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Abstract

This paper presents a new and highly efficient algorithm for nonlinear ¢,
optimization and its applications to circuits employing the properties of the €; norm. The
algorithm, based on the work of Hald and Madsen, is similar to a minimax algorithm
originated by the same authors. It is a combination of a first-order method that approximates
the solution by successive linear programming and a quasi-Newton method using
approximate second-order information to solve a system of nonlinear equations resulting from
the first-order necessary conditions for an optimum. The definitions of singular and regular
¢, problems are given and a criterion for determining a singularity present in the ¢; problem
has been formulated. The versatility of the algorithm is proved by implementing it on three
different computers. A single precision version on a Cyber 170/730 is compared with two
double precision versions, one on a VAX 11/780 and one on a Texas Instruments Professional
Computer. The new ¢; algorithm is particularly useful in fault location methods using the ¢;
norm. A new technique for isolating the most likely faulty elements, based on an exact
penalty function, is presented. Another important application of the algorithm is the design
of contiguous band multiplexers consisting of multi-cavity filters distributed along a

waveguide manifold which is illustrated by a 12 channel multiplexer design.
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I. INTRODUCTION
The optimization problem to be considered has the following mathematical
formulation.
Let fj(x)=fj(x1,...,xn), j=1,...,m, be a set of m nonlinear, continuously differentiable
functions. The vector xA[x; xo ... x,]T is the set of n parameters to be optimized. We consider

the following problem,

m
minimize A
" Fix) & Z £ (x)
=1
subject to (1)
alx+b =0 i=1,

ceey ’

eq
alx+b =0 i=( +1),..¢,
where a; and b;,i=1,...,¢, are constants. This is called the linearly constrained €| problem.

The problem arises in a variety of areas. The most popular application of the € .norm
is the problem of approximating a function to data that might be contaminated with some
wild points or gross errors. In this case the minimization of the €3 norm residual is superior to
using other norms ¢, with p > 1[1]. The larger the value of p, the more focus is put on the
data points with largest deviation from the approximating function.

The number of applications of the €; norm to circuit problems is increasing. The ¢,
norm has been successfully used to isolate the most likely faulty elements in fault isolation
techniques for linear analog circuits [2]. We present a new technique for isolating the most
likely faulty elements which is based on an exact penalty function.

Another important application of the €; norm is the functional approach to post-
production tuning [3], where the £; type of objective function is used to select the number of
tunable parameters needed to tune all possible outcomes of a manufactured design.

In this paper the €; norm is employed in a general multiplexer design procedure.

Therefore, a highly efficient and fast algorithm for €| optimization is of great importance to



many circuit designers and engineers. It is the purpose of this paper to present such an
algorithm.

We present an iterative algorithm for solving (1) which requires the user to supply
function and gradient values of the nonlinear functions fj;. The algorithm also uses some
second-order information, i.e., information about the second-order derivatives of the
functions. This is approximated from the user supplied gradients.

The algorithm is similar to that of Hald and Madsen in [4]. It has been reported by
Hald in [5], which describes and lists a Fortran subroutine implementing a version of the
algorithm. Hald and Madsen [6] have demonstrated that the algorithm has sure convergence
properties. Their results indicate that this algorithm may be the best of its class currently
available.

The plan of the paper is as follows. In Section II previous work in the area of
nonlinear €; optimization is briefly reviewed. The algorithm of this paper is described in
more detail in Section III, where the principles are explained by means of simple examples
and the two methods, namely, the first-order method and the approximate second-order
method are presented and the switching conditions between the two methods are given. The
definitions of regular and singular €; problems are also given. Section IV contains the
comparison of different implementations of the present algorithm (Cyber 170/730, VAX
11/780 and TI/PC) using six test problems commonly used in the literature. A new technique
for isolating the most likely faulty elements, based on an exact penalty function, is presented
in Section V and illustrated by a simple mesh network example. In Section VI we describe an
optimization procedure using the €; norm for contiguous band multiplexer design. We
conclude in Section VII with an assessment of the potential impact of the €; algorithm in the

area of circuit design and fault location.



II. REVIEW OF €; ALGORITHMS

The problem (1) is, in principle, very similar to the linearly constrained minimax
problem where the objective function is F(x) & max|fj(x)|. Therefore, many of the algorithms
for solving the minimax problem may be revised into algorithms for solving (1) and vice versa.
For this reason most of the methods mentioned below have minimax counterparts. A survey
of minimax algorithms has recently been given in Bandler, Kellermann and Madsen [7].

Most of the methods for minimizing the €; function solve only the unconstrained
problem (i.e. (1) with £=0). For the type of methods to be described in the present paper,
however, it is no complication and computationally costless to add the linear constraints.

One of the first attempts to solve the €, problem was published in the paper of Osborne
and Watson [8] in 1971. The method is iterative and at the kth iterate xy the following linear

approximation of the nonlinear ¢; problem is used,

m

minimize = AN ' T (2)
pe Fag ) 2 > HERESACRR 1P
i=t

This linear model problem is solved using linear programming. The direction hy found is
then used in a line search. This method has quadratic final convergence under special
circumstances but normally the final convergence is much slower. The global convergence
properties of this method are rather poor, and like the Gauss-Newton method for nonlinear
least squares (which is similar) the Osborne and Watson method may provide fast
convergence to a non-stationary point, i.e., a point which is not a local minimum.

The more recent papers on the € problem use some second-order information. Most of
the methods require that the user supplies exact second (as well as first) derivatives. To the
best of our knowledge the method to be described in this paper is the first which uses
approximate second-order information (i.e., it is a second-order method, but the user supplies
only first derivatives). The methods of the next paragraph use exact second-order

information.



El-Attar, Vidyasagar and Dutta [9] use a sequence of smooth problems approximating
the (nondifferentiable) €; problem. Each of the smooth problems is solved by standard
techniques and the sequence of solutions will often converge to a solution of the ¢y problem.
However, this kind of method may have severe ill-conditioning problems near an ¢; solution
because a nondifferentiable function with a kink is approximated by smooth functions. This
gives curvatures in the smooth functions which tend to infinity as the ¢; solution is
approached. Murray and Overton [10] use a nonlinear programming formulation of the ¢;
problem and apply successive quadratic programming. A special line search algorithm is
used to obtain a reduction in the €; objective function. The algorithm of McLean and Watson
[11] is a hybrid method like the method presented in this paper. It combines a first-order
method based on (2) using trust regions with a Newton iteration. The first-order method is
intended to be used initially, and close to a solution the Newton method should be used. This
method often converges rapidly to a solution but the rules for switching between the two
stages do not guarantee convergence. In fact the method may converge to a nonstationary
point.

The algorithm of this paper is based on the work of Hald and Madsen [6]. It is a hybrid
method combining a first-order method with an approximate second-order method. The first-
order method is a robust trust region method which provides convergence to a neighbourhood
of a solution. It is based on linear model problems of the type (2). These are solved subject to
the constraints of the original problem (1) and a bound on the step length [h|. The latter
bound reflects the neighbourhood of the iterate xj in which the kth model function (see (2)) is
a good approximation to the nonlinear €1 function. If the solution approached by the first-
order method is "singular" (see below) then a higher-order method must be used in order to
obtain a fast ultimate rate of convergence. Therefore a switch is made to a quasi-Newton
method that solves a set of nonlinear equations that necessarily hold at a solution of (1). This
method has superlinear final convergence. Several switches between the first-order and the

quasi-Newton method may take place. The reason for allowing this is that the latter method



works only close to a solution, so if it is started too early a switch back to the (more robust)
trust region method is necessary. Notice that the user of this algorithm is required to supply
function values and first-order derivatives, whereas the necessary second derivative
information is generated by the algorithm.

The linearly constrained €; problem may be formulated as a nonlinear programming
problem. Then it can be solved by standard techniques from that field. When Powell’s [12]
method for nonlinear programming is applied to the £; problem we obtain a method which in
its final stages is very similar to our method. It can be shown that in the neighbourhood of a
local solution of (1) our method generates the same points as Powell’s method. However, in
the latter method a quadratic program must be solved in every iteration, whereas we have to
solve only a set of linear equations in the neighbourhood of a solution. Therefore, the

computational effort used per iteration with our method is normally much smaller.

ITII. DESCRIPTION OF THE ALGORITHM

Illustrative Example

Before giving the detailed description of the algorithm we explain the principles
through some simple examples.
First, consider the following one-dimensional case (with m =2 and no constraints)
fix) =x2+3x and folx) = x2-2x+ 1. (3)
The problem defined in (1) has a solution at x = 0. Suppose the iterate xx = -0.5 is given.

Then the linearized problem (2) is the following

minimize {|—1.25 + 2h| +|2.25 — 3h|} . (4)
h

The objective function F and the model (4) are illustrated in Fig. 1a and Fig. 1b, respectively.
Near xy the model is a good approximation to F. [t also has a kink near 0, but it is not a
minimum. This is one of the motivations for using a trust region method, i.e., solving (4)

subject to a bound on h so we consider the model only in the domain where it is close to F.



When xy is closer to the minimum of F at x = 0 the situation is better. In this case the model
minimum exists and is close to the minimum of F (see Fig. 2).

The method presented here is called Method 1 below. It has the following structure.
At the iterate xji the model problem (2) is solved subject to a bound on the step length,
Ilh] < Ak. The parameter Ay is updated during the iteration. If the model and the nonlinear
function F are very similar at the new point (xx + hy) then the bound is increased. On the
other hand, if the two quantities are rather distinct then the bound is decreased.

In the example (3) above Method 1 converges very fast to the solution x*=0. When x
is close enough to x* the model problem has a solution with a distance from x* which is
approximately the square of the previous distance, |xx-x*2. This is called quadratic
convergence. There are, however, many cases where Method 1 slows down when a solution is
approached. This is illustrated in the next example. Consider the two dimensional case (with
m =2 and no constraints)

_ 2 2
fl(x) = (xl -1+ Xy
(5)
_ .2
fz(x) =x;— X

9
Some level curves of F near the solution are given in Fig. 3. The solution is at x* = [0.59
0.35]T, where fi(x*) > 0 and fo(x*) = 0. F has a kink at the dotted curve, otherwise it is
smooth. The dotted curve represents the bottom of a valley. When xy is close to x* the model
F of (2) has a valley the bottom of which is a line that approximates the dotted curve near xi
(and x*). Therefore, Method 1 provides rapid convergence to the dotted curve through x* but
along this curve (in the bottom of the valley) the convergence becomes slow because of the
lack of second-order information. This motivates a shift to another method when xy is close to
x*. The method we use (called Method 2) is a quasi-Newton iteration to solve a set of
nonlinear equations that hold at a solution x*. This set is given in Appendix A. In order to set

up the equations we must know which functions are zero at the solution being approached,

and therefore Method 2 can only be used close to a solution.



Regular and Singular ¢ Problems

The essential difference between the two examples (3) and (5) lies in the number of
functions being zero at the solution, compared to the number of variables n. In (3) the number
of zero functions is n, in (5) it is less than n. Zero functions are helpful because they provide
kinks which also appear in the model. Therefore n zero functions will normally mean n
"linearly independent” kinks which means that as the nonlinear solution is approached the

model has a solution very close to the nonlinear solution, as illustrated in Fig. 2.

Definition 1 We say that the solution x* of the unconstrained (€ =0) ¢; problem is regular if
the set
{f(x*) | fj(x*) =0}
spans the space R". Otherwise the solution is singular.
When constraints are present, active constraints play the same role as zero functions.

This motivates the next definition.

Definition 2 We say that the solution x* of the linearly constrained £, problem is regular if
the set |
{fJf(x*)l fj(x*) =0} U {ai | aiT x*+b = 0}

spans the space R". Otherwise the solution is singular.

These definitions correspond to the definitions given by Madsen and Schjaer-Jacobsen
[13] for the unconstrained minimax problem.

Normally a problem is regular if the (total) number of zero functions and active
constraints is at least n. For regular problems the method of this paper has been shown ([6])

to be quadratically convergent. For singular problems the convergence is superlinear.



We now give a detailed description of the method which is a combination of Method 1
and Method 2. We first describe the two basic methods and next the combined method,

including switching rules.

Method 1
This is a method providing global convergence. At the kth step a feasible
approximation xi to a solution of (1) and a local bound Ay are given. In order to find a better

estimate the following linearized problem is solved,

m
minimize & A ' T
F(xh) £ > |£x) + £,x)" h|

h .
i=1
subject to
alx +h)+b =0, i=1,.,¢ ,
ik i eq
allx +h)+b =0, i=€ +1),..,¢.
ik i eq

The solution of (6), hy, may be found by a standard linear programming routine. However, we
use an implementation of the algorithm of Bartels, Conn and Sinclair [14], which is more
efficient. Notice that (xx +hy) is feasible.

The next iterate is (xi + hy) provided that this point is better than xy in the sense of I,
i.e.,if F(xx+hy) < F(xg). Otherwise Xk +1 = Xk.

The local bound Ay is adjusted in every iteration based on comparison between the
decrease in the nonlinear objective function and the decrease predicted by the model F. If the
ratio between the two is small,

Fix)-Fx +h)= O‘ZS[F(xk,O) - E(xk, h I, @
then the bound is decreased: A +1 = Ag/4. Otherwise, if
Fx,) - F(x_+ h) = 0.75[F (x,,0) - F (x,, h))I, ®

then Ax+1 = 2 Ak. If neither (7) nor (8) hold then we leave the bound unchanged, Ag+1 = Ak.
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Experiments have shown that the method is rather insensitive to small changes in the
constants used in this updating procedure of the local bound. Notice that if the new point

(x + hy) is not accepted then the bound is decreased.

Method 2

This is a local method. It is assumed that a point near a solution x* is known and that
the set of zero functions
Zx¥) & {j| £(x*) =0} (9)
and the set of active constraints,
Ax*) £ {ila] x*+b =0} (10)
are known.
Method 2 is an approximate Newton method for solving the nonlinear system (A1) of
Appendix A (in the variables (x, 6, p)). Exact first derivatives are used but the matrix
g'(x*) + % Sj fj(x*)
is approximated using a modified BFGS update (see Appendix B for details). In this way an

approximate Jacobian Jy is obtained at the estimate (xy, 6(%), pl0) of the solution of (A1). The

next estimate is obtained by

Axk

K _ K (k)
Jy A8™ __R(xk’s B ) (11)

Ap(k)

(k+1) (k+D ) _ k) k) k) A (k)
(ka,S 1 >—<xk,6 R >+<Axk,A6 ,Ap )

where R is defined by (A2) of Appendix A. Notice that no line search is involved.
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The Combined Method

The combined method is the algorithm which we recommend to use in this paper.
Method 1 is intended to provide the global convergence and Method 2 is used to obtain fast
local convergence.

Initially, Method 1 is used and the sets (9) and (10) are estimated. When a local
minimum seems to be approached a switch to Method 2 is made. If the Method 2 iteration is
unsuccessful then Method 1 is used again. Several switches between the two methods may
take place. When Method 1 is used we say that the iteration is in Stage 1, otherwise it is in

Stage 2. A detailed description of the two stages follows.

The Stage 1 Iteration

We have a point Xy, a local bound Ay and a matrix Jx which should approximate the

Jacobian of (A1).

1. Xk +1 and Ag 41 are found using Method 1, and approximations Zy +1 and Ay 4+ of the
sets (9) and (10) are found via the zero and active sets at the solution hi of the linear
model problem (6).

2. An estimate (8k+1), pk+D) of the multipliers is found through a least squares
solution of (A1) with (xg 41, Zk+1, Ak +1) inserted for (x, Z(x), A(x)). This estimate is
used for finding a new Jacobian estimate Ji+1 by the BFGS method as described in
Appendix B.

3. A switch to Stage 2 is made if the following two conditions hold:

(a) The estimates Zy + 1 and Ay 4+ | have been constant over v consecutive different
Stage 1 iterates (v= 3).

(b) The multiplier estimates are in the correct ranges,

|8;k+1)| <1,

p;k+l) =0.
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The Stage 2 Iteration

We have an estimate (x;,8k), p(k)), estimates Z and Ay of (9) and (10), and a matrix

Jy which should approximate the Jacobian of (A1).

1. Find (x 41, 6%k+D, pk+1D) and Jy +1 using Method 2 with (Zy,Ay) inserted for (Z(x*),
A(x¥)).

2. Let Ax+1 = Ag, Zk+1 = Zxand A 41 = Ak

3. Switch to Stage 1 if one of the following conditions holds:
(a) A function fj with j ¢ Zy has changed sign, or a constraint corresponding to an

index i with i € Ay has become violated.

(b) A component of 8k +1 or of pk+1) is outside its range:
| 6(k+ D I >1
j ’
or
(k+D _
: )

(see (A2) for the definition of R).
This completes the description of the combined method.
It has been shown by Hald and Madsen [6], that the method has safe global
convergence properties: it can only converge to stationary points. Furthermore, the final rate

of convergence is at least superlinear, i.e.,

Xy + 1 - X*[| < egflxp - x*, (12)

where g — 0 for k — .

IV. COMPARISON OF DIFFERENT IMPLEMENTATIONS OF THE ALGORITHM
The algorithm described here has been reported by Hald and Madsen in [6], which
contains also a comparison of two versions (for an IBM 3033 computer) of the algorithm with

other ¢; algorithms. The implementation of the algorithm used in our paper corresponds to
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versioh B described in [6], where the user can choose parameters A, (initial step length of the
algorithm) and v (the number of successive iterations with identical sets of active residual
functions that is required before a switch to Stage 2 is made).

The numerical results presented here have been obtained using three
implementations of the algorithm, each developed for a different machine. The machines
used were a Cyber 170/730, a VAX 11/780 and a Texas Instruments PC. The versions on VAX
and TI/PC are double precision versions while the version on Cyber is a single precision one.

To compare the performance of the present algorithm on different computers the

following test problems have been used.

Test Problem 1 (El-Attar et al. [9]).

The €, functions are:
f1(x) = x12 + x92 + x32-1,
fo(x) = x12 + x92 + (x3-2)2,
f3(x) = x1; + x9 + x3-1,
fa(x) = x; + x9-x3+1,
fs(x) = 2x13 + 6x92 + 2(5x3-x; +1)2,
fo(x) = x12-9x3.

Stat;ting point: [1 1 1]T

Solution: x = [0.53597 0.0 0.03192|T

The solution is singular and the €; objective function value is 7.89423.

Test Problem 2 (Madsen {15])
The £; functions are
f1(x) = x12 + x92 + x1x9,
fo(x) = sin xy,

f3(x) = cos xg.
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Starting point: [3 1]T
Solution: [0.0 0.0]T

The solution is regular and the €1 objective function value is 1.00000.

Test Problem 3 (Kowalik and Osborne, see Watson [16])

x1(y12+ Xo¥))
fi(x):vi——— , i=1,...,11.
yi + x3yi + X,

The constants v; and y; can be found in [16].
Starting point: [0.25 0.39 0.415 0.39]T
Solution: [0.19337 0.19377 0.10893 0.13973]T.

The solution is regular and the €, objective function value is 3.876797x1072,

Test Problem 4 (Bard, see Watson [16]).

i
fx)=y —x, - ) i=1,..,15.
i it (16 —i)x,, + min(i, 16 —1) x,

Starting point: [1 1 1]T
Solution: [0.10094 1.52516 1.97211]T

The solution is regular and the € objective function value is 0.12434.

Test Problem 5 (Hettich, see Watson [16])
fi(x) = \/E: + ((xlti + x2)t.l + )(3)2 - Xy,
t. =025+ (G-1)x0.75/4.
Starting point: {0.0 - 0.5 1.0 1.5]T
Solution: [0.08273 - 0.48321 1.13571 1.54057]T

The solution is singular and the €, objective function value is 7.56472x10-3.



15

Test Problem 6 (El-Attar et al. [9])

—xzti —xsti
fi(x) =x,e oos(x3ti +x)+xe -y,
1 -t —2t 1 -3 3 -3t/ —5t./2
y=—e '—¢e '+=—e '+ -e ' sin(Tt)+e ' sin(5t)
1 2 2 2 1 1
ti=(i—1)/10, i=1,..,51.

Starting point: [2.0 2.0 7.0 0.0 -2.0 1.0]T
Solution: [2.24074 1.85769 6.77005 -1.64490 0.16589 0.74228]T

The solution is regular and the objective function value is 0.559813.

Table I shows the performance of the algorithm on three different computers. In all

cases the same solutions have been obtained. In all examples we use A, = 0.5and v = 3.

V. FAULT ISOLATION USING THE ¢; NORM

Formulation of the Problem

In this section we deal with fault isolation in linear analog circuits under an
insufficient number of independent voltage measurements. The €1 norm is used to isolate the
most likely faulty elements. Practically, the faulty components are very few and the relative
change in their values is significantly larger than in the nonfaulty ones [17].

The method presented here is a modification of the method utilizing multiple test
vectors to obtain the measurements [2].

For k different excitations applied to the faulty network we consider the following

optimization problem.

n
N 0
2 | AX, /%, |

i=1

Minimize
b'e

(13a)

subject to
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m __
Vo VP =0,
(13b)
m _
Vi -Vl =o,

where x & [x1 x9 ... 41T is a vector of network parameters, x9 represents the nominal
parameter values, Ax;&x;-x{0,i = 1,2, ..., n, represent the deviations in network parameters
from nominal values, V™ is a p-dimensional vector of voltage measurements performed at
the accessible nodes for the kth excitation and V° is a p-dimensional vector of voltages at
accessible nodes calculated using the vector x as parameter values.

The corresponding nonlinear €; problem can be formulated based on an exact penalty

function [18] as follows.

L nkap
Minimize < I (x)| (14)
X ~— j
=1
where
(15
fx) & Ax /%, i=1,2,..n,

A ¢ m . (16)

fn+i(x) = Bi(vi - Vi ), i=1,2,..,kxp,

and B;,i=1,2,... kxp, are apropriate multipliers (satisfying certain conditions stated in [18]).

Mesh Network Example [2]

Consider the resistive network shown in Fig. 4 with the nominal values of elements G;
= 1.0 and tolerances g; = * 0.05,i = 1, 2, ..., 20. All outside nodes are assumed to be
accessible with node 12 taken as the reference node. Nodes 4,5,8 and 9 are assumed internal,
where no measurements can be performed.

Two faults are assumed in the network in elements Go and Gg. For Case 1 we applied
the new £, algorithm to optimization problem (14) with a single excitation at node 1. For Case

2 we considered two excitations applied at nodes 3 and 6 sequentially. The results of both
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optimization problems are summarized in Table II. The nominal component values have been
used as a starting point since just a few elements change significantly from nominal.

In both cases the actual faulty elements have been identified, but in Case 2, the
estimated changes in the faulty elements are closer to their true values. Also some of the
changes in the nonfaulty components approach better their true values in Case 2.

The estimated changes in the faulty elements are much closer to the actual changes as

compared to the results reported in [2].

VI. CONTIGUOUS-BAND MULTIPLEXER DESIGN USING THE ¢; NORM

Introductory Remarks

Practical design and manufacture of contiguous and non-contiguous band microwave
multiplexers consisting of multi-cavity filters distributed along a waveguide manifold has
been a problem of significant interest [19-22]. Recently, a general multiplexer optimal design
procedure using a powerful gradient-based minimax algorithm has been described [7]. The
simulation and sensitivity analysis aspect of the problem together with a number of examples
of multiplexer optimization have been presented in [23]. A typical structure under
consideration is shown in Fig. 5. All design parameters of interest, e.g., waveguide spacings,
input-output and filter coupling parameters, can be directly optimized. A wide range of
possible multiplexer optimization problems can be formulated and solved by appropriately
defining specifications on common port return loss and individual channel insertion loss
functions.

A major task in designing a multiplexer is to determine the location of the channel
filters along the waveguide manifold [21]. This is very important for designs using the
common port return loss as the only optimization criterion. A typical value of lower
specification on return loss over the passbands of all multiplexer channels is 20 dB.

The error functions fi(x), j € J, are of the form
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- wi, (o) (F (x, 0) =S, (wy)) (a7)
where F(x, wj) is the return loss at the common port at the ith frequency, Sy, (w;) is the lower
specification on return loss at the ith frequency, x S [x1 x9 ... x4]T is the vector of design
parameters and wy, is an arbitrary user chosen non-negative weighting factor.

If we perform a minimax optimization based on these error functions and at the
solution the minimax objective function value is negative then the goal has been achieved. In
many cases, however, using the filter spacings as the only optimization variables may not be
sufficient to satisfy all specifications and minimax optimization gives results corresponding to
the situation where the specification violations are distributed over all multiplexer channels.
In that case the use of the one-sided €{ optimization of the same error functions may lead to
more desirable results where the violations occur only over a few multiplexer channels. This
process of identifying “bad channels” has two very important consequences. First, the results
indicate in which channels the additional variables have to be released to improve locally (in
the frequency domain) the performance of the multiplexer and second, it gives very good
starting values of the waveguide spacings to be used in the subsequent minimax optimization.
The idea presented is illustrated by designing a 12 GHz, 12 channel multiplexer without
dummy channels. The 12-channel contiguous band multiplexer has a channel frequency
separation of 40 MHz and a usable bandwidth of 39 MHz with the center frequency of channel

no.112180.0 MHz.

12-Channel 12 GHz Multiplexer Design

Suppose we want to design this multiplexer such that a lower specification of 20 dB on
the common port return loss over the passbands of all 12 channels should be satisfied.
We start the design process with twelve identical 6th order filters with the coupling

coefficients given in the following matrix [24]
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0.594

0.594

0

0.535

0

0

0

0

0.535

0

0.425

0

—0.400
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-
0 0 0
0 0 0
0.425 0 —0.400
0 0.834 0
0.834 0 0.763
0 0.763 0
-

Initially we select the spacing lengths along the waveguide manifold as the only

optimization variables with starting values set equal to Az/2 (half the wavelength

corresponding to the kth center frequency). For the kth channel the waveguide spacing is

measured along the manifold from the adjacent (k — 1)th channel. For the first channel the

spacing is the distance from the short circuit. The filters are assumed lossy and dispersive.

Waveguide junctions are assumed nonideal.

Fig. 6 shows the return loss response of the multiplexer at the start of the

optimization process. The specification on the common port return loss is seriously violated,

especially in the lower frequencies range (corresponding to channels 8-12).

The filter spacings are the dominant variables of the problem. This is based on the

initial sensitivity analysis of the common port return loss function w.r.t. all variables at

selected frequency points.

We perform the one-sided € optimization which is defined in the following way

where

e

1

m
minimize Y\ |¢*
me >

i=1

fi(x) if fi(x) >0

0 if fi(x)<0

The functions fi(x) are the original error functions defined in (1).

We define also the gradients of the functions f;*(x) in the following way

(18)

(19)
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of i(x)

if £.(x)=0 (20)
[0). 4 1

of . (x) A[

X
0 if fi(x)<0

The results of the €; optimization defined above are shown in Fig. 7. The violations of the
20 dB specification are most serious in the frequency range corresponding to channels 1-2 and
8-12. This motivates us to release additional optimization variables in the filters
corresponding to these channels. As additional optimization variables we release the input-
output transformer ratios, cavity resonant frequencies as well as intercavity couplings. From
that point minimax optimization is employed using the €; optimized spacings as the starting
values for the spacings. The final optimized return loss of the 12 channel multiplexer is

shown in Fig. 8. The problem invelves 60 nonlinear design variables.

VII. CONCLUSIONS

We have described a highly efficient algorithm for nonlinear €; optimization
problems. The algorithm combines linear programming methods with quasi-Newton methods
and the convergence is at least superlinear.

Singular and regular €| problems have been defined and a criterion for determining a
singularity present in the €; problem has been formulated.

The importance of the algorithm stems from the fact that the number of applications
of the €; norm to circuit and system problems has been increasing in recent years. The
necessary conditions for optimality of the nonlinear € problem (see, e.g., [18]) indicate that
zeros of the nonlinear functions fj(x) play an important role in the characteristics of the ¢;
problem. This fact has been used in fault isolation techniques for linear analog circuits and
we have demonstrated that the new € algorithm is very successful in methods for fault

isolation in linear analog circuits under an insufficient number of independent voltage

measurements.
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We have also shown that the algorithm is very reliable and implementations on
different machines are possible, including microcomputers.

A formulation using the €; norm for the initial stage of multiplexer design has been
presented and illustrated by a 12 channel 12 GHz multiplexer. The one-sided €, optimization
sets to zero as many error functions as possible and this results in identifying channels of the
multiplexer where the specification violations are most serious.

We feel that the properties of the €; norm will be used more and more frequently in
solving circuit and system problems, including diagnosis of networks, selection of tunable
parameters in post-production tuning and model parameter identification from measure-

ments.
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APPENDIX A

NECESSARY CONDITIONS FOR A SOLUTION

At a solution x* of the linearly constrained € problem (1) the functions which are zero
play a special role since they contribute to the kinks of F. The functions which are non-zero at
x* give smooth contributions to F since | fj(x) | is smooth near x* when fj(x*) = 0. Therefore

we partition F into a smooth and a non-smooth part,

Fo = D [f@]+ 2 £
i€z j€Z

=g+ 2 ||
Jj€Z
where Z = Z(x*) is defined by (9) and g = gy+ is smooth in a neighbourhood of x*.
It is easily shown (see for instance Charalambous, [18]) that the following set of

equations hold at the local minimum x = x*

g'(x) + Z ij]f(x) - Z pa = 0,

j€Z 1€EA
(A1)
£x) =0, jez,
Jx+q=o, i€A,

where | §;| = 1,p; = 0,Z = Z(x*) and A = A(x*) are defined by (9) and (10), and
g = > @] .
€2
This set of equations corresponds to the Kuhn-Tucker conditions for the nonlinear
programming problem which is equivalent to (1). The unknowns are x, §; and y;, and it is seen

that the number of unknowns equals the number of equations. If we use a vector notation

(A1) can be expressed as follows,

R(x,8,p) = 0. (A2)
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APPENDIX B

UPDATING THE MATRICES Jy

The Jacobian of the nonlinear system (A1) is

= , n
g'(x) + Z Sj fj(x) E F
i€z
R'x,6,p= (BD
ET 0 0
—F' )
— -

where E and F are matrices with columns fj'(x), j€Z, and -a;, i€ A, respectively.

In Method 2 we need to find an estimate Jy +1 to R'(xk+1 §tk+ 1) pk+1) This is done
as follows. At the iterate xj estimates Zi and Ay replace Z and A. The submatrices E and F
are calculated exactly using fj'(xy), j€Zg, and -a;, i€ Ay.

Only the upper left hand side part of R’ needs to be approximated. This is done via a
modification of the BFGS method, due to Powell [12]. The modification is necessary because
the upper left hand side of R’ is not necessarily positive semidefinite at a solution of (1).
However, it is more stable and not less efficient to keep the approximation positive definite.

The updating procedure becomes

_ T T T T
Bk+1 = Bk - Bk S, SkBk/[sk Bksk] + zkzk/[sk Zk]
with
s, =h,
zk:9yk+(l—9)Bksk, 0<b=s1,

(B2)
y, = Glx, + hk,ﬁ‘k’, pl) _ Gx, 8 u'l),

Gx,8,W=g+ > 8f),
j€z,
where 0 is defined such that s Tzy > 0 which implies that positive definiteness is maintained.

Notice that when 0 is close enough to 0 this inequality will hold provided By is positive
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definite. Normally, however, 6 can be chosen to be 1. Powell’s formula for calculating 0 is

e T
1 if S, Y, = 0.2t
0 = (B3)
T .
08¢t /[t —s, y,J otherwise

with ty = s TBgsx. We have found, however, that Powell’s updating procedure becomes
unstable when 8 is too close to 0 and therefore we have modified (B3). If 6 found by (B3)
becomes less than 0.5 then we use 8 = 0. This implies that when (B3) gives 8 < 0.5 then
Bg+1 = By

This completes the description of the Jacobian approximation procedure.
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TABLEI

COMPARISON OF THE THREE IMPLEMENTATIONS OF THE ¢; ALGORITHM

CYBER VAX TI/PC

Test Problem NF(NS) CPU NF(NS) CPU NEF(NS) CPU
1 13(1) 0.14 . 11(1) 0.09 11(1) 2.2
2 61*(1) 0.29 57*(1) 0.23 57*(1) 5.4
3 8(1) 0.16 8(0) 0.15 8(0) 4.2
4 6(0) 0.16 6(0) 0.13 6(0) 3.5
5 22(1) 0.33 25(1) 0.34 25(1) 9.2
6 11(0) 1.37 11(0) 1.31 11(0) 43.1

NF - number of function evaluations

NS - number of shifts to Stage 2

CPU - execution time in seconds

* machine accuracy reached
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TABLE I

RESULTS FOR THE MESH NETWORK EXAMPLE

Percentage Deviation

Element Nominal Actual
Value Value Actual Casel Case 2

Gy 1.0 0.98 -2.0 0.00 0.13
Go 1.0 0.50 -50.0* -48.78 -49.44
Gs 1.0 1.04 4.0 0.00 3.60
Gy 1.0 0.97 -3.0 0.00 0.00
Gs 1.0 0.95 -5.0 -2.26 -1.711
Gg 1.0 0.99 -1.0 0.00 0.00
Gy 1.0 1.02 2.0 0.00 0.00
Gg 1.0 1.05 5.0 0.00 0.00
Gy 1.0 1.02 2.0 2.80 0.97
Gio 1.0 0.98 -2.0 0.00 0.00
G111 1.0 1.04 4.0 0.00 0.00
Gio 1.0 1.01 1.0 3.45 2.08
Gi3 1.0 0.99 -1.0 0.00 -0.44
G4 1.0 0.98 -2.0 0.00 0.00
Gis 1.0 1.02 2.0 0.00 1.55
Gis 1.0 0.96 -4.0 -2.42 -5.71
G17 1.0 1.02 2.0 0.00 2.67
Gis 1.0 0.50 -50.0* -52.16 -48.94
Gig 1.0 0.98 -2.0 0.00 -1.95
Goo 1.0 0.96 -4.0 -3.67 -4.88

Number of Function 8 8

Evaluations

Execution Time (secs)
on Cyber 170/815 3.0 3.9

* Faults
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> X

20 1.0 x4 1.0 20

--1.0

Fig. 14 The €, objective function corresponding to one-dimensional problem with
fi(x) = x2 + 3xandfy (x) = x2 -2x +1.
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?(Xk,h)

Fig. 1b The linearized model function for example (3) at xx = - 0.5,
F (xg, h) =|-1.25 + 2h|+]| 2.25-3h]|.
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--1.0

Fig. 2 The linearized model function for example (3) at xx = -0.2,
F (xi, h) =|-0.56 + 2.6h| +|1.44-2.4h|.
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20

Fig. 3 Contours for the two-dimensional problem (5), f; (x) = (x; - 1)2 + x2»,

fo(x) = x2; - x9.

2.0
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Fig.4  The resistive mesh network.
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