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Abstract
A flexible and powerful minimax algorithm not requiring user-provided gradients is
presented. It extends the practical applicability of a recent algorithm of Bandler, Kellermann
and Madsen by integrating it with efficient gradient approximations. The applications are
illustrated by practical design of a 3-channel multiplexer involving 45 nonlinear variables

and worst-case tolerance design of a microwave amplifier.



SUMMARY

Many microwave circuit design, centering and tuning problems can be formulated as
minimax optimization problems. Recently, a highly efficient nonlinear minimax algorithm
was presented by Bandler, Kellermann and Madsen [1]. The main obstacle to the extensive
applications of such an algorithm is the requirement of exact gradients. Deriving explicit
sensitivity expressions is usually very difficult or impossible.  Using numerical
differentiations at every iteration becomes prohibitively expensive when attempting to solve
large scale problems.

In this paper we present a new algorithm for linearly constrained minimax
optimization integrated with effective and efficient gradient approximations. This algorithm
embodies the recent results of Bandler et al. [1], namely a 2-stage combined LP and quasi-
Newton method for nonlinear minimax optimization. It also utilizes a hybrid approach to
gradient approximation which consists of numerical differentiation, the Broyden rank-one
update [2] and the special iterations of Powell [3].

Compared to an earlier minimax algorithm not requiring derivatives by Madsen et al.
[4], our new algorithm is more powerful and flexible for the following reasons. The quasi-
Newton method (Stage 2) of the new algorithm effectively solves singular problems where the
earlier algorithm suffers from a slow convergence rate. Furthermore, for large scale problems
with a large number of variables, approximation using only a rank-one update, as
implemented in the earlier algorithm, may fail to converge. In our case, the gradient
approximation can be corrected by numerical differentiation with some prescribed regularity.
Hence, both the computational efficiency and convergence can be achieved. This is proved
through practical design of a 3-channel multiplexer involving 45 nonlinear variables. We
also describe the worst-case tolerance design of a microwave amplifier as a further
illustration of other possible practical applications. It is worth mentioning that many
existing circuit simulation programs can now be easily equipped with a powerful minimax

optimizer.



Another feature of our method for gradient approximation is that any possible
sparsity existing in the Jacobians can be explored to improve the accuracy of approximation.
Also, linear constraints on the optimization variables are easily handled. These features can

be utilized to great advantage in computer-assisted tuning of microwave circuits.

Review of the 2-Stage Algorithm
We consider the minimax optimization problem

minimize F(x) 2 max {fj(x)}
X i

subject to a set of linear constraints
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where
fj(x)zfj(xl,...,xn) s j=1,...,m,

are a set of nonlinear, continuously differentiable functions, x A [x1 ... xg]T is the variable
vector, a; and b; are constants. The algorithm presented by Bandler et al. [1] consists of two
stages. The Stage 1 is a first-order method which solves a locally linearized subproblem using
linear programming technique. In Stage 2, a quasi-Newton method is employed to solve a set
of nonlinear equations arising from the optimality conditions that should hold at the solution.
Details can be found in [1]. Our algorithm embodies essentially the same optimizer except
that the rules for revising local bounds (see [1]) have been modified because approximate

gradients are used.

Approximation of the Derivatives

A hybrid method is used for gradient approximations. Numerical differentiations
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are used to obtain an initial approximation of the Jacobian
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and to provide corrections to the subsequent approximations. At each step of optimization, a

modified Broyden rank-one formula is used to update the approximate derivatives
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where gk is the approximation to ofj(x)/9x at xk, hk = xk+1 — xk is the incremental change
and
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The weights wj; are introduced to represent any possible linearity of some functions in some
variables, or, in other words, any possible constants existing in the Jacobian. To prevent a
degenerate approximation, the incremental direction hk should satisfy some linear
independence condition. The special iterations of Powell [3] are introduced for this purpose.
The approach is very similar to the one adopted by Madsen [4] except for the ideas of regular
correction by numerical differentiations and weights in the Broyden update. For Stage 2,
however, an effective solution of a singular problem by quasi-Newton method requires
accurate first-order derivatives and approximate second-order information. We found that in
this case it is usually more desirable to calculate the gradient by numerical differentiations
and approximate the second-order derivatives using a BFGS update. With a fast final
convergence rate, Stage 2 usually terminates in a few steps. Therefore, the computational
effort involved in the numerical differentiations is reasonable and well justified.

We have compared the performance of our algorithm with the earlier algorithm of
Madsen et al. [4] for the classical problems of two-section and three-section transmission line
transformers [5]. For the two-section transformer, the characteristic impedances Z; and Zy
are optimized. Starting from 4 different points, namely (1,3), (3.5,6), (1,6) and (3.5,3), our
algorithm requires respectively 21, 21, 23 and 28 function evaluations to reach the solution.

The corresponding results reported in [4] are 28, 25, 23 and 29 function evaluations. Three



tests are made for the three section transformer: fixed lengths and optimizing the
characteristic impedances; optimizing the lengths and impedances from two different starting
points. In terms of the number of function evaluations required to reach the solution, our
results are 107, 129 and 272, and the respective results in [4] are 251, 540 and 824. The quasi-
Newton iteration employed in the new algorithm has significantly accelerated the

convergence rate when solving singular problems.

Worst-Case Design of an Amplifier

Worst-case network design is considered here as a fixed tolerance problem [6], [7]. It
consists of design data of a nominal point x0 and a set of associated tolerances ¢ A [e1 ... enlT.
The tolerance region R; is defined as R, A {x|xi0 — g =x; < x{0 + g;,i=1, ..., n}. The aimis
to center the nominal point x0 such that the specifications are best satisfied for any outcome
in R;. We assume that the worst-case occurs at some vertices of R.

A microwave amplifier consisting of an NEC 70000 FET and five transmission lines is
considered (Fig. 1). The NEC 70000 FET is characterized by tabulated scattering parameters.
The design specification is given as 7.25 dB < 20 log |Sg;| < 8 dB between 6 GHz and 18 GHz.
A nominal design is first obtained by taking €1, €9, €3, €4, €5 and Z as variables, where £; to {5
are the lengths of the transmission lines. Thirteen sample points uniformly spaced between 6
and 18 GHz are taken, resulting in 26 error functions corresponding tc the upper and lower
specifications. Using the algorithm described in this paper, a nominal solution is obtained as
[€10 €90 €30 €40 €50 Z0] = [52.962 148.13 26.798 24.010 46.627 81.266]. This requires 65
function evaluations. The circuit response at the solution is shown in Fig. 2.

For the worst-case design, a 5 percent tolerance is associated with each length €; and Z
is assumed tolerance-free, i.e., € = 0.05[€; €2 €3 €4 €5 0]T. The worst-case outcomes give
extreme values of 20 log |S21| of 8.3 dB and 6.8 dB. At the starting point, 26 worst-case
vertices (corresponding to the upper and lower specifications at 13 frequency sample points)

are selected. These vertices are predicted using the gradient at x0 which is obtained by



numerical differentiations. Using these vertices we obtained a solution at which 10 new
worst-case vertices are detected. These new worst-case vertices are added to give a total of 36
error functions. In general such a procedure is repeated until the set of selected vertices is
complete. For the case considered here, the second solution is found to be final. The optimally
centered design is given by [69.01 152.01 18.48 5.095 36.49 126.39]. It reduces the
extremes of 20 log [Sa1| to 8.1 dB and 7.1 dB.

The total number of function evaluations required is 280. We have also solved the
same problem with derivatives being calculated entirely by numerical differentiations, which

required 585 function evaluations.

Practical Design of a 3-channel Multiplexer

Design of multiplexers consisting of multi-cavity filters distributed along a
waveguide manifold is a large scale problem of significant interest [8], [9]. A general
multiplexer optimization procedure using exact network sensitivities has been reported by
Bandler et al. [1], [9]. The minimax error functions are created using specifications on
common port return loss and individual channel insertion losses, simulated multiplexer
responses and weighting factors. Since our new algorithm does not require sensitivities, the
size and complexity of the simulation program are greatly reduced.

Here, we consider a 12 GHz, 3-channel multiplexer [9]. A total of 45 network
parameters are optimized, including spacings, transformer ratios, cavity resonances and
coupling coefficients. The channel filters are assumed lossy and dispersive, and waveguide
junctions are assumed nonideal. The network responses at the starting point and at the
solution are shown in Figs. 3 and 4, respectively. ’

To reach the solution, 476 response evaluations are performed. The solution reported
in [9] was obtained in more than 70 iterations, which would need more than 3000 response
evaluations to provide the required exact gradient by numerical differentiations. The new

algorithm is significantly more efficient.
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Fig.1 A microwave amplifier consisting of a NEC70000 FET and transmission lines.
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Fig.2 The nominal response of the amplifier in Fig. 1.
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Fig.3 Responses of the 3-channel multiplexer at the starting point.
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Fig.4 Responses of the 3-channel multiplexer with 45 optimized parameters.



