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Abstract

The reduced system of equations commonly employed in large change sensitivity
computations in linear systems is expressed in nodal form as compared to the branch relations
conventionally used in the literature. A systematic approach formulating a minimum order
reduced system is developed for variables of RCL types. The involvement of active elements
is also discussed. Besides its theoretical interest, this approach can improve computational

efficiency over conventional methods when many parameters undergo large changes with few

nodes affected.
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I. INTRODUCTION

The increasing demand for highly efficient techniques capable of solving circuit
equations repeatedly with different parameter values has been responsible for the
development of large change sensitivity analysis methods. The common approach to this
problem in linear networks is to formulate a reduced system whose solutions are then used to
update the system responses [1]. Various techniques, e.g., current source substitution [2],
adjoint network [3], Householder formula [1,2,4,8], partitioning [1,5] and scattering theory
[6,7] have been employed. Recently, Haley and Current gave an overview of this area and
presented general approaches encompassing most of the previous methods [7].

In conventional approaches, the reduced system is formulated as a pxp system, where
p is the number of variables. Therefore, in a case where p is not very small compared to the
order of the original system, the efficiency of large change algorithms is greatly degenerated.
Such a case occured in Example 8.1.1 of Vlach and Singhal where a 3x3 system had to be
solved in order to update the response of a 2x2 system, merely because 3 variables exist [5].

A further reduction of the reduced system is made possible by the discovery that the
order of such a system can be as low as the rank of the original system deviation matrix [6,7].
This manifests itself as a minimum system [8].

The case of p > rank (AA) occurs when some variables do not change and/or, when the
variable locations are "structurally degenerate", e.g., if loops exist. The first situation has
been fairly treated in the literature [1,5]. The next logical step is to develop a systematic
approach to realize the minimum reduced system by employing topological relations among
variables. Such an effective method is developed and presented in this paper, valid when
variables are of RCL types. The involvement of active components as variables is also
discussed. We concentrate on the "structural degenerate" problem by assuming that all
variables have been sorted such that ¢;, i = 1,2,...,p are the variables whose values actually
change. Relevant terminologies from graph theory are defined in Appendix I for readers’

convenience.



II. LARGE CHANGE COMPUTATION
Suppose a linearized network is represented by
Ax=b, 1)
where A is a nxn matrix characterizing the network, b is a n-vector representing the
excitation and x is a n-vector containing system responses.

When system parameters ¢1, 2, ..., dp are changed, causing the change of A by AA,
response changes can be calculated by large change formulas. The commonly used method is
to express AA as a triple product as [1]

AA=VDWT (2)
or using parameter matrix decomposition of AA as [6,7]
r
AA = ZviAq)iw;r, r<p. (3)

i=1

The responses are then calculated using the Householder formula [4] or its various
equivalents [1-8] as
x+Ax=x-A"lvD '+ WA lv) Wk, @
The calculation of (4) involves the solution of a reduced system whose size is
determined from the formulation of V, D and W as appeared in (2) and (3). We focus on this
formulation. Subsequent calculations leading to Ax can be performed according to the
literature [1-8].

Using the well-established methods [1-7], one can generate a pxp reduced system for

an arbitrary linear network by choosing

D = diag{Ad, Ad,, ..., A<1>p}, (5)

(6)

and

(7



where v; and w; i=1, ..., p are n-vectors containing *1 and 0. ¢j, i=1, ..., p represents the
value of variable i, being of the type that enter the tableau or modified nodal equations in the
form v; ¢; wiT [5].

It can be seen that this formulation gives each variable an equal treatment and no
consideration regarding topological relations of these variables is taken into account. In
order to distinguish with the new method, we refer to the method of (5)-(7) as a formulation
based on branch relations.

A thorough exploitation of the topological relations among variables is vital for the
order of the reduced system to be decreased from p to rank (AA) which is the minimum. A

promising formulation is the one based on nodal relations.

III. FORMULATION OF V, D AND WBASED ON NODAL RELATIONS
FOR VARIABLES OF RCL TYPES
Let the network topology be represented by graph G and the edge set of G be
represented by E, respectively. Let E' be a subset of E such that an edge in E corresponding to
a variable is classified in E’. The induced subgraph of G on edge set E’ is denoted as G'.
Separate G' into blocks G1', G’ ..., Gp', b = 1, such that G' = G{' U Gg' U ... G,/ and G; N Gj

is either null or empty containing only a cut-vertex of G' for alli,j = 1,2,....b and i #].

Formulationof V,Dand W

For RCL type variables in a linear network, V, D and W can be formulated using
nodal relations instead of the conventional branch relations so as to achieve a minimum order
reduced system. V, D and W are nxr, rxr and nxr matrices, respectively and are decomposed
such that

V=[V] Va..Vyl, (8
W =[W; Wa...Wy] 9

and



D = diag{Dy, Dy, ..., Dy} , (10)
where Dj is the nodal admittance matrix of G;' using the A¢ as parameter and V; and W; are
incidence matrices of Gi' indicating vertex locations of Gi' as seen from G. Suppose Gi' has m
vertices, m = 2. D;is (m—1) x (m—1) since one vertex can be considered as "ground" and is
taken as a reference vertex. V; and W; are both nx(m-1) where each column vector
corresponds to a non-reference vertex of Gi'. If this non-reference vertex and the reference
vertex of G;' appear in G as the kth and €th vertices, respectively, the corresponding columns
of V; and Wj are equal to ex — ey or ey, if the €th vertex corresponds to the ground, ey being a
unit n-vector with 1 in its kth position and zeros everywhere else. For mathematical
simplicity, a vertex in Gj' is taken as a reference vertex if it corresponds to the ground of the

overall circuit.

Verification of the Reduced System as Minimal Order

It can be found that V and W both have full column rank (see Appendix II). Therefore,

there exist nonsingular nxn matrices P and Q such that

PV=QW=/[e; ey...e.]. (11)
Consequently,
PAAQ =PVDW'Q’ (12)
= diag {D, 0} .
We obtain
rank (AA) = rank (D). (13)

When A¢; = 0, for alli,i=1, 2, ..., p, D is full rank since each Gj' is a connected graph [9].
Thus the order of the reduced system, i.e., r is equal to rank (AA), the minimum value being

achieved.



Discussion 1: Relations Between the Branch and the Nodal Based Methods

If there are no loops in G’', each block Gy, i 1,2,...,b contains one edge only.
Therefore, the conventional branch based formulation becomes a special case of the nodal
based one when no loops exist in G'. In other cases, the reduced system is further reduced to
its minimum by using the nodal approach.

As a different interpretation of relations between the two formulations, each block
Gi', i = 1,2,...,b can be considered as a multi-terminal element with D; as its Y matrix
representation. Each element enters the overall system deviation matrix AA in the form
V;D;W;T. Apply the conventional method and treat the block elements Dy, Do, ..., D}, as if

treating actual elements A}y, Adg, ..., Ad,. Topological relations of G are used in sorting

variables into blocks Gi',1 = 1,2,...,b.

Discussion 2: Active Elements Involved as Variables

The existence of active elements often yields nonsymmetry in the nodal admittance
matrix. Consider the voltage-controlled current source with variable g, as an example.
When neither the controller nor the source is looped with other variables, the corresponding
Vi, Dj and Wj are the same as those obtained using branch based methods. Otherwise, if the
controller (source) is looped with other variables, a vertical (horizontal) rectangular matrix D
can be formulated to ensure the reduced system to be in its minimum order and to free V and
W from values of variables. The current (voltage) graph [10] can be used to form V (W) and to
reflect the vertical (horizontal) property of D. Generalized Householder formulas [8] are
utilized. This phenomenon is illustrated in Example 2 of Section IV,

Another method is to introduce a composite vector as suggested by Haley and Current
[7]. If the controller (source) is in a loop, V (W) becomes composite. A minimum system is
achieved with a square D. V or W now contain the variable g, and need to be reprocessed for

each change of variable value gy,.



IV. EXAMPLES

Example 1: Variables Being of RCL Type

Consider the 10 node circuit of Fig. 1 with ¢;, i=1, 2, ..., 7 as variables. Topological
relations showing the network graph G, the induced subgraph of G on edge set E' and the

blocks are given in Fig. 2. G’ is divided into G1' and G9'. Thus we have

D,
D=
Ad, 0 0 0
0 Ad, + Ad, + Ad, ~Ad, —Ad,
= , (14)
0 ~29, Ap,+ Ad, + Ad, - g,
0 ~ A9, A, Ap, + A, + Ad,
V = [V1 V2]
_ (15)
=le,—e; e;—e; e —e; e;—eg] ,
and
W=V. (16)

Notice that nodes 5 and 9 have been taken as references for G1' and G9', respectively.
The reduced system is 4x4.
The computational effort of our approach compared with the existing methods of [1-5]

is shown in Table I.

Example 2: Active Component Involved as Variables

Again, we consider the circuit of Fig. 1. Suppose in case 1, Gy and gy, are variables.

We choose node 10 as the reference node. A vertical rectangular D is formed as
D =[AGy AgnlT. am
Also, V = [es—eqg egl and W = e5— ey, which can be observed from the current graph and

the voltage graph, respectively (see Fig. 3). The reduced system is a scalar equation obtained



by employing the Vertical-Rectangular-Householder-Formula (VRF) [8]

AMA Y= —A~lvDa + WiA“lvD)iwTA-l, (18)
where 1 denotes an identity matrix. The response changes are calculated as
T
A= P, DW X) (19)
1+W'P)D

where Py is obtained by solving APy = V in the preparatory calculations.
Suppose in case 2, Gg and g, are variables. A horizontal rectangular D is formed as
D =[AGs Agml. (20)
Also, V=e5 and W=[eg e5—ejgl, using the current and voltage graphs, respectively, as
shown in Fig. 4. The corresponding Horizéntal-Rectangular-Householder—Formula (HRF) is
[8]

21
AA Y= —A-lva +DWIA- 'V lpwlAa-t, 21)

The response changes are calculated as
Ax:_ P, D(W'x) | 29)

1+DW'P)

If we perform the multiplication VD and DWT first and then substitute into (18) and
(21), respectively, the computations become the same as that of the composite vector approach
[71.

Computational efforts using the Rectangular Householder Formulas, composite
vector approaches, conventional approaches and the direct method are compared in Table II.
Our major concern is the operational count required for each new set of variable values. It is

observed that using the Rectangular Householder Formulas is most efficient in both cases of

this example.

Example 3: The Case of Example 8.1.1 of Vlach and Singhal [5]

Consider the circuit of Fig. 5 where Gy, Go and Gg are all variables. Evidently, the

"reduced" system is of order 2 using the nodal based approach which gives



AG, + AG, -AG, ] @23)

D=AA= [
—AG2 AG2+ AG3

and

10 ] ‘ 24)

01

Compared with the branch based method which yields a 3x3 system, the operational count is

V:W:l:l

reduced from 23 to 16 for each set of values of AG;,1=1,2,3.
Although for this circuit, one would rather solve the original network equations than
use large change formulas, such a variable structure can exist in a large system where an

efficient large change algorithm is extremely important.

V. CONCLUSIONS

We have discussed an approach to formulating a minimal reduced system for efficient
application of existing large change formulas. In practical Monte-Carlo analysis, network
optimization, identification and tuning, cases may exist where a cluster of variables exist in a
subnetwork which has been decomposed from the overall network. In this case, structural
degeneracy often exists, thus, as shown in the examples, using our nodal based approach to
formulate the reduced system, one can save considerable computational effort in calculating
overall response changes. The cost of the new approach is that D becomes block diagonal
instead of simple diagonal as in the conventional approach. One should either use
sophisticated software exploiting the structural property of D, resulting computational
savings over the conventional method in most cases, or employ simple matrix inversion
subroutines to perform D-1 as required in large change formulas, resulting in improved
efficiency when rank (AA) < 0.63 p. Further research is being directed to a formulation
where elements other than RCL can also be accommodated and arbitrarily distributed active

components can be handled.
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APPENDIXI[11,12]
Let G = (V,E) denote a graph where V and E is the vertex set and the edge set,
respectively.
Definition 1: G' = (V', E') is an edge-induced subgraph of G if every vertex in V' is the end
vertex of some edge in E'.
Definition 2: A vertex v is a cut vertex of a connected graph G if and only if there exist two
vertices u and w distinct from v such that v is on every u-w path.

Definition 3: A block of a separable graph G is a maximal nonseparable subgraph of G.

APPENDIXII

It is evident that the V;,i = 1,2,...,b are of full column rank. If a vertex of G, say the
€th vertex, is a cut-vertex in G' and appears in Gi', we add all rows of V except the €th, to the
€th row, resulting in all elements in the €th row of V; being zero. This operation is performed
for every Gi' whose reference vertex does not correspond to the ground of the overall network.
We start with each block which has no more than one cut-vertex of G'. Since Gi’ and Gj', i #j
have at most one vertex (the cut-vertex) in common, the above operations in V produce no
effects between Vj and Vj. It can be seen that after this operation, any non-zero row,say the

kth row, of V becomes a row having the form

0...0 viT 0...0], (A-1)

where vi =e,TV;,1€{1,2,... ,b}. Thus we have

b
rank (V) = Z rank (Vi) =r, (A-2)
i=1
where r is the number of columns of V.

Similarly,

b
rank (W)= > rank (W) =r. (A-3)
i=1
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TABLEI

COMPARISON OF OPERATIONAL COUNTS USING

DIFFERENT METHODS FOR EXAMPLE 1

Nodal Based Branch Based Direct
St Approach Approach Method
ps (r=4,n=10) (p=17,n=10) (n=10)
LU factorization n® —n n’ —n n’ —n
of A 3 3 3
solve Ax=Db n? n? n?
solve A PV =V m? pn2
3 3
form and solve - 4r° —r L2 p”+2p b2
reduced system - 3 r 3 P
update response x nr np
total number of
multiplications and divisions 21,630 48,730 86,430

for 200 setsof variable
values for Example 1
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TABLEII
COMPARISON OF OPERATIONAL COUNTS USING

DIFFERENT METHODS FOR EXAMPLE 2

Steps Using VRF Composite Conventional Direct

or HRF Vector Method Method
Approach

LU

factorization 330 330 330 330

of A

solution of

Ax =D 100 100 100 100

solution of

APy =V 200, 100* -,100 200 -

subtotal (1)t 630, 530 430, 530 630 430

form and

solve reduced 3,5 101,7 8 -

system

update response 22,10 10, 10 20 -

subtotal (2)t 25,15 111,17 28 430

T Subtotals (1) and (2) correspond to the preparatory calculation and the calculation
for each new set of variable values, respectively.

* Two numbers appearing in the same slot correspond to case 1 and case 2,
respectively.

~ indicates that the corresponding step is not required.
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(c)

Fig.2.  Topological relations for the circuit of Fig. 1. (a) Graph G, (b) Edge induced
subgraph G' for Example 1 and, (¢) Blocks G1" and Go'.



16

(4]
(o))
)]

(a) (b)

Fig. 3. Topological relation for Case 1 of Example 2. (a) Edge induced current subgraph,
(b) Edge induced volgage subgraph.

6 5 6
AQm AG, AQm AGy
0 10 0

(a) (b)

Fig.4.  Topological relation for Case 2 of Example 2. (a) Edge induced current subgraph,
(b) Edge induced voltage subgraph.
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Fig. 5. Network for Example 3.



