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Abstract

A powerful modelling technique which exploits the theoretical properties of the €;
norm is presented. The concept of multi-circuit measurements and its advantages for unique
identification of parameters are discussed. Self-consistent models for passive and active
devices are achieved by an approach that automatically checks the validity of model
parameters obtained from optimization. A set of formulas is presented to evaluate the first-
order sensitivities of two-port S-parameters with respect to circuit elements appearing in an
admittance or impedance matrix description of linear network equivalents. These formulas
are used for devices with linear network models in conjunction with an efficient gradient-
based €1 algorithm. Practical use of the efficient €; algorithm in complicated problems for
which gradient evaluation may not be feasible is also discussed. Two different optimization
problems are formulated which connect the concept of modelling to physical adjustments on
the device. Detailed examples in modelling of multi-coupled cavity filters and GaAs FET’s

are presented.
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I. INTRODUCTION

The problem of approximating a measured response by a network or system response
has been formulated as an optimization problem w.r.t. the equivalent circuit parameters of a
proposed model. The traditional approach in modelling is almost entirely directed at
achieving the best possible match between measured and calculated responses. This
approach has serious shortcomings in two frequently encountered cases. The first case is
when the equivalent circuit parameters are not unique w.r.t. the responses selected and the
second is when nonideal effects are not modelled adequately, the latter causing an imperfect
match even if small measurement errors are allowed for. In both cases, a family of solutions
for circuit model parameters may exist which produce reasonable and similar matches
between measured and calculated responses.

In this paper, we present a new formulation for modelling that automatically checks
the validity of the circuit parameters, with a simultaneous attempt in matching measured
and calculated responses. If successful, the method provides confidence in the validity of the
model parameters, otherwise it proves their incorrectness. The use of the £; norm, based on
its theoretical properties, is an integral part of the approach. We discuss the use of an
efficient £ algorithm [1-3] both in problems for which response gradients can be evaluated,
and in complicated problems for which gradient evaluation is not feasible. The use of a
gradient-based {; algorithm and utilizing a variation of Broyden’s formula to update
gradients internally [3], makes it possible to employ a state-of-the-art optimization algorithm
with any simulation package capable simply of providing responses. Therefore, widely used
microwave design programs, e.g., SUPER-COMPACT [4] and TOUCHSTONE [5] which do
not calculate exact gradients, could employ such an algorithm with an appropriate interface.
As a result, it is conceivable that the modelling technique described could find its way into

microwave engineering practice in the near future.



Two examples of practical interest, namely, modelling of a narrowband multi-coupled
cavity filter and a wideband GaAs FET follow the theoretical description of both the tradi-

tional and the new approaches. In both examples, a large number of variables is considered.

II. REVIEW OF CONCEPTS IN APPROXIMATION

The Approximation Problem

The traditional approximation problem is stated as follows

minimize | f| , (1)
X

where a typical component of vector f, namely f; evaluated at the frequency point w;, is given
by

f, 2w (Ff () - F™, i=1,2,. k. (2)
Fi™ is a measured response at w; and F;¢ is the response of an appropriate network which
depends nonlinearly on a vector of model parameters x 2 [x1 %32 ... x,]T and w; denotes a

nonnegative weighting factor. ||| denotes the general ¢p norm given by

1/p

=3 £e) ®

i=1

The widely used least-squares norm or €9 is obtained with p=2 and as p—» (1) becomes the
well-known minimax problem. In this paper, we are primarily concerned with the €1 norm,

i.e., formulating the approximation problem as

k
minimize |£] £ > |f] . )
X i=1

Properties of £ 1. Approximation

The use of the €1 norm as compared to the other norms €p with p>1 has the distinctive
property that some large components of f are ignored, i.e., at the solution there may well be a
few f’s which are much larger than the others. This means that, with the components of f as
defined by (2), a few large measurement errors can be tolerated by the €1 norm better than

any other norm. In this paper, we do not need to assume that such large errors exist. We use



a formulation in which some components of f are designed to have large values at the solution,
so justifying the use of €1. In Section III we introduce such a formulation using multi-circuit
measurements where the change in parameters between different circuits form part of the
objective, i.e., they are some of the fi’s. Indeed, these fi’s are expected to have a few large
values and many zeros at the solution.

The robustness of the £; optimization in dealing with large components of f, as dis-
cussed in the literature [2], [6], is the result of a mathematical property related to the
necessary conditions for optimality. The solution to (4) is usually situated at a point where
one or more of f;’s equal zero while some large fi’s are in effect ignored completely.

Illustration of € 1 Approximation

To illustrate the above property, we consider a rational approximation problem. We
obtain a solution to the problem using €1 and €9 optimizations. Then, we deliberately create a
few large deviations in the actual functions to observe the effect on parameters when large
components of f are supposed to be present at the solution. Again, we emphasize that, because
of our formulation in Section III, a few large deviations in fi’s are desired and expected. The
parameters obtained using the £, and €5 optimizations, with and without deviations present,
are compared.

We want to find the rational approximant of the form [7]

2

X, + xzw + X3(A) (5)

K(x) =

2
1 +x4m+x5m

to the function Vo in the interval @ € [0, 1]. Using 51 uniformly spaced sample points on the
given interval, parameter vector x was obtained by € and €5 optimizations and the results are
summarized in Table I under case A. Using both sets of parameters, the approximating
function virtually duplicates the actual function over the whole interval. We now introduce a
few large deviations in the actual function in two separate cases. In case B, the actual

function value is replaced by zero at 5 points in the interval, namely, at 0.2, 0.4, ..., 1.0. In



case C, we use zero at 0.4 and 0.8, and one at 0.2 and 0.6. In both cases, €; and €5
optimizations are performed and the parameters obtained are summarized in Table I.

The parameters obtained by €; optimization in cases B and C are consistent with their
values in case A. On the other hand, the presence of large deviations has affected the €5 opti-
mization results severely, and inconsistent parameters are obtained. Figs. 1(a) and 1(b)
illustrate the approximating and actual functions for cases B and C. Whereas the approxi-
mation using €; has ignored the large deviations completely and has achieved an excellent
match for both cases, the €9 approximation which was as good as €; in case A, has
deteriorated. For instance, the particular arrangement of deviations in case B has caused the
approximating function to underestimate the actual function over the whole interval.

The property that a few large individual function fi’s are ignored by €; optimization
and many fi’s are zero at the solution, has also found applications in fault isolation techniques

for linear analog circuits [8] and the functional approach to postproduction tuning [9].

III. NEW APPROACH USING MULTIPLE SETS OF MEASUREMENTS

The use of multiple sets of measurements for a circuit was originally thought of by the
authors as a way of increasing the "identifiability" of the network. The idea is to overcome
the problem of non-uniqueness of parameters that exists when only one set of multi-frequency
measurements at a certain number of ports (or nodes) are used for identification. By a new set
of measurements we mean multi-frequency measurements on one or more responses after
making a physical adjustment on the device. Such an adjustment results in the deliberate
perturbation of one or a few circuit parameters, therefore, to have multiple sets of
measurements, multiple circuits differing from each other in one or a few parameters are
created. In the above context, the term multi-circuit identification may also be used.

In this section, we first use a simple example to illustrate the usefulness of multi-
circuit measurements in identifying the parameters uniquely. We formulate an appropriate

optimization problem and also discuss its limitations. Finally, we develop a model



verification method and formulate a second optimization problem which exploits multi-circuit

measurements and the properties of the £; optimization in device modelling.

Unique Identification of Parameters Using Multi-Circuit Measurements

Consider the simple RC passive circuit of Fig. 2. The parameters x = [R; Rg CIT,
where T denotes the transpose, are to be identified. If we have measurements only on Vg
given by

~ sC R R,

V. = (6)
2 1 +sC(R1+R2)’

it is clear by inspection that x cannot be uniquely determined regardless of the number of
frequency points and the choice of frequencies used. This is because Ry and Rg are observed in
exactly the same way by V9. Formally, the nonuniqueness is proved using the concepts
discussed in the subject of fault diagnosis of analog circuits [8] in the following way. Given a
complex-valued vector of responses h(x,s;), i =1,2,...,n, (from which real-valued vector
F¢(x,w) is obtained), the measure of identifiability of x is determined by testing the rank of

the n, X n Jacobian matrix
J 2 (v h'e. (M
If the rank of matrix J denoted by p is less than n, x is not uniquely identifiable from h. For

the RC circuit example, we have

-
leRQ(l +51CR2) SlcR1(1 +Slch) isl R2

1+ SIC(R1+R2)]2 1+ le(R1+R2)]2 1+ slc(R1+R2)]2

J = : : ’ . (8)
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Denoting the three columns of J by J1, Jg, and J3, we have
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i.e., J cannot have a rank greater than 2. Therefore, x is not unique with respect to V.
Now, suppose that a second circuit is created when Rg is adjusted by an unknown

amount. Using a superscript to identify the circuit (1 or 2), we have

sC!RIR!
vl = 1 2 (10a)
z +sC'®RI+R)
and
SC'RIR?
Vg _ (10b)

1+sC'R+RD)
noting that R12 and C2 are not present since only Ry has changed.
Taking only two frequencies s; and sg, the expanded parameter vector

x = [Ry1 Rg! Cl Ry2]Tis uniquely identifiable because the Jacobian J given by
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To summarize the approach, it can be stated that although the use of unknown
perturbations adds to the number of unknown parameters, the addition of new measurements

could increase the rank of J by an amount greater than the increase in n, therefore increasing



the chance of uniquely identifying the parameters. The originality of the technique lies in the
fact that neither additional ports (nodes) nor additional frequencies are required. The addi-
tional measurements on the perturbed system can be performed at the ports (nodes) or fre-
quencies which are subsets of the ports (nodes) or frequencies employed for the unperturbed
system.

Based on the above ideas and for n, circuits, we formulate an £; optimization problem

as follows:
rlc kt
minimize Z Z £, (12)
X t=1 i=1 '
where
£ 8 wiFS (xh) —(F™Y (13)
1 1 1 1
and
T
2
X
a
x =| - , (14)
n
X 4
— g ~

with superscript and index t identifying the t-th circuit. =x,t represents the vector of
additional parameters introduced after the (t-1)th adjustment. It has only one or a few
elements compared to n elements in xt which contains all circuit parameters after the change,
i.e., including the ones which have not changed. k¢ is an index whose value depends on t,

therefore a different number of frequencies may be used for different circuits.

Model Verification Using Multi-Circuit Measurements

Although the optimization problem formulated in (12) with the variables given in (14)

enhances the unique identification of parameters, its limitations should be considered care-



fully. The limitations are related to the way in which model parameters x are controlled by
physical adjustments on the device.

Parameters x are génerally controlled by some physical parameters
) 4 [d1 d2 ... &¢IT. Forinstance, in active device modelling intrinsic network parameters
are controlled by bias voltages or currents, or in waveguide filters the penetration of a screw
may control a particular element of the network model. The actual functional relationship
between ¢ and x may not be known, however, we often know which element or elements of x
are affected by an adjustment on an element of ¢. The success of the optimization problem
(12) is dependent on this knowledge, i.e., after each physical adjustment, the correct
candidates should be present in x,. To ensure this, we should overestimate the number of
model parameters which are likely to change after adjusting an element of ¢. On the other
hand, we would like to have as few elements as possible in each x, vector, so that the increase
in the number of variables can be overcompensated for by the increase in rank of matrix J
resulting from the addition of new measurements.

In practice, by overestimating the number of elements in x, or by making physical
adjustments which indeed affect many model parameters, (a change in bias voltage may affect
all intrinsic parameters of a transistor model) the optimization problem of (12) may not be
better- conditioned than the traditional single circuit optimization. This means that the
chance for unique identification of parameters may not il;lcrease. However, multi-circuit
measurements could still be used as an alternative to selecting different or more frequency
points as may be done in the single circuit approach.

We now formulate another optimization problem which either verifies the model
parameters obtained or proves their inconsistency with respect to physical adjustments. The
information about which elements of x are affected by adjusting an element of ¢, although
used to judge the consistency of results, is not required a priori. Therefore, the formulation is

applicable to all practical cases.
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Suppose that we make an easy-to-achieve adjustment on an element of ¢ such that
one or a few components of x are changed in a dominant fashion and the rest remain constant

or change slightly. Consider the following € optimization problem
k

DY
o

1

n

minimize (15)

2
X t=

ft
i

2
X. —X.
]

—
—

=1

where f; represents an appropriate weighting factor and x is a vector which contains circuit

parameters of both the original and perturbed networks, i.e.,

X1

(16)

X =

X2
Notice that, despite its appearance, (15) can be rewritten easily in the standard ¢; optimiza-
tion form, which is minimizing £|-|, by taking the individual functions from either the
nonlinear part fit,or the linear part x;! — x;2.

The above formulation has the following properties:

1) Considering only the first part of the objective function, the formulation is equivalent
to performing two optimizations, i.e., matching the calculated repsonse of the original
circuit model with its corresponding measurements and repeating the procedure for
the perturbed circuit.

2) By adding the second part to the objective function, we take advantage of the
knowledge that only one or a few model parameters should change dominantly by
perturbing a component of ¢. Therefore, we penalize the objective function for any
difference between x! and x2. However, since the €1 norm is used, one or a few large
changes from x! to x2 are still allowed. Discussions on the use of the £; norm in
Section IT should be referred to.

The confidence in the validity of the equivalent circuit parameters increases if a) an
optimization using the objective function of (15) results in a reasonable match between

calculated and measured responses for both circuits 1 and 2 (original and perturbed) and
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b) the examination of the solution vector x reveals changes from x1 to x2 which are consistent
with the adjustment to ¢, i.e., only the expected components have changed significantly. We
can build upon our confidence even more by generalizing the technique to more adjustments

to ¢, i.e., formulating the optimization problem as

=

n
c n

2 2B

t=2 j=1

nc t
i t amn
minimize Z Z f:

i 2

1 t
X. — X,
J ]

—
[y

X t=1

where n; circuits and their corresponding sets of responses, measurements and parameters
are considered and the first circuit is the reference model before any adjustment to ¢. In this

case, X is given by

(18)

o
il

nC
Lx

By observing inconsistencies in changes of x with the actual change in ¢, the new

technique exposes the existence of nonideal effects not taken into account in the model.
Having confidence in the parameters as well as observing a good match between measured
and modelled responses means that the parameters and the model are valid, even if different

responses or different frequency ranges are used.

IV. PRACTICAL APPLICATION OF THE ¢; ALGORITHM
Consider the €; optimization problem formulated in (17). The success of the new
technique described relies upon the use of an efficient and robust €; algorithm. Recently, a
superlinearly convergent algorithm for nonlinear €, optimization has been described [1]. The
algorithm, based on the original work of Hald and Madsen [2], is a combination of a first-order

method that approximates the solution by successive linear programming and a quasi-
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Newton method using approximate second-order information to solve the system of nonlinear
equations resulting from the first-order necessary conditions for an optimum.

The most efficient use of the €; algorithm requires the user to supply function and
gradient values of the individual functions in (17), i.e., network responses as well as their
gradients are needed. Starting with the impedance or nodal admittance description of a
network for which only input and output port responses are of interest, we have derived
analytical formulas for evaluation of first-order sensitivities of two-port S-parameters w.r.t.
any circuit parameter appearing in the impedance or admittance matrix. The formulas and
more explanation are given in the Appendix.

In many practical problems, e.g., in the presence of nonlinear devices or complicated
field problems, the evaluation of gradients is not feasible. In such cases, it is possible to
estimate the gradients using the numerical difference method. However, this is computa-
tionally slow and consequently expensive. To take advantage of a fast gradient-based
approach, without requiring user-supplied gradients or using the numerical difference
method, the original €1 algorithm has been modified [3]. Different and flexible versions of the
modified algorithm exist. A typical version estimates the gradients using the numerical
difference method only once and updates the gradients with minimum extra effort by
applying a variation of Broyden’s formula as the optimization proceeds. All approximations
are performed internally, therefore the optimization could be linked to any analysis program

which provides only the responses.

V. EXAMPLES

A. Modelling of Multi-Coupled Cavity Filters

Test 1: A 6th order multi-coupled cavity filter centered at 11785.5 MHz with a 56.2 MHz
bandwidth is considered. Measurements on input and output return loss, insertion loss and
group delay of an optimally tuned filter and the same filter after a deliberate adjustment on

the screw which dominantly controls coupling Mg, were provided by ComDev Ltd.,
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Cambridge, Canada [10]. Although the passband return loss changes significantly, we antici-
pate that such a physical adjustment affects only model parameters M9, Mj; and Mgs (the
last two correspond to cavity resonant frequencies) in a dominant fashion, possibly with slight
changes in other parameters.

Using the new technique described in this paper, we simultaneously processed
measurements on passband return loss (input reflection coefficient with a weighting of 1), and
stopband insertion loss (with a weighting of 0.05) of both filters, i.e., the original and
perturbed models. The €; algorithm with exact gradients was used. The evaluation of
sensitivities is discussed in detail by Bandler et al. [11]. The model parameters identified for
the two filters are summarized in Table II. Figs. 3 and 4 illustrate the measured and modelled
responses of the original filter and the filter after adjustment, respectively. An examination
of the results in Table II and Figs. 3-4 shows that not only an excellent match between
measured and modelled responses has been achieved, but also the changes in parameters are
completely consistent with the actual physical adjustment. Therefore, by means of only one
optimization, we have built confidence in the validity of the equivalent circuit parameters.
The problem involved 84 nonlinear functions (42X 2 responses for original and perturbed
filters) and 12 linear functions (change in parameters of two circuit equivalents) and 24

variables. The solution was achieved in 72 seconds of CPU time on the VAX 11/780 system.

Test 2: In this test, we used the new modelling technique to reject a certain set of parameters
obtained for an 8th-order multi-cavity filter by proving their inconsistent behaviour with
respect to physical adjustments. We then improved the model by including an ideally zero
stray coupling in the model and obtained parameters which not only produce a good match
between measured and modelled responses, but also behave consistently when perturbed by a
physical adjustment.

The 8th-order filter is centered at 11902.5 MHz with a 60 MHz bandwidth. Return loss

and insertion loss measurements of an optimally tuned filter and the same filter after an
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adjustment on the iris which dominantly controls coupling My3, were provided by ComDev
Ltd [10]. Based on the physical structure of the filter, screw couplings M9, M34, Msg and Mg,
the iris couplings Mgg, M4, Mys, Mg7 and Msg, as well as all cavity resonant frequencies and
input-output couplings (transformer ratios) are anticipated as possible non-zero parameters
to be identified.

In the first attempt, the stray coupling M3g was ignored and passband measurements
on input and output return loss and stopband isolation for both filters were used to identify
the parameters of the filters. The parameters are summarized in Table III. An examination
of the results shows no apparent trend for the change in parameters, i.e., it would have been
impossible to guess the source of perturbation (adjustment on the iris controlling Mg3) from
these results. This is the kind of inconsistency that would not have been discovered if only the
original circuit had been considered.

In a second attempt, we included the stray coupling M3g in the circuit model and
processed exactly the same measurements as before. Table III also contains the identified
parameters of the two filters for this case. A comparison of the original and perturbed filter
parameters reveals that the significant change in couplings Mj9, Mg3 and M3y and cavity
resonant frequencies Mgg and M33 is absolutely consistent with the actual adjustment on the
iris, i.e., by inspecting the change in parameters, it is possible to deduce which iris has been
adjusted. The measured and modelled input return loss and insertion loss responses of the
two filters are illustrated in Figs. 5 and 6. It is interesting to mention that the match between
measured and modelled responses in the first attempt where Msg was ignored and
inconsistent parameters were found, is almost as good as the match in Figs. 5 and 6. This
justifies the essence of this paper which attempts to identify the most consistent set of
parameters among many that produce a reasonable match between measured and calculated

responses.
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B. FET Modelling

Test 1: Device NEC700, for which measurement data is supplied with TOUCHSTONE, was
considered. Using S-parameter data, single-circuit modelling with the €; objective was
performed. The goal of this experiment was to prepare for the more complicated Test 2 by
testing some common formulas and assumptions. The equivalent circuit at normal operating
bias (including the carrier) with 16 possible variables, as illustrated in Fig. 7, was used. An €;
optimization with exact gradients, which are evaluated using the formulas derived in the
Appendix, was performed. Measurement data was taken from 4 to 20 GHz. TableIV
summarizes the identified parameters and Fig. 8 illustrates the measured and modelled

responses.

Test 2: Using S-parameter data for the device B1824-20C from 4 to 18 GHz, Curtice and
Camisa have achieved a very good model for the FET chip [12]. They have used the
traditional least squares optimization of responses utilizing SUPER-COMPACT. Their
success is due to the fact that they have reduced the number of possible variables in Fig. 7
from 16 to 8 by using dc and zero-bias measurements. We created two sets of artificial S-
parameter measurements with TOUCHSTONE: one set using the parameters reported by
Curtice and Camisa (operating bias Vgs = 8.0V, Vgg=—2.0V and [33=128.0 mA) and the
other by changing the values of Cq, Cg, Ly and Lg to simulate the effect of taking different
reference planes for the carriers. Both sets of data are shown in Fig. 9, where the S-
parameters of the two circuits are plotted on a Smith Chart.

Using the technique described in this paper, we processed the measurements on the
two circuits simultaneously by minimizing the function defined in (15). The objective of this
experiment is to show that even if the equivalent circuit parameters were not known, as is the
case using real measurements, the consistency of the results would be proved only if the
intrinsic parameters of the FET remain unchanged between the two circuits. This was indeed

the case for the experiment performed. Although the maximum number of possible variables,
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namely 32 (16 for each circuit), were allowed for in the optimization, the intrinsic parameters
were found to be the same between the two circuits and, as expected, Cq, Co, Ly and Lg
changed from circuit 1 to 2. Table V summarizes the parameter values obtained. The
problem involved 128 nonlinear functions (real and imaginary parts of 4 S-parameters, at 8
frequencies, for two circuits), 16 linear functions and 32 variables. The CPU time on the VAX

11/780 system was 79 seconds.

VI. CONCLUSIONS

We have described a new technique for modelling of microwave devices which exploits
multi-circuit measurements. The way in which the multi-circuit measurements may contri-
bute to the unique identification of parameters has been described mathematically with the
help of a simple example. An optimization problem which is directly aimed at overcoming the
non-uniqueness of parameters was formulated. A second formulation which is aimed at the
automatic verfication of model parameters by checking the consistency of their behaviour
with respect to physical adjustments on the device, was proposed.

The use of the €1 norm is an integral part of the approach. We discussed the use of an
efficient €, algorithm both in problems for which gradient evaluation is possible (a set of
useful formulas were presented) and in complicated problems for which gradient evaluation is
not feasible. In the latter case, the technique described in this paper can be used in
conjunction with widely used microwave design programs or in-house analysis programs
employed in industry.

An important aspect of any optimization problem is the question of starting values.
To address this problem, we recommend the use of €; optimization with simplified network
equivalent models such as low-frequency models. In cases where little information about the
range of parameter values is available, a common set of measurements can be used with

different network equivalents (different topology) for the optimization. The solutions
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obtained using simplified models provide good starting values for multi-circuit modelling
with complicated network equivalents.

The results for modelling of narrowband multi-coupled cavity filter and wideband
GaAs FET examples are very promising and completely justify the use of our multi-circuit
approach and formulation. The authors strongly believe that the use of multiple sets of
measurements and a formulation which ties modelling (performed by computer) to the actual
physical adjustments on the device will enhance further developments in modelling and

tuning of microwave circuits.
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APPENDIX
FIRST-ORDER SENSITIVITY EVALUATION FORTWO-PORT S-PARAMETERS
Here the details for evaluating the first-order sensitivities of two-port S-parameters
with respect to the circuit elements are given. It is assumed that the nodal admittance matrix
Y for the circuit model is available. For the case in which the impedance matrix is given, the
approach is similar.

The open-circuit impedance matrix of the two-port is given by
o x¥~h, hH,
oC (Y_1)n1 (Y_l)nn ’ (A1)
where Y,xn is the admittance matrix arranged such that nodes 1 and n identify the ports at
which S-parameters are of interest. .

Assuming that ¢ is a generic notation for a variable which appears in Y in the

locations as shown below

k ¢
r" '
1 $ -
J -¢ ¢
it can be proved, after a few simple algebraic manipulations, that
. - [ Pr 4 (A.3)
0oC P q

n n

and
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A A A A
92 ~ ((pi—pj)(pk—pe) (pi-pj)(qk—-qe) (A4)
30 @8-y G- -ayp |
where vectors p, ﬁ, q and q are obtained by solving the systems of equations
Yp = e1 , (A.5a)
YTII; = el , (A.5Db)
Yq= e (A.5¢)
and
Yig=e_, (A.5d)

where e; =[1 0...0]Tande, ={0 ...0 1]T

From a computational point of view, the solution to (A.5) requires only one LU factori-
zation of Y (the LU factors of YT are obtained from LU factors of Y without calculati'ons) and
four forward and backward substitutions. Matrix Y is never inverted in the process.

The two-port S-parameter matrix and its sensitivities with respect to ¢ are then

evaluated using the following relationships:

(z-1)=S(z +1) (A.6)
and
3s 1 9z
e — -9 =2X4-9), : (A7)
30 27, ®
where
7 =4 (A.8)
2 =7 %c :
0
and
S = [S“ 812] | (A.9)
S21 S‘22

with Zg denoting the normalizing impedance 1 representing the 2 X 2 unit matrix.
The sensitivities of S with respect to circuit elements can be evaluated using §S/3¢.
For instance, for transconductance parameter g, and delay t associated with a VCCS in the

circuit, we have 98/9g, = e-iwt3S/d¢p and 3S/5t = -jwgy, e-iwt 3S/dd, where ¢ = g,:me-JwE.
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TABLE 1

APPROXIMATION PROBLEM USING ¢; AND €2 OPTIMIZATION

Case A Case B Case C
Parameter €, €9 £ £y €y €s
X1 0.0 0.0071 0.0 0.0391 0.0 —0.0261
X9 8.5629 8.5660 8.6664 5.8050 8.5506 12.8828
X3 29.3124  29.7515 30.5684 30.0523 29.1070 26.0012
X4 247375  25.0108 25.4261 19.6892 24.6452 32.1023

X5 12.2285  12.3699 12.9234 21.8794 12.0887 7.4300
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TABLE 11

RESULTS FOR THE 6TH ORDER FILTER EXAMPLE

Coupling Original Filter Perturbed Filter Change in Parameter
Mjy -0.0473 -0.1472 -0.0999*
Mso -0.0204 -0.0696 -0.0492*
M33 -0.0305 -0.0230 0.0075
Myy | 0.0005 0.0066 0.0061
Mss -0.0026 0.0014 0.0040
Mgg 0.0177 -0.0047 -0.0224
Mjo 0.8489 0.7119 -0.1370*
Mog 0.6064 0.5969 -0.0095
M3y 0.5106 0.5101 -0.0005
Mys 0.7709 0.7709 0.0000
Mss 0.7898 0.7806 -0.0092
M3e -0.2783 -0.2850 -0.0067

significant change in parameter value.
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TABLE 111

RESULTS FOR THE 8TH ORDER FILTER EXAMPLE

Mgg ignored M3 present

Coupling ‘ Original Perturbed Original Perturbed
My -0.0306 -0.1122 -0.0260 -0.0529
Moo 0.0026 -0.0243 0.0354 0.6503*
M3s3 ‘ -0.0176 -0.0339 -0.0674 -0.6113*
Myy -0.0105 -0.0579 -0.0078 -0.0151
Mss -0.0273 -0.0009 -0.0214 0.0506
Mgs -0.0256 0.0457 -0.0179 -0.0027
M7 -0.0502 0.0679 -0.0424 -0.0278
Mgg -0.0423 0.0594 -0.0426 -0.0272
Mjo 0.7789 0.7462 0.3879 0.2876*
Mos 0.8061 0.8376 0.9990 0.8160*
M3y 0.4460 0.4205 0.0270 -0.1250*
Mys 0.5335 0.5343 0.4791 0.5105
Msg 0.5131 0.5373 0.5006 0.5026
Mg 0.7260 0.7469 0.6495 0.6451
M~g 0.8330 0.8476 0.8447 0.8463
Mg 0.3470 -0.3582 -0.7648 -0.7959
Mssg -0.1995 -0.1892 -0.1000 -0.0953
M3g - - 0.1314 0.1459

input and output couplings: ny2 = ng2 = 1.067

* significant change in parameter value.
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TABLE IV
RESULTS FOR THE NEC700 FET EXAMPLE

Parameter Value
C: (P 0.0448
C2  (pF) 0.0058
Cag (PP 0.0289
Cgs  (pF) 0.2867
Cas  (PF) 0.0822
G (P 0.0100
R, (@ 3.5000
Re (@) 2.0000
Ry (@) 3.6270
Ri (@ 7.3178
Gg-1 (kQ) 0.2064
L, (H) 0.0585
Lg (nH) 0.0496
Ly (nH) 0.0379
gm (S 0.0572

T (ps) 3.1711




TABLE V
RESULTS FOR THE GaAs FET B1824-20C EXAMPLE

Parameter Original Circuit Perturbed Circuit
Cy (pF) 0.0440 0.0200*
Cq (pF) 0.0389 0.0200*
Cag (P 0.0416 0.0416
Ces  (PF) 0.6869 0.6869
Cas F) 0.1900 0.1900
C; (rpF) 0.0100 0.0100
R, (@ 0.5490 0.5490
Rg (@ 1.3670 1.3670
Re. (@ 1.0480 1.0480
R; (Q) 1.0842 1.0842
Gq-1 (kQ) 0.3761 0.3763
Lg (nH) 0.3158 0.1500*
Lg (nH) 0.2515 0.1499*
Ls (nH) 0.0105 0.0105
gn 0.0423 0.0423
T (ps) 7.4035 7.4035

significant change in parameter value
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Fig. 2 Simple RC network.
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Input return loss (a) and insertion loss (b) responses of the 6th order filter before
adjusting the screw. Solid line represents the modelled response and dashed line

shows measurement data.
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Fig. 4 Input return loss (a) and insertion loss (b) responses of the 6th order filter after

adjusting the screw. Solid line represents the modelled response and dashed line

shows measurement data.
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Fig. 6 Input return loss (a) and insertion loss (b) reponses of the 8th order filter after

adjusting the iris. Solid line represents the modelled response and dashed line
shows the measurement data.
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Fig. 7 Equivalent circuit of carrier-mounted FET.
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Fig. 8 Smith Chart display of Sii, S99, Si2 and So; in modelling of NEC700. The

frequency range is from 4 to 20 GHz. Points A and B mark the high frequency
end of modelled and measured responses, respectively.
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Fig.9 Smith Chart display of S, S92, S12 and Se; for the carrier mounted FET device
B1824-20C, before and after adjustment of parameters. Points a and b mark the
high frequency end of original and perturbed network responses, respectively.



