Householder formulas also provides basic links with other approaches, indicating their
theoretical equivalence. However, our extended formulas accommodate more cases of various

formulations of the reduced system which the traditional methods cannot handle directly.
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For a general circuit with arbitrary distribution of variable components, proper formulations

of V, D and W are possible to ensure the large change calculation to be performed via a

minimum order reduced system. Thus, under certain circumstances, large change algorithms

are still feasible even if many system parameters are changed. These circumstances may be,

for example, a case where loops are constructed by branches containing variables. It is also

possible that a general formulation of V, D and W, together with the set of Householder

formulas, can be embedded into the different iterative and non-iterative methods of Hajj [5] to

yield various powerful design procedures.

(1]

(2]

[3]

(4]

(5]

(6]

(7]

(8]

(91

(10]
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TABLE I
OPERATIONAL COUNT FOR THE GENERALIZED

HOUSEHOLDER FORMULAS

Cases

Square with Vertical Horizontal Square without
Inversion Rectangular Rectangular Inversion
Formula Formula Formula Formula

(SIF) (VRF) (HRF) (SF)

Case 1l

I‘l * I‘2
preparatory
calculation

calculation for
each set of
parameter
changes

Case 2
r,=ry=r

preparatory
calculation

calculation for
each set of
parameter
changes

2C, +Cp 3C, +Cp 3C, +Cy 5C, +Cp

A
CP =n (r1+r2) + nr

C1 = r1(2r1r2

12

2 2 _ 2 2
1 -i—r2n+n),(32—1‘2(2r1r2+r2 +r1n+n)

C, = s, CB =rn(r+n)
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TABLEII
FORMULAS FOR THE COMPUTATION OF LARGE CHANGES

WHEN A~!'ISINVOLVED AND WHEN r, >,

Identification Formula Definitionof Sor s
AATh - P,DSQy" H S=1lorH,S=1
ATAY -sT Q" HTs=D"VTq,)
AA~e) - P,Ds Hys =WTp_
AbTAle) - ("P)Ds H,s =WTp_

t ABTA-1O) 1) -8TQy 0 H,Ts = DN(vT Qp)
2 -@BTP)DS H,S=W'P,
3) —(QgTVIDS H S=Q,’C
@ -BTP)DSQ,"C) H S=1lorH,S=1
(5) —(QzT VIDS(QyTO) H S=1

where H; = (1 + Q" VD), H, = (1 + WI'P_ D)

T Table III can be used as a guide to select among (1) to (5) by the minimum FBS criterion.
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TABLE III
MAJOR COMPUTATIONAL EFFORT FOR CALCULATING A(BT A-1 ()

BY FORMULAS IN TABLE IWHEREr, = r,

Category Corresponding The n x n System The r9 x ro System
Case in Represented Represented
Table I1 By A By H; or Hy
No. of LU
Factorizations 1)-(5) 1 1
No. of FBS (1) m' + 1, m'’
(2) n' +r, n'
(3) m' +r, n’
(4) r, +r, ry

(5) m' +r, r
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TABLE IV
EXPRESSIONS APPROPRIATE FOR COMPUTATIONS FOR SENSITIVITIES W.R.T.

COMPONENTS OF MATRIX A WHEN A~ ! ISINVOLVED

Sensitivity Expression

Identification
(a) General (b) whenA = ATandi =]
aai;l Py qujT -(py pujT + Py p,D
&:AT:'C‘) -q, P, ~(p,p," + p,p,D
9_5518%:_12 -BTp, qujT C -Bl(p,; pujT T Py p,;)C
j
M t -q, p," ~(p, p," + p P, DI

dA

u. (u;) is a unit n-vector containing 1 at the ith (jth) row and zeros everywhere else.

T where [*] ¢k 1S the (€,k) th element of matrix *.
Tt  where b is the €th column of B and c is the kth column of C. Both b and ¢ are used as the

R.H.S. of the system involving A for original solutions Py, P, and adjoint solution qy .
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TABLE V
EXPRESSIONS APPROPRIATE FOR COMPUTATION OF SENSITIVITIES

W.R.T. VARIABLE ¢ WHEN A~ ! ISINVOLVED

Sensitivity Expression

Identification
aA~! JA
_PUI = QLTJJ
ad ad
abTA o 08y
30 —(@p); 0% Qu,
IA Le) J A
Py - (p.);
ad ip ¢
abTA o) o 9By
B —(q,), Ty p,);
aBTA~LC) I A
— —-(® )
ad ad

[ (J) is an index set whose elements indicate the rows (columns) containing the variable

.
A;; is a matrix containing the intersection elements of A in rows i, i € [ and columns j,
JEd.

U, (U;) is a matrix whose columns are unit vectors u, i € [ (uj,j €J).

T M 1 T 4
" = B PUI Lnt<m ) = QUJC 1fnJ<n
T . ;o Y T . '
QBUI LntZm UJPC 1fnJ2n

(qy);and (p,); are defined as vectors consisting of all ith elements of q,, i € I, and all jth

elementsof p , j € J, respectively.
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TABLE VI

PARAMETER CHANGES FOR EXAMPLE 2

The First The Second The Third
Variable Change Change Change

(1/Q) (1/Q) (1/Q)
Ad, 84.0 0.00001 0.2
Ad, 0.5 0.001 0
Acl)3 0.00001 0.12 3.0
Ad, 0.02 45. 0
Ady 40. 0.00003 0.02
Adg 50. 90. 15

A, 0.00002 -2. 0.1




‘syuauodurod

20

PojeIo0SSE Y} JO Saduejonpuod aae Ld - ‘6hp ‘I sejqeraep 1 se pawnsse
aJe SaNJeA JUsWAld [[V Slojowrered a[qeLIBA ), IIM JIOM]3U 3pouU (] AIeijiqie uy 1314
ﬁ o—- W 1.1.1 1.1.4 N N
no p < < QV VOl
< ' =2

b



21

MATRIX [A] VECTOR [B]
1.0 5.0 5.0 1.0 5.0 2.0 1.0 1.0 7.0 2.0 35.0
2.0 3.0 3.0 7.0 0.0 4.0 3.0 6.0 8.0 3.0 32.0
3.0 0.0 2.0 4.0 2.0 6.0 4.0 4.0 9.0 7.0 16.0
6.0 1.0 2.0 5.0 2.0 3.0 3.0 7.0 3.0 5.0 51.0
8.0 1.0 2.0 2.0 4.0 4.0 6.0 8.0 4.0 8.0 42.0
4.0 1.0 6.0 7.0 3.0 5.0 7.0 3.0 5.0 3.0 19.0
7.0 0.0 6.0 5.0 9.0 4.0 8.0 9.0 2.0 9.0 34.0
2.0 0.0 4.0 2.0 2.0 5.0 3.0 5.0 4.0 3.0 71.0
3.0 2.0 0.0 1.0 5.0 3.0 4.0 2.0 3.0 1.0 36.0
4.0 2.0 4.0 4.0 6.0 2.0 9.0 6.0 1.0 7.0 61.0

SOLUTION BEFORE ANY CHANGE :

VECTOR [X]
-8.89217
39.80097
-3.00067

2.31014
-5.40544
48.42778

-12.11626
-3.61726

-32.93004

16.99799

Fig. 2(a) The original linear system and its solutions. A is a 10x10 matrix containing
parameters of the system. b is the excitation vector. x is the solution vector.
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MATRIX [V] MATRIX [W]
0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0

MATRIX [PV]

-.03684 .19072 -.00936
~.30799 -.26526 .04838
.00454 .09406 -.15865
-.04645 —-.23600 .02949
.02608 -.09579 .12002
-.48948 -.43199 .13012
.18919 .22984 .01487
.27060 .13754 .00846
.36321 .32717 -.02238
—-.27658 -.20670 -.09789

VECTOR [RHS]
-3.00067

48.42778

Fig. 2(b) Matrices V, W, Py and vector RHS, where Py is the solution of A Py = V and
RHS = WTx.
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MATKIX [D]
2.00000 3.00000

4.00000 5.00000

2.00000 3.00000

MATRIX [H]
1.06802 .00797

—2.44666 -2.23801

VECTOR [S]
-2.66983

-18.72004

SOLUTION AFTER THE FIRST LARGE CHANGE :

VECTOR [X]
8.15496
-3.82546
-2.66983
-23.34277
-6.40995
-18.72004
24.40133
27.88727
22.14824

-27.58607

Fig. 2(c) Results corresponding to the first change of variable parameters represented by D.

‘f:’;epresents (I + WT A-1 VD) and s is the solution of the reduced system Hs =
X.
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VARIABLES CHANGE AGAIN CAUSINC A CHANGE OF [D].

[V] AND [W] REMAIN UNCHANGED.

MATRIX [D]
6.00000 7.00000
5.00000 4.00000

3.00000 4.00000

MATRIX [H]
1.02160 —-.22657

~4.70646 -3.63383

VECTOR [S]
-4.57788

-7.39775

SOLUTION AFTER THE SECOND LARGE CHANGE :

VECTOR [X]
-2.20815
3.56798
-4.57788
-12.47901
-3.16642
-7.39775
15.58395
25.41279
12.05534

-20.00992

Fig. 2(d) Results corresponding to the second change of variable parameters. H and s are
similarly defined to those in Fig. 2(c).



