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Abstract

A new algorithm is proposed for efficient gradient approximations. It combines the
techniques of perturbations, the Broyden update and special iterations. Utilizing this
method, powerful gradient-based algorithms for nonlinear optimization of circuits and

systems can be effectively employed without calculating exact derivatives.

Introduction

Many powerful algorithms for nonlinear optimization have been developed and
applied to circuit design problems, for example, the algorithms for linearly constrained €, and
minimax optimizations described by Bandler, Kellermann and Madsen [1], [2]. One difficulty
in extending their practical applications, however, is that exact gradients of all functions with
respect to all variables are usually required. For some applications, either an explicit
expression of the exact gradients is not available or the computational labor for evaluating
such gradients is prohibitive. Moreover, it is highly desirable to utilize many existing circuit
simulation programs which provide only the values of the functions (or responses). In this
paper, we propose a new approach to gradient approximation for nonlinear optimization. It is
a hybrid method which utilizes parameter perturbations (i.e., finite differencing), the

Broyden update [3] and the special iterations of Powell [4]. Finite differencing requires one



additional function evaluation to obtain the gradient with respect to each variable. It is the
most reliable but also the most expensive method. The Broyden rank-one formula has been
used in conjunction with the special iterations of Powell to update the approximate gradients,
see, for example, Madsen [5] and Zuberek [6]. Such an update does not require additional
function evaluations but its accuracy may not be satisfactory for some highly nonlinear
problems or for a certain stage of the optimization. In our algorithm, parameter
perturbations may be used to obtain an initial approximation and to provide regular
corrections. The subsequent approximations are updated using the Broyden formula. Special
iterations are introduced to improve the performance of the Broyden update. We also propose
a modification of the Broyden formula which incorporates the knowledge, if available, of the
structure of a Jacobian (e.g., the sparsity of a Jacobian). Such a hybrid method is quite
flexible in handling a large variety of problems. An interface is also developed for the
gradient approximation module such that it is rather independent of the optimization
technique and the circuit simulator. In the following sections, our algorithm is described,
implementation of this algorithm in integration with an €; and a minimax optimization are

illustrated and some test problems are presented.

Method of Perturbations

A nonlinear optimization problem usually involves a set of, say, m nonlinear
functions fj(x),j=1, ..., m, where x = [x1 ... x,]T is the vector of n variables.

The first-order derivative of fj(x) with respect to x; can be approximated by

afj(x) N fj(x + hei) —fj(x) )
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where e; is a unit vector and h is the perturbation on x;. An approximation of the Jacobian
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using perturbations requires n+ 1 evaluations of the functions f(x).



Broyden Update

Having an approximate Jacobian G at a point xi and the function values at xj and

Xy + hy, we can obtain G +1 using the Broyden rank-one update [3]

f(xk + hk) — f(xk)— Gk hk

_ T (2)
G =G+ T h .
k 'k
The new approximation G +1 provides a linearized model between two points xx and xy + hy:
— (3)
f(xk+ hk) ——f(xk) = Gk+1hk'

Notice that if xx and xi + hy are iterates of optimization the Broyden formula does not require
additional function evaluations.

The application of the original Broyden update is not trouble free. As has been
observed by Zuberek [6], if some functions are linear in some variables and if the
corresponding components of hy are nonzero, then the approximation to constant derivatives
are updated by nonzero values. We have developed a method where the Broyden formula is

applied to each fj(x) as a single function. Associated with fj, a weighting vector is defined by

A T (4)
w, = [wlj"'wnj] , wijZO'
The approximation to f; (x) is then updated by
T
N = £+ hy) —£x)— ), by (5)
e = € + T U -
a5 My
where
A T (6)
q, = [w1k hlk W hnk] .

If fj is linear in x;, we set W = 0. In circuit design problems, it may be known that the
performance function is linear in or independent of some parameters over certain frequency
or time intervals. It can be verified that an approximate Jacobian given by (5) also satisfies

equation (3).

Special Iterations

The Broyden formula updates the approximate gradients along the direction hy. If

the directions of some consecutive steps of optimization are collinear, the Broyden update may



not converge. To cure this problem, Powell [4] suggested the method of "strictly linearly
independent directions" generated by special iterations. Unlike an ordinary iteration where
a step is taken in order to reduce the objective function, a special iteration is intended to
improve the gradient approximation. After every p ordinary iterations the function values
are calculated at a point obtained using the formula given by Powell [4] and a Broyden update
is applied. We found that p=2 is satisfactory, which is also suggested by other authors (see,

e.g.,[4], [6] and [6]).

Interfacing To Optimization Routines

We have implemented our algorithm in a subroutine which calls a user- written
routine (e.g., a simulator) for function values and calculates the approximate gradients
required by a gradient-based optimization routine. It has the following features:

1. It is independent of and transparent to the optimizer and the simulator.

2. The user controls how frequently perturbations are used to obtain approximate
gradients. between these perturbations the gradient approximation will be updated
using the Broyden formula and special iterations.

3. Some sophisticated optimization methods employ distinct stages of optimization. In
this case, the user may pfescribe different patterns of gradient approximation for
different stages. For example, when it is close to a solution, approximate gradients of
better accuracy may be desired, which can be achieved by using perturbations more
frequently.

4, Any linearity and sparsity present in the sensitivity matrix can be exploited by
assigning appropriate weightings to the Broyden update.

Typically, a gradient-based optimizer calls a user’s routine when function values and
derivatives are needed. A simple interface is to re-direct these calls to a routine which
implements gradient approximation. However, it can be made more effective and efficient by

suitable modifications to the optimization routine.



1. Assuming that exact derivatives are available, an optimization algorithm usually
uses quite restrictive rules for accepting and bounding the increment of an iteration
(hg in eqn. (2)). These rules should be relaxed when the gradients are only
approximate.

2. The optimization algorithm updates the gradients only when an increment (a trial
point) is accepted. If we start with a very poor gradient approximation this may lead
to a dead cycle. Actually even if a trial point fails, the function values at that point
can and should still be used to improve the gradient approximation.

These modifications will not alter the essential body of an optimization algorithm but are

necessarily algorithm-dependent.

Numerical Examples

Our method has been applied to two general-purpose algorithms for gradient-based
nonlinear optimization. These two algorithms, as described in [1] and [2], employ a 2-stage
combined LP and quasi-Newton method to solve linearly constrained ¢; and minimax
optimization problems, respectively.

Five problems of £1 optimization have been tested. The first one, due to Madsen [5], is
a data-fitting problem involving 5 variables and 21 functions. The second one is a nonlinear
¢; modelling problem, due to El-Attar [7], of finding a third-order model for a seventh-order
system involving 6 variables and 51 functions. The other three examples have been described
by Bandler et al. (Example 1,2 and 5 in [1]).

Three circuit design problems have been solved by minimax optimization. The first
two are nominal designs of a 4th-order and a 6th-order multi-cavity microwave filters. For
the 4th-order filter, 4 design parameters are taken as variables and the frequency responses
are evaluated at 15 sample points. For the 6th-order filter, 6 parameters and 21 sample
points are considered. The third example illustrates the problem of optimal centering and

tolerancing, as originally deseribed in [8].



These test problems were solved utilizing implementations on a CDC 170/730 system.
The results are summarized in Tables 1 and 2. In both tables, the results of two basic cases
are compared. In Case 1, parameter perturbations are conducted at every optimization
iteration to approximate the gradients. This represents quite a traditional approach to
gradient approximation. In Case 2, perturbations are used only for initialization. The
subsequent approximations are updated by the Broyden formula and special iterations. Its
advantage over Case 1 is clearly shown. The optimization programs employed use a quasi-
Newton method to secure fast final convergence when a smooth valley is detected near a
solution (namely, Stage 2 of [1] and [2]). The accuracy of the gradient approximation becomes
crucial for such iterations. For Case 3 in Table 1, different updating schemes are used for two
distinct stages. The approximate gradients are updated by the Broyden formula and special
iterations for Stage 1, and perturbations are employed for every Stage 2 iteration where
better accuracy is desired. The results show a similar number of function evaluations as Case
2 but the number of iterations is smaller. Such a variant can be achieved very conveniently
with the flexibility of our algorithm. Note that this case is not applicable to other examples

since no smooth valley is present.
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TABLE 1 £, OPTIMIZATION WITH GRADIENT APPROXIMATIONS

Test Problem Casel Case 2 Case 3 Exact Gradients
1 54(9) 32(19) - 9
2 105(15) 63(40) - 11
3 71(17) 65(48) 54(24) (13)
4 98(32) 54(43) 58(26) (53)
5 89(17) 51(38) 54(26) (1n

TABLE 2 MINIMAX OPTIMIZATION WITH GRADIENT APPROXIMATIONS

Test Problem Casel Case 2 Exact Gradients
1 59(11) 30(18) (14)
2 83(11) 66(41) 11)
3 30(6) 13(7) (6)

Comments: The entries are the number of function evaluations. The entries in parentheses
are the number of optimization iterations. Case 1: perturbations are used at every iteration
for gradient approximations. Case 2: perturbations are used only for the first iteration to
initialize the approximation. Case 3: perturbations are used for the first iteration and every

Stage 2 iteration (when close to a solution).



