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ABSTRACT

This thesis concerns itself with computer-aided techniques for design
centering, tolerancing and tuning, fault location and model parameter identification
from measurements.

Since many of the engineering system problems discussed in this thesis are
formulated as optimization problems we examine algorithms and techniques for
nonlinear optimization. Our attention is focused on minimax and ¢; algorithms since
many formulations of engineering system problems exploit the characteristic features
of these two norms.

A novel approach for worst-case network design is proposed and an
algorithm for the fixed tolerance problem embodying worst-case search and selection
of sample points is presented.

The features of the €; norm in the tuning problem are discussed in detail
and explained using necessary conditions for optimality of the nonlinear 81.problem
with nonlinear constraints. Regular and singular €; problems are defined and a
criterion for determining a singularity present in the €; problem is formulated.

New formulations using the €1 norm are given for fault isolation and model
parameter identification in analog circuits.

Practical engineering problems have been solved illustrating the wide
applicability of the concepts used and the robustness of the algorithms employed.

A new algorithm for minimizing the cardinality of a set subject to
nonlinear, nondifferentiable constraints is presented and illustrated by solving the
best mechanical alignment problem. The load shedding and generation res'cheduling

problem in power systems is formulated using the ¢; norm. The formulation is tested

i



onn 6-bus and 26-bus power systems. A general microwave multiplexer design
procedure exploiting exact network sensitivities is introduced and illustrated by

designing 5-channel, 11 GHz and 12-channel, 12 GHz multiplexers.
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1

INTRODUCTION

The increasing size and complexity of physical man-made éngineering
systems necessitate the use of computers in all aspects of the design, production and
maintenance processes. A corresponding need has developed for efficient and
powerful computer-aided techniques for thorough study and optimal realization of the
above mentioned processes.

Computer-aided design (CAD) techniques are now well established for
design centering, tolerance optimization, yield maximization, cost minimization and
the rapidly increasing range of applications includes electronic circuits, power
systems, microwave systems and mechanical systems.

Computer-aided design is often treated together with computer-aided
manufacturing (CAM). We are not including CAM in this thesis, since CAM starts
from data, preferably machine-readable data, that is produced in t;.he desigr;process,
but CAM is not part of the design process itself.

Computer-aided testing (CAT) techniques, which originated from the area
of digital circuits, are primarily associated for analog circuits with the problems of
fault location, model parameter identification from measurements and postproduction
tuning.

Recently, the term computer-aided engineering (CAE) has been used most
frequently for turnkey software and hardware systems for electronic systems and
component design. [t has also been used in a more general sense to include a broad set

of system analysis tools applicable in many engineering disciplines.



Most of the discussion in this thesis focuses on computer-aided engineering
system problem solving, in which key elements are formulations of the problems,
algorithms for solving the problems and software implementing the methods
proposed.

Many of the subproblems associated with overall problems in different
engineering disciplines are similar to each other. This motivates us to utilize a
conceptual framework developed over the past ten years for design centering,
tolerancing and tuning (DCTT) and for fault analysis, postproduction tuning and
model parameter identification from measurements. Our aim is to provide a set of
methods and techniques for solving these problems which employ recent optimization
algorithms with the emphasis on nonlinear minimax and ¢; algorithms. Our
attention is focused on minimax and £; algorithms since many formulations of
engineering system problems exploit the characteristic features of these two norms.

We do not presume to be able to solve all problems associated with any
overall engineering system. Applications of the methods and techniques proposed
will be immediately apparent in many cases. Often it will also occur that familiarity
with the concepts and techniques will clarify certain problem aspects which have been
obscured or unrecognized.

In Chapter 2 previous work in the area of design centering, tolerancing and
tuning is reviewed. We consider the relevant fundamental concepts and definitions
commonly used in the DCTT literature. Three general formulations of the optimal
DCTT problem are given and some important special cases are described in more
detail. We provide also an adequate state-of-the-art review of algorithms for DCTT

problems.



Chapter 3 deals with the use of minimax optimization techniques in
computer-aided engineering. A critical review of the existing minimax algorithms is
given together with a comparison of minimax algorithms using the classical three-
section transmission-line transformer (Bandler and Macdonald 1969a). The Hald and
Madsen algorithm (Hald and Madsen 1981) is treated in some detail and its
performance is demonstrated on regular and singular problems. A detailed
description of the algor_ithm is given in Appendix A. A novel approach to worst-case
network design is proposed and an algorithm for the fixed tolerance problem
embodying worst-case search and selection of sample points is presented.

Chapter 4 covers the use of € optimization techniques in computer-aided
engineering. Previous work in the area of nonlinear €, optimization is brieﬂvy
reviewed. The Hald and Madsen algorithm (Hald and Madsen 1985) for nonlinear ¢;
optimization is presented in some detail in Appendix C. The features of the €; norm
in the tuning problem are discussed in detail and explained using necessary
conditions for optimality of the nonlinear €, problem with nonlinear constraints.
Regular and singular ¢; problems are defined and a criterion for determining a
singularity present in the €; problem is formulated. New formulations using the ¢,
norm are given for fault isolation and model parameter identification in analog
circuits.

The next three chapters, Chapter 5, 6 and 7, contain niajor applications of
the concepts and methods described earlier. In each case, a difficult engineering
problem has been solved illustrating the wide applicability of the methods proposed
and the robustness of the algorithms used.

Chapter 5 describes a minimax approach to the best mechanical alignment

problem. A new algorithm for minimizing the cardinality of a set subject to nonlinear,



nondifferentiable constraints is presented and illustrated by solving practical
problems.

Load shedding and generation rescheduling in power systems using the £;
norm is treated in Chapter 6. A new formulation for the problem is proposed and
tested using 6-bus and 26-bus systems.

In Chapter 7, optimal design of microwave multiplexing networks is for-
mulated as an optimization problem. A general multiplexer optimization procedure
exploiting exact network sensitivities is illustrated by designing 11 GHz, 5-channel
and 12 GHz, 12-channel multiplexers.

We conclude in Chapter 8 along with some suggestions for further research.

The author contributed substantially to the following original
developments presented in this thesis:

(1) An algorithm for the fixed tolerance problem embodying worst-case search
and selection of sample points.

(2) Mixed programming formulation of the tuning problem ensuring that the
solution gives the minimum number of tunable parameters.

(3 A new formulation for fault isolation in analog circuits using the €1 norm
and an exact penalty function.

(4) An algorithm for minimizing the cardinality of a set subject to nonlinear,

nondifferentiable constraints.

(5) A formulation of the load shedding problem in power systems using the ¢;
norm.
(8) A procedure for optimal design of microwave multiplexers using ¢; and

minimax optimization.
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DESIGN CENTERING, TOLERANCING AND TUNING (DCTT) - A REVIEW

21 INTRODUCTION

The development of new design procedures and techniques can, in general,
be characterized as an attempt to include in the design process as many factors which
may influence the performance of a manufactured design as possible. With readily
available and ever increasing computing power at hand, computer-aided designers
are dealing with more realistic problems. We should not, however, rely only on the
computing power of modern machines since besides economical considerations there
exist physical limits to what is practically achievable. Bremermann (1962)
determined by simple physical considerations that "... no data processing system
whether artificial or living can process more than 2x1047 bits per second per gram of
its mass".

In the classical design problem we are interested in finding one single point
in the design parameter space which satisfies the design specifications. This kind of
solution is impractical from the manufacturing point of view since there is a number
of factors which influence the performance of a manufactured design.

Phenomena associated with the design of circuits and which can be
considered are (Bandler and Rizk 1979):

(a) manufacturing tolerances (i.e., the actual value of the design variable
outcome may lie within an interval with a certain probability density

function);



(c)

(d)

(e)

®

model uncertainties; equivalent circuits are used to model actual circuits
and the parameters of equivalent circuits usually have uncertainties
associated with them;

parasitic effects; these parasitics can substantially alter the ideal circuit
performance and should be taken into consideration where possible; they
are marked in many analog electrical circuits (active, high frequency, etc.);
environmentai uncertainties; some circuits have to meet stringent
specifications for a variety of different environmental conditions; military
and telephone equipment, for example, often has to be designed for extreme
temperatures;

mismatched terminations; network terminations or loads may be
substantially different from ideal;

material uncertainty; uncertainties exist in the materials used to fabricate
the circuits.

Taking into account in the design process the above mentioned factors, if at

all possible, is usually in conflict with the feasible or acceptable computational effort

involved. Therefore, a successful design procedure is usually a compromise between

the complexity of the model and the computational cost to produce a design satisfying

all specifications.

In the next section we consider the relevant fundamental concepts and

definitions commonly used in the DCTT literature.



2.2 FUNDAMENTAL CONCEPTS AND DEFINITIONS

The mathematical formulation of an approach which embodies centering,
tolerancing and tuning in a unified manner was presented by Bandler, Liu and Tromp
(1976a).

A design consists of design data of the nominal point ¢0, the tolerance

vector € and the tuning vector t, where

r = r = r I
0
¢, & b
0
q>2 g, t,
| ; (2.1
d)o EX . , € 4 . and t 2 ,
0
8 ¢, | | % i t, i
n is the number, for example, of network parameters which may be indexed by
[,2{1,2,..,0}. (2.2)

We will assume that the parameters can be varied continuously. and that
the parameters can be chosen independently. Extra conditions such as discretization
and imposed parameter bounds may be treated as constraints, see Bandler, Liu and
Chen (1975). Some of the parameters can be set to zero or hgld constant.

An outcome {¢, €, p} of a design {J, €, t} implies a point in the parameter
space given by

¢:¢0+Ep, (2.3)

where



m
e

€
n

L— —
and p € R,. R, is a set of multipliers determined from realistic situations of the

tolerance spread. We consider
R2ml-1sp<-a,asysl,icl}, (2.5)
where
0<a =1. (2.6)
The most commonly used continuous range is obtained by setting a; to zero. Unless
otherwise stated, the case
Rpé{p|—-1$pi$ 1, i€}, (2.7
is considered (Bandler and Liu 1974).
The tolerance region R, as described by Butler (1971) and Bandler (1972,
1974), is a set of points defined by (2.3) for all p € Ry. Inthecaseof-1 = p; = 1,1 € Iy,
RE{}|), =0¢) +epn, —1=p =1, i€}, (2.8)
which is a convex regular polytope of n dimensions with sides Qf length 2 ¢;,1 € Iy, and
centered at 0. The extreme points of R; are obtained by setting y; = £ 1. Thus, the
set of vertices may be defined as
RE@I0, =0 +em, m€{-1,1} i€l}. 29
The number of points in Ry is 2%. Let each of these points be indexed by ¢i, i € [,
where
£(1,2,...,2}. (2.10)
Thus, Ry = {1, $2, ..., $2"}.
The tuning region R(p) is defined as the set of points (see Bandlér, Liu and

Tromp 1976a)



¢:¢O+Ep+Tp (2.11)
for all p € R, where
r n
b
ty (2.12)
T2 : . -
t
n
- -
Some of the common examples of R, are
A 1< i (2.13)
Rp—{pl 1—pls‘1r 1€I¢}:
or in the case of one-way tuning or irreversible trimming,
ay < < i (2.14)
or
A i (2.15)
Rp_{p| -1=p =<0,i¢ ch}.
The constraint region R, is defined as (Butler 1971, Bandler 1972, 1974),
R &{|g(d =0,icl}, (2.16)
where
1.2{1,2,..,m}. A

is the index set for the performance specifications and parameter constraints. R is
assumed to be nonempty.
The definitions and concepts presented are illustrated in Fig. 2.1 by a two-

dimensional example.

2.3 THREE FORMULATIONS OF THE OPTIMAL DCTT PROBLEM
2.3.1 General Nonlinear Programming Formulation with
Differentiable Constraints
The first general formulation of the optimal DCTT problem was given by

Bandler, Liu and Tromp (1976a). The problem was stated as follows: obtain a set of



10

tolerance

|
region Rg :
!
l
|

--¢1

Fig. 2.1 Illustration of concepts in design centering, tolerancing and tuning.

(Bandler, Liu and Tromp 1976a).
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optimal design values {$0, €, t} such that any outcome {0, €, pu}, p € Ry, may be tuned

into R, for some p € R, It was formulated as the nonlinear programming problem:

minimize C (([)0, g, t) (2.18)
subject to |
$ €R (orgd) =0, (2.19)
where
¢=9¢"+Ep+Tp (2.20)

and constraints ¢0, &, t = 0, for all p € R, and some p € R,. C is an appropriate

function chosen to represent a reasonable approximation to known component cost

data. |
Stated in an abstract sense, the worst-case solution of the problem must

satisfy
R@WNR = %) (2.21)

for all p € Ry, where & denotes an empty set.

They also discussed the geometrical structure of the problem and
introduced some important special cases obtained by separating the components into
effectively tuned and effectively toleranced parametez;s. They proved that the
solution of the reduced problem is the solution of the original one under certain

conditions.

2.3.2 General Nonlinear Programming Formulation with
Nondifferentiable Constraints
Polak and Sangiovanni-Vincentelli (1979) formulated the DCTT problem
as a mathematical programming problem in the form
minimize C(¢?, ¢, t)

subject to
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min min max g, (d)=0 (2.22)
Lel p.ERLl pERp

and the constraints ¢0, £, t = 0, where ¢ is given in (2.20). They demonstrated that

their formulation is equivalent to the one in Bandler, Liu and Tromp (1976a). They

suggested a new algorithm which deals with the nondifferentiable constraints (2.22).

The algorithm solves the problem as a sequencé of approximating problems with R

C Ry as a discrete set. They showed that, under certain conditions, the accumulation

points of the sequence of stationary points of the approximating problems are

stationary points of the original problem.

2.3.3 Formulation Based on Generalized Least pth Function
A different formulation was presented by Bandler and Abdel-Malek
(1978a). They introduced a generalized least pth function to convert a tolerance and
tuning problem to an equivalent tolerance problem. An expanded constraint region,
namely the tunable constraint region R, replaces the original region R, (see Fig.
2.2). The region is given forp = o by
A . (2.23)
Rct={q)| max min g, (¢ + Tp) = 0},
p€ Rp i€ Ic
where ¢ is given by (2.3). The authors based some definitions of yield upon Rt and

described worst-case design and worst-case centering.

2.4 SPECIAL CASES AND OBJECTIVE FUNCTIONS

Several objective functions (or cost functions) have been proposed (Pinel
and Roberts 1972, Pinel 1973, Bandler 1974, Karafin 1974, Bandler and Liu 1974). In
practice, a suitable modeling problem would have to be solved to determine the cost-

tolerance-tuning relationship. We assume that the nominal parameter values,
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Fig.2.2 Geometric interpretation of the tolerance problem equivalent to the

tolerance-tuning problem. (Bandler and Abdel-Malek 1978a).
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tolerances and tuning ranges (either absolute or relative) are the main variables and
that the cost of the design is the sum of the cost of the individual components.

Suitable objective functions will be, for example, of the form

n o0t
C@’e = > (ci — + ci—%>,
i=1 & o)

1

(2.24)

where the c; and ¢;' are nonnegative constants. These may be set to zero if the
corresponding element is not to be toleranced or tuned, respectively.

The special cases considered may be defined mathematically as a zero
tolerance problem (ZTP), a fixed tolerance problem (FTP) and a variable tolerance
problem (VTP) (Schjaer-Jacobsen and Madsen 1979, Bandler and Rizk 1979).

Schjaer-Jacobsen and Madsen (1979) define the problems in terms of a set
of m nonlinear differentiable functions of n real variables. In this presentation we
define those problems using notation and concepts directly related to the design
problem (Bandler and Kellermann 1983).

We do not include tuning in this chapter since it will be considered in much

more detail than other problems in Chapter 4.

2.4.1 The Zero Tolerance Problem (Centering Problem)

In this problem we have ¢ = 0 and t = 0. We want to find the nominal
design ¢0 satisfying the design specifications g(¢) = 0, where ¢ = $0. The problem
is a pure centering problem in which a feasible, centered nominal design is found if R,
# . The solution may be useful at the initial stage of a design process when the
designer has no prior experience with the problem and an initial rough approximation
gives some insight.

The problem can be conveniently formulated in minimax form as
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(2.25)
minimize F((bo) ,
(bO
subject to
$° =0, (2.26)
where
(2.27

F@) 2 max (-g, (@).
i€l

242 The Fixed Tolerance Problem
Here we have ¢ = const = 0. We want to find 9, the center of the
tolerance region R;, when the manufacturing tolerances on the components are fixed.

This is basically a centering problem and can be formulated in minimax form as

2.28
minimize F(tbo) ( )
¢0
subject to
=0, (2.29)
where
2.30
¢=¢O+Epf0rallp.€Rp (2.30)
and
(2.31)

F®") = max (~g, (®).
i€l
C
Under certain assumptions (one-dimensional convexity of R, see Fig. 2.3) it

is sufficient to choose only the vertices of R to form appropriate minimax functions.

2.4.3 The Variable Tolerance Problem
In this problem we have € # const, t = 0. The manufacturing tolerances

are considered as variables instead of as being fixed.
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AT O TR

Fig. 2.3 Illustrations of convex, one-dimensionally convex and nonconvex regions

(Liu 1975).
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The design problem can be formulated as

(2.32
minimize C(d)o, e) )
o’ e
subject to
¢’ =0, ' (2.33)
e=0, (2.34)
g(d) =0, (2.35)

where ¢ is given by (2.3).
The objective function C is directly related to the component cost, and
generally possesses the properties '
C((bo, g€)— const as € = ©

C(q>°, €)—> o asg—0.

A common form of this objective is

0

A (2.36)
Z ¢ T
i=1t &

where the ci’s are positive constant weights.

2.4.4 Generalized Tolerance Assignment Problem

Tromp (1977) has generalized the tolerance assignment problem so that
physical tolerances, model uncertainties, external disturbing effects and dependently
toleranced parameters can be considered in a unified mannef. In essence, the
approach begins with the definitions of the kgj-dimensional vector ¢°i, the k;-
dimensional vector ¢! and the ky;-dimensional vector pi so that ¢i is a function of ¢oi
and piforalli=1,2,...,n, and ¢oi itself depends on all ¢i-1fori=2,3,....n.

Input parameters, e.g., the physical parameters available to the

manufacturer might be identified as ¢1, whereas ¢n would be the output vector, e.g.,
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the sampled response of a system or the vector of constraints g, which defined the
region R.. The quantities $2, ..., dn-! can be identified, for example, as intermediate
or model parameters. The variables pi, i=1,2,..,n, create the unavoidable or

undesirable fluctuations and generally embody the unknown or intangible. Hence we

let
f‘(bm"\ f‘(bﬁ "pll"1
02 2 2
] ] B
(2.37)
P . el and g &
On n n
Lq) - L(b _ Lp _

The tolerance region in the ¢ space is obviously no longer restricted to be

an orthotope in this formulation.

2.5 ALGORITHMS FOR DCTT PROBLEMS
In worst-case design the whole tolerance region has to lie in the constraint
region, i.e., it is required that
R.CR,.
This is design with 100% yield, where yield Y is given by

A number of outcomes which meet specifications

total number of outcomes

The 2" vertices of the tolerance region are usually the points considered as
candidates for worst-case. There are two main reasons. The first is that it is
impractical, or even impossible, to consider explicitly the infinite number of points
contained in the tolerance region. The second is that one-dimensional convexity of the
constraint region may be assumed. Bandler (1974) proved, in this case, that it is

sufficient for worst-case design to require that
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R,CR,.
An example of a worst case design and a design with yield < 100% is shown in Fig.

2.4.

2.5.1 Vertex Selection Schemes

For large problems, with a large number of variables, the number of
vertices of the tolerance region becomes enormous. Selection schemes which include
purging (dropping of constraints or vertices) as well as addition of vertices of the
tolerance region during the optimization process alleviate the need for considering 2"
vertices (Bandler, Liu and Chen 1975, Bandler, Liu and Tromp 1976b, Tromp 1977).
One of these schemés (Bandler, Liu and Tromp 1976b) is based on iterative solution 6f
necessary conditions for the worst vertex derived from the Kuhn- Tucker conditions.
These methods rely on the assumption that the constraint region is one-dimensionally
convex.

Schjaer-Jacobsen and Madsen (1979) suggest the application of-interval
arithmetic for solving the worst-case problem which guarantees that the worst case is
always found. By solving the worst-case problem as described by them, no
information is gained about where in the tolerance interval the worst case is attained.
In their method the one-dimensional convexity assumption is not required, and the

worst case can lie at an edge of the tolerance region instead of at a vertex.

2.5.2 Simplicial and Quadratic Approximations
The tolerance problem described earlier implicitly solves the centering
problem, in which we are interested in finding a "center” of the constraint region.

Another approach is one developed by Director and Hachtel (1977). Itisconcerned
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/, ——design with yield< 100%

worst-case design g,=0

Fig. 2.4

Example of a worst-case design and a design with yield <100 percent. For
the worst case design the set of active vertices is S,y = {1,3,4}. These
vertices indicate critical regions where constraint violations are most likely
to occur for a design with yield <100 percent (Bandlér and Abdel-Malek

1978b).
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with finding the center of the largest hypersphere inscribed in the constraint region
(see Fig. 2.5). In the process, an internal approximation to the region is obtained. The
problem of finding the largest hypersphere is solved by a sequence of linear
programming problems.

Bandler and Abdel-Malek (see Bandler and Abdel-Malek 1978b, Abdel-
Malek and Bandler 1980a, 1980b) proposed a method (in the context of yield
optimization) in which approximations are made to both the constraint region and the
yield integral over the constraint region. The method assumes that the parameters of
the circuit have a joint probability density function which is truncated or adequately
represented by an orthotopic truncated distribution over a region with fixed volume
but whose position depends on the nominal parameter values. Using thé
regionalization they approximate the failure rate (1-Y) in two steps. First the
intersection of the tolerance region R; and the constraint region R, is approximated
with a quadratic approximation. This approximation is updated as the nominal point
changes and only generated in those areas where R.(¢$0) violates the constraint
region. Then the quadratic approximation is linearized about the points where the
orthotope R, intersects the quadratic approximation to R¢ N R.. Because their
approximation to the failure rate is analytical it is possible to differentiate it to find

the gradient of the yield w.r.t. the nominal point ¢0.

2.5.3 Cut-Map Algorithms for Tolerancing and Tuning

Many algorithms for design problems with parameter tolerances assume
one- dimensional convexity of the constraint region (or the set of feasible nominal
designs). Mayne, Polak and Voreadis (1982) presented an algorithm for the tolerance

problem which is suitable for the nonconvex problem.
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constraint
region

linear search

(a) Initial search for boundary points.

linear search

(b) The polytope approximating the boundary of the constraint

region after two iterations.

Fig. 2.5 [Illustration of the simplicial approximation approach (Director and

Hachtel 1977).
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The design problem requires the solution of the infinite dimensional

inequality
g(@*+Ep =0 forall p¢ R,

Let R, denote the feasible set for the tolerance problem, i.e., phe problem
where ¢ = ¢0 + E pfor all p € R;. One method of solving such a problem is the outer
approximations algorithm described in Mayne, Polak and Trahan (1979). This
replaces the infinite-dimensional feasibility problem by an infinite sequence of
conventional (finite-dimensional) feasibility probiems where Ryl is a finite subset of
Ry.

The cut-map algorithm approximates R, (the complement of R.) by the
union of a finite number of very simply described regions. Typically, at iteration i, R;'
is approximated by W; & U {B(¢;?, rj)| j<i} (or a subset of this set), where B(¢?, r;)
denotes an open ball with center ¢;0 and radius r; > 0, such that R, N B(¢;0, rj) = O.

Clearly R, N W; = O so that R, C Wy, that is W' is an outer approximation
to R of a particularly simple kind. The algorithm proceeds by determining any ¢ in
W;’ and then computing rj; r;=0 implies that ¢;0 lies in R.. Rules for computing r; and
constructing W; are given and represent extensions of the conceptual algorithms of
Eaves and Zangwill (1971).

In Voreadis and Mayne (1982) the idea of cut-map algorithms is extended to
the case when tuning is also present. Both algorithms, however, are suitable only for

the case when the tolerance and tuning regions are constant.

2.54 Funection Splitting for the Tolerance Problem
Sophisticated algorithms for the fixed and variable tolerance problem are

presented by Brayton, Director, Hachtel and Vidigal (1979). One-dimensional
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convexity is assumed. The nondifferentiability of the worst case function

max f. (¢), or max (—g, (),
bER bER

i € I, is coped with by "function splitting". The idea of function splitting is to treat a
single function as if it were simultaneously several different functions. Since the
worst case of a single function can occur simultaneously at two different vertices, say
R(ip) and p(ie), then it is natural to treat f(p0 + E p(iy)) and f($p0 + E p(ig)) as two se-
parate functions and to employ both gradients, f '($p0 + E p(ip)) and f (¢° + E n(ig)),
in the optimization algorithm. The worst case function is not differentiable at ¢0 but
possesses a generalized gradient which is the convex hull of f ($0 + E p(iy)) and f (0
+ E n(i9)). A vertex list, updated at each iteration, defines the function and gradient

information supplied to a quadratic program to determine a search direction.

2.5.5 MINMAX-MINBOX Linear Programming Approach

Hachtel, Scott and Zug (1980) proposed an interactive linear programming
based method for optimization problems in worst case circuit design an;i device
modeling. They propose a flexible objective MINMAX-MINBOX linear programming
approach. The MINMAX linear programming design step, similar to the method
developed by Schjaer-Jacobsen and Madsen (1979), asks the user to guess at the
effective range of linearity of the specified objective functions, and then produces the
minimum (over the n-dimensional design space) of the maximum (over the function
indexes) function subject to this "box constraint”. The MINBOX linear programming
step asks the user to specify desired improved levels for the upper bounded objective
functions. The MINBOX LP step either produces the smallest step A which achieves

those levels or states that the levels are infeasible.
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2.5.6 Related Algorithms

In the design of electronic circuits, as in all types of design, the engineer is
faced with making a decision in the presence of competing objectives. Lightner and
Director (1981) presented a technique for multiple criterion optimization (MCO).
They proposed user oriented weight selection heuristics for the weighted €5 solution
to the MCO problem and generalized this idea for a family of weighted p-norms.

Vidigal and Director (1982) described a design centering algorithm for
nonconvex regions of acceptability which is basically a convergent sequence of
subproblems, each of which has a convex region of acceptability. Convergent
algorithms exist for the solution of these subproblems, e.g., Director and Hachtel

(1977) or Bandler and Abdel-Malek (1978b).
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MINIMAX OPTIMIZATION TECHNIQUES IN COMPUTER-AIDED

ENGINEERING

3.1 INTRODUCTION

A wide class of engineering system problems can be formulated as
optimization problems with the objective being the norm of the error functions w.r.t.
specified or measured responses of a system.

Many circuit design problems can be formulated naturally as minimax
optimization problems. Most commonly, the minimax functions result from lower
and/or upper specifications on a performance function of interest. In practice, we form
error functions at a finite discrete set of frequencies, for example, and assume that a
sufficient number of sample points have been chosen so that the discrete
approximation problem adequately approximates the continuous problem. 'i‘his may
result in a large number of minimax functions to be minimizgd. Therefore, a highly
efficient and fast algorithm for minimax optimization is of great importance to many
system designers and engineers.

In this chapter, the area of nonlinear minimax optimization is briefly
reviewed. The Hald and Madsen algorithm is treated in some detail. The ideas
behind the algorithm are explained and illustrated with a microwave circuit example.
We also present a comparison of the Hald and Madsen algorithm with other minimax
algorithms, using a three-section transmission-line transformer problem.

A novel approach to worst-case tolerance design of circuits is. proposed.

Previous work in this area has been concentrated on worst-case design techniques

26



27

disregarding the source of the minimax functions, i.e., the discretization of a
continuous problem. Our approach integrates a search technique for maxima of the
response (a technique based on cubic interpolation) with the worst-case search using

linearly constrained optimization.

3.2 INDEPENDENT PARAMETERS, PERFORMANCE FUNCTIONS AND

SPECIFICATIONS

In electrical circuit design, more than one response function might have to
meet given .specifications. As an example, a circuit can be designed to meet desired
specifications in both the frequency and the time domains (Bandler and Rizk, 1979).
Graphically, this situation is shown in Fig. 3.1. In this case, we have more than oﬂe
independent variable, y, namely, yl, @2, ..., g, where A is the number of these
independent variables. Accordingly, we have ) response functions Fl(¢, yl),
F2(¢, ¢2), ..., FAM(d, yd). In general, we can have A upper specifications S,l(yl),
Su2(y2), ..., SyMwd) and A lower specifications, Sel(yl), Sp2(y?2), ..., SeA(yd). The error
functions will be of the form

@) =w @FE@u)-8 @), =121, (3.1a)

&, @, v) = wl) (F @, ¢ - S, =121, (3.1b)
where wi(yi) and wi(yi) are positive weighting functions and the subscripts u and €
refer to upper and lower specifications, respectively. |

In a typical DCTT problem, the independent variable is the frequency and
we are interested in the output response of the circuit at a discrete set of fi’equency

points. Without loss of generality, we consider the following error functions
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Fig. 3.1

frequency

Upper and lower specifications for an amplifier to be designed to operate

over a specified temperature range (Bandler and Rizk 1979).



29

eui(q))éeu((b’ ‘pi) = Vi (Fi(‘cb) - Sui)’ i€ Iu ’ (3.22)
A _ .
eei(q>)=ee(q), p) = W (Fi(q>) - Sei)’ i€ Ie’ (3.2b)
where
F(»AF@, w) (3.2¢)

* Iy and Iy are index sets, not necessarily disjoint. Let

e ., jel ,
, uj u 3.3)
[, & i€l (
—€, k€ [e’
where
A (3.4)
ILl =1{1,2, .., nu},
A (3.5)
Ie = {1,2,...,n€},
3.6)
[ 2{1,2 .., m, (
and m = ny + ng. The m functions
f=1[f; fo ... fulT (3.7

characterize the circuit performance, which is monitored during the optimization
process.
If we let
(3.8)
Mf(ti)) 2 max fi((b),
i€l
C

then the sign of Mrindicates whether the specifications are satisfied or violated.

3.3 REVIEW OF MINIMAX ALGORITHMS
3.3.1 Formulation of the Problem
The mathematical formulation of the linearly constrained- minimax

problem is the following. Let
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F(x)2F (x VX, ..,X ), J=1,2, ... m,

i i1 n
be a set of m nonlinear, continuously differentiable functions. The vector x2[x; xg ...
x4]T is the set of n parameters to be optimized.

We consider the optimization problem

. A (3.9a)

minimize F(x) = max fj(x) ,

X J
subject to

alx+b =0, i=1,2,..,¢ , (3.9b)

i i eq
alx+b =0, i=¢ +1),..,¢, (3.9¢)

i i eq )

where ajand b;,i = 1,2, ..., £, are constants.

3.3.2 Methods Based on Linearization
Over the past fifteen years, this type of problem has been considered by
many researchers. Usually only the unconstrained problem is treated, however. But
in some of the methods to be described, it is no complication and computationally
costless to add linear constraints. Many of the minimax papers in the literature use
the objective function
A A
F(x) = max]fj(x)l,
i
instead of F. There is no significant difference between these two optimization
problems. We prefer (3.9) since it is notationally easier and more general.
One of the earliest methods for solving the minimax problem was that of
Osborne and Watson (1969). At the kth iterate, Xy, their method uses a linear
approximation of the nonlinear minimax problem, namely,

minimize F (x_, h) & max {£x,) + fjf(xk)T h}, (3.10)
h j ’
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where fj'(x)) denotes the gradient vector of fj w.r.t. x at the point xx. The minimizer
hy of (3.10) is found using linear programming and it is used in a line search. This
method may be efficient, but often it is inefficient. No convergence can be guaranteed
and the method can even provide convergence to a nonstationary point. Madsen
(1975) incorporated trust regions in the Osborne and Watson method. The linearized
problem (3.10) is solved subject to a local bound on the variable h, the bound being
adjusted during the iteration. No line search is used. This method has been proved to
provide convergence to the set of stationary points and has a quadratic final rate of
convergence when the solution is regular (Madsen and Schjaer-Jacobsen 1976).
However, the rate of convergence may be very slow on singular problems.

The method of Anderson and Osborne (1977) is very similar to that of
Madsen. The main difference lies in the way of bounding the step length [hyl. A
different approach was used by Bandler and Charalambous (1972). They presented an
approach utilizing efficient unconstrained gradient minimization techniques in
conjunction with least pth objective functions employing extremely large values of p.
Charalambous and Conn (1978) apply an active set strategy to obtain a direction for a
line search.

All of these methods are first-order methods, i.e., the search is based on
first-order derivatives only. Therefore, all of these methods have problems with

singular solutions and the rate of convergence may be very slow.

3.3.3 Methods Using Second-Order Information
In order to overcome this problem, some second-order (or approximate
second-order) information must be used. Hettich (1976) was the first who proposed

doing this. He used a Newton iteration for solving a set of equations which expresses
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the necessary conditions for an optimum. However, Hettich’s method is only local. It
is required that the initial point be close to the solution and that the set of active
functions (and constraints) is known. Han (1981) suggested nonlinear programming
techniques for solving the minimax problem. He uses a nonlinear programming
formulation of the minimax problem which is solved via successive quadratic
programming (Powell 1978). A line search is incorporated using the minimax
objective function as merit function. Overton (1979) uses an approach similar to
Han’s, but solves equality constrained quadratic problems and uses a specialized line
search.
The method of Watson (1979) is very similar to the method of Hald and

Madsen (1981). It switches between a first- and a second-order method. The main
differences between the Hald and Madsen algorithm and the Watson method are the
following. Watson requires the user to provide exact first- and second-order
derivatives whereas Hald and Madsen require only first-order derivatives.
Furthermore, Watson fails to define a suitable set of criteria for switching between
the first-order and the second-order methods. The Hald and Madsen method has
guaranteed convergence to the set of stationary points whereas Watson’s method has )

no such property. It can even provide convergence to a nonstationary point.

3.4 THE HALD AND MADSEN MINIMAX ALGORITHM IN SYSTEM
DESIGN
3.4.1 General Description

The Hald and Madsen algorithm for nonlinear minimax optimization (Hald
and Madsen 1981) is a combination of the first-order method of Madsen (1975) and an

approximate second-order method. The first-order method provides fast convergence
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to the neighbourhood of a solution. If the solution is singular (see Madsen and
Schjaer-Jacobsen 1976), then the rate of convergence becomes very slow and a switch
is made to the second-order method. Here, a quasi-Newton method is used to solve a
set of nonlinear equations that necessarily hold at a local solution of (3.9). This
method has superlinear final convergence. Several switches between the two methods
may take place and the switching criteria ensure the global convergence of the
combined method. The user of this algorithm is required to supply function values
and first-order derivatives whereas the necessary second derivative estimates are
generated by the algorithm.

For this thesis, we have used the MMLC version of the algorithm (Bandler
and Zuberek 1982), based on the earlier implementation due to Hald (1981). |

The algorithm is described in more detail in Appendix A, where the two
methods, namely, the first-order method (denoted Method 1) and the approximate
second-order method (denoted Method 2) are presented and the switching conditions

between the two methods are given.

3.4.2 Performance of the Algorithm on Regular and Singular Problems

When the solution is singular, the final rate of convergence of Method 1 can
be very slow. Consider the example of Fig. 3.2 in two variables, where the two
functions are active at the solution z (i.e., fi(z) = F(z) for two values of j). Figure 3.2
shows contours for a two-dimensional singular minimax problem arising from
optimization of a two-section 10:1 transmission-line transformer, where the minimax
functions correspond to the reflection coefficient sampled at 11 normalized
frequencies with respect to 1 GHz (0.5, 0.6, ..., 1.4, 1.5). The optimization- variables

are characteristic impedances Z; and Zs. Section lengths £; and €5 are kept constant
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Two-dimensional singular minimax problem arising from optimization
of a two-section 10:1 transmission-line transformer with optimization
parameters Z; and Zs. The first 6 iterations are performed using
Method 1 of the algorithm. Iterations 7 and 8 are performed using
Method 2. The total number of iterations (function evaluations) to reach
the solution with the accuracy of 10-6 is 11 (0.49s on Cyber 170/815). If
Method 2 is not used 25 iterations (1.14s of CPU time) are required to
reach the solution.
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at their optimal value ¢y, which is the quarter wavelength at the center frequency.
According to Madsen and Schjaer-Jacobsen (1976), this is a singular problem. Above
the dotted line, F is equal to one of the functions f}, F(x) = f1(x), and below the dotted
line, F is equal to another function, F(x) = fo(x). At the dotted line,
f1(x) = fo(x) = F(x) and this line represents the bottom of a valley.

[f f; and fy are different, then there is a kink at the bottom of the valley and
a method based on linearization, such as Method 1, will provide fast convergence to
this kink, as illustrated by the first three iterands in Fig. 3.2. After the dotted line
has been reached, however, the convergence towards z can be slow because the
iterands have to follow a curve which passes the solution z in a smooth manner (with
no kink). Therefore, a method based on first-order derivatives only is not sufficient, in
general, to give fast convergence. Some second-order (or approximate second-order)
information is needed. The first six iterations are performed using Method 1 of the
algorithm. Iterations 7 and 8 are performed using Method 2. The total number of
iterations (function evaluations) to reach the solution with the accuracy of 10-6 is 11
(0.49 seconds on the Cyber 170/815). If Method 2 is not used at all, 25 iterations (1.14
seconds of CPU time) are required to reach the solution.

Notice that if three functions were equal at a minimum of a two-
dimensional probler_n, then no smooth curve through the solution exists and Method 1
provides fast (quadratic) convergence to the solution. This is illﬁstrated in Fig. 3.3,
which shows contours for the same two-section 10:1 transmission-line transformer
problem. However, the optimization variables are now €/€; and Z;. Characteristic
impedance Zz and section length €2/€; are kept at their optimal values (£9/€q = 1,
Zo = 4.47213). Here, the problem is regular and five iterations are sufficient to reach

the vicinity of the solution. In the figure, the first five iterations shown are performed
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Fig. 3.3

09 10 1.1 1.2
4L

Two-dimensional regular minimax problem arising from optimization of
a two-section 10:1 transmission-line transformer with optimization
parameters ¢;/¢q and Z;. The first 5 iterations shown are performed
using Method 1. The total number of iterations to reach the solution
with the accuracy of 10-6 is 8 (0.37s of CPU time on Cyber 170/815).
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using Method 1. The total number of iterations to reach the solution with the
accuracy of 10-6 is 8 (0.37 seconds of CPU time on the Cyber 170/815).

To show the influence of the parameters DX (initial step length of the
iterative algorithm) and KEQS (the number of successive iterations with identical
sets of active residual functions that is required before a switch to Stage 2 is made),
the optimization has been performed several times for different values of DX and
KEQS. The resulting numbers of residual function evaluations required to achieve
the accuracy EPS = 10-6, as well as the number of shifts to Stage 2, are summarized
in Table 3.1 (the numbers of shifts are given in parentheses).

It can be observed that the increasing values of KEQS correspond to
slightly increased numbers of function evaluations. Moreover, too small and too large
values of DX require more residual function evaluations because of adjustments
which are performed by the algorithm. From other experiments, it was observed that
the increasing values of KEQS correspond, generally, to smaller numbers of shifts to

Stage 2 (some too early shifts are eliminated).

3.5 COMPARISON OF MINIMAX ALGORITHMS FOR CIRCUIT DESIGN
3.5.1 The Test Problem

To compare the performance of minimax algorithms, a three-section, 100-
percent relative bandwidth 10:1 transmission-line transformer- problem has been
chosen (see Fig. 3.4). It is a special case of an N-section transmission-line
transformer. Originally studied by Bandler and Macdonald (1969a, 1969b), this type

of test problem is now widely considered.
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TABLE 3.1
THE INFLUENCE OF THE CONTROLLING PARAMETERS DX AND

KEQS ON THE NUMBER OF FUNCTION EVALUATIONS

KEQS
DX 2 3 4
0.1 21(2) 23(2) 24(2)
0.25 19(2) 18(2) 19(2)
0.5 18(2) 20(2) 22(2)
0.75 18(2) 18(2) 20(2)

1.0 21(2) 22(2) 23(2)
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Fig. 3.4 Three-section, 10:1 transmission-line transformer used as a test problem to

compare the performance of minimax algorithms.

10
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The problem is to minimize the maximum reflection coefficient of this
matching network. A detailed discussion on the formulation of direct minimax
response objectives is presented in Bandler (1969).

Formally, the problem is to

minimize F(x) = max |px, 0|, (3.11)

X [0.5,1.5]

where
x =[€1/8q Zy €28 Za €3/€q Z3]T.

The minimax functions represent the modulus of the reflection coefficient
sampled at the 11 normalized frequencies w (w.r.t. 1 GHz) {0.5, 0.6, 0.7, 0.77, 0.9', 1.0,
1.1, 1.23, 1.3, 1.4, 1.5}. The known quarter-wave solution is given by €; = €3 = f3 =
€q, Z1 = 1.63471, Zg = 3.16228, Z3 = 6.11729, where £ is the quarter wavelength at
the center frequency, namely,

€y = 7.49484 cm for 1 GHz .

The corresponding maximum reflection coefficient is 0.19729. Two starting

points have been used

x; =008 1.5 1.2 3.0 0.8 6.0,

x§=[1.o 1.0 1.0 3.16228 1.0 10.0]T.

Gradient vectors with respect to section lengths and characteristic impedances are

obtained using the adjoint network method.

3.5.2 Performance of the Algorithms

Table 3.2 shows the performance of selected minimax algorithms on the
test problem. Table 3.2 also shows results obtained using the algorithm published in
Bandler, Kellermann and Madsen (1985b), with a cubic interpolation :search for

maxima of the response. Using this technique, the number of sample points can be
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TABLE 3.2
COMPARISON OF ALGORITHMS FOR THE THREE-SECTION TRANSFORMER

(NUMBER OF FUNCTION EVALUATIONS)

Algorithm Starting Point xo1 Starting Point xo2

Bandler, Kellermann

and Madsen (1985b)1 18 * 21 **
Hald and Madsen (1981) 21 46
Agnew (1981) Alg. I 23 64
Alg. 11 20 109
Bandler and Charalambous (1973) 95 155
Charalambous and Conn (1975) 162 67
Conn (1979) 67 80
Madsen (1975) 253 707
Madsen and Schjaer-Jacobsen (1976) 29 48

Bandler, Kellermann
and Madsen (1985b)2 15 % ' 22t +

Execution times on Cyber 170/815 in seconds are * 0.6, **0.7, ¥ 0.57, * 7 0.85

"Active" frequency points selected by 1 without cubic interpolation
the cubic interpolation search
0.50000, 0.76999, 1.23001, 1.50000 2 with cubic interpolation
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reduced from 11 to 4 and we do not have to know in advance the location of frequency
points corresponding to the maxima of the response. More information on the cubic
interpolation search technique is given in Section 3.6 in the context of a new approach
to worst-case design of circuits.

The results published by Hald and Madsen (1981) correspond to the
combined method as described here except that the PSB (Powell’s symmetric Broyden)
formula was used for updating the Jacobian in Method 2. Numerical results
published in Bandler, Kellermann and Madsen (1985b) indicate that the use of the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula as described in Appendix A is

significantly better (see Table 3.2).

3.6 WORST-CASE NETWORK DESIGN
3.6.1 Preliminary Remarks

In this section we will formulate the fixed tolerance problem (FTP)
(Bandler, Liu and Tromp 1976a, Sck‘xjaer-Jacobsen and Madsen 1979) embodying
worst-case search and the selection of sample points for the discrete approximation of
a continuous problem. As mentioned in the introduction, the discretization of a
continuous problem may result in a large number of minimax functions to be
minimized. The size of the problem increases dramatically if we want to consider
tolerances on network parameters since for each frequency point selected to represent
the response 2" (n is the number of network parameters) minimax functions have to
be created if we want to consider all vertices of the tolerance region.

A number of methods have been proposed for solving the worst-case

problem. Schjaer-Jacobsen and Madsen (1979) suggest the application of interval
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arithmetic. Bandler, Liu and Chen (1975) and Tromp (1977) described methods which
rely on the assumption that the functions considered are one-dimensionally convex.
Our approach to the fixed tolerance problem is a double iterative algorithm.
For each outer iteration of minimization first a search using cubic interpolation is
done to determine frequency points which are candidates for active functions and then
a number (equal to the number of selected minimax functions) of inner loop optimiza-
tions are performed to determine the worst case for each of the minimax functions.
The advantage of our approach is that the worst-case search (done by
means of linearly constrained optimization) and the actual minimization are linked
together such that each worst-case calculation affects immediately the outer iteration

of minimization.

3.6.2 Cubic Interpolation Search Technique

The cubic interpolation technique allows us to consider the minimum
number of frequency points to adequately approximate the continuous problem. In
many cases the discretization of a continuous problem may not be adequate to give the
continuous minimax solution. As illustrated in Fig. 3.5, the solution obtained using
uniformly spaced sample points may not be optimal in the continuous minimax sense
" since some of the peaks of the response (or error function) would be missed. One way
to overcome this difficulty is to use densely spaced sample points. This, however, may
result in a prohibitively large number of minimax functions to be optimized.
Therefore, it is desirable to develop a technique to locate the maxima of the response

w.r.t. frequency and to track these maxima during the optimization process as they

shift along the frequency axis due to the changes in the values of optimization
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parameters. Such a technique has been developed by Bandler and Chen (1984). It is
based on the cubic interpolation formulas of Fletcher and Powell (1963). For

convenient reference the formulas are given in Appendix B.

3.6.3 Fixed Tolerance Problem Embodying Worst-Case Search and Selection of
Sample Points
We consider a set of m nonlinear functions
£ & f(d0, wp, j€J & {1,2,.,m}, (3.12)
where wj, j € J, is an independent parameter (frequency). The number of functions m
is equal to
m = Mpuax + 2,
where mpy,,« is the number of the maxima of the response and 2 represents the edges of
the frequency interval [we, wy].
The fixed tolerance problem can be defined on the basis of the worst-case
objective function (Schjaer-Jacobsen and Madsen 1979) as that of determining
min F(q>°) = min max max fj (P) .
L ®° j€J  PER,

For each outer iteration of minimization w.r.t. $0 m frequency points are

(3.13)

determined (by a search technique based on cubic interpolation) and m linearly
constrained optimizations are performed to find the worst cases.

At the kth outer iteration of minimization we have an approximation ¢y0 of
the solution and we solve m linearly constrained optimizations, where the jth

problem,j € J, is

minimize (- fj ( (bk) )

&,

(3.14a)

subject to
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. (3.14b)
(q)?)k—eis((bi)k S(Q)io)k+ai , i=1,2,...,n

Once ¢y* for the jth function is determined we can identify whether the worst-case
occurred at a vertex using the following criteria.
Let

), =1 @, — @), (3.15)
If |(yi)i - &il < 10-5, then the worst-case occurred at a vertex, for which y;, i€1, are easy

to determine

-1 i (&), = @), (3.16)

B =
+1 otherwise

The function values fj, j € J, and the gradients of f;, j € J, which are retlirned

to the outer iteration are evaluated at a point (¢;*)k, i.e., where the jth worst-case

occurred.

3.6.4 [llustration of the Approach: Three-Section Transmission-Line

Transformer

The three-section transmission-line transformer is used to illustrate the
approach and its validity for worst-case design. Numerical results are summarized in
Table 3.3. As expected the nominal parameter values are different from the values
obtained for the nominal design problem. The location of the two internal maxima of
the response has also changed as compared to the nominal design problem. Each
linearly constrained optimization to determine worst-case for the particular

frequency with the accuracy 10-3 requires about 4 iterations of the algorithm.



49

TABLE 3.3

FIXED TOLERANCE PROBLEM FOR THE

THREE-SECTION 10:1 TRANSFORMER

Number of Minimax Functions

Number of Variables

Required Accuracy of the Solution
Assumed Tolerances

Step Size in the Cubic Interpolation Search

Solution Vector

"Active" Frequency Points

Maximum Reflection Coefficient
Number of Function Evaluations

Execution Time on Cyber 170/815 (in seconds)

10-5
5%
0.1
£1/€ = 0.96373
Z, = 1.67797
£a/€q = 0.98720
Zy = 3.22493
£3/6q = 0.96483
Zs = 6.04817
0.50000
0.78726
1.27242
1.50000
' 0.33589
32

8.1
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3.7 CONCLUDING REMARKS

In this chapter, we have considered minimax optimization techniques in
computer-aided design of engineering systems. The area of nonlinear minimax
optimization has been briefly reviewed. Comparison made on the classical three-
section transmission-line transformer problem shows clearly that the algorithm of
Hald and Madsen is better than the other algorithms in terms of the number of
function evaluations required to reach the solution with a desired accuracy.

We have presented a novel approach to worst-case tolerance design of
circuits integrating a cubic interpolation based search technique for maxima of the
response with the worst-case search using linearly constrained optimization. The
validity of the approach has been demonstrated by solving a fixed tolerance problem
for the three-section transmission-line transformer. We emphasize that our approéch
does not require the designer to know in advance the location of frequency points
corresponding to the maxima of the response and significantly reduces the number of
sample points adequately approximating the continuous response. This aspéct of the
approach is particularly important since it can reduce the number of minimax

functions for which the worst cases have to be found.
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¢, OPTIMIZATION TECHNIQUES IN COMPUTER-AIDED ENGINEERING

4.1 INTRODUCTION

The problem of minimizing the £, norm of a set of nonlinear functions
arises in a variety of areas. The most popular application of the €; norm is the
problem of approximating a function to data that might be contaminated with some
wild points or gross errors. In this case the minimization of the £; norm residual is
superior to using other norms £, with p > 1 (Bartels and Conn 1981).

The number of applications of the €; norm to circuit and system problems is
increasing. The €; norm has been successfully used to isolate the most likely faulty
elements in fault isolation techniques for linear analog circuits (Bandler, Biernacki,
Salama and Starzyk 1982).

Another important application of the €1 norm is the functional approach to
post-production tuning (Bandler and Salama 1985), where the ¢; type of objective
function is used to select the number of tunable parameters needed to tune all possible
outcomes of a manufactured design.

As the number of applications of the £ norm to circuit and system problems
is increasing so is the importance of fast and efficient nonlinear ¢, optimization
algorithms to circuit designers and engineers. We present a brief review of the
existing €; algorithms and concentrate in more detail on the Hald and Madsen
algorithm.

The problem of tunable parameter selection in optimal DCTT is c.:onsidered

with the emphasis on the tuning problem at the design stage. The necessary



conditions for optimality of the nonlinear €, problem with nonlinear constraints 5re
derived and discussed in connection with the tuning problem.

We define regular and singular €| problems and formulate a criterion for
determining a singularity present in the €| problem.

The properties of the Hald and Madsen €, optimization algorithm are
applied to fault isolation in linear analog circuits under an insufﬁcienf number of
independent voltage measurements. A new formulation of the problem, a formulation
based on an exact penalty function, is proposed and illustrated by a simple resistive
network example.

In this chapter we also present a formulation using the €; norm for model
parameter identification problems and illustrate it with a 6th order multi-coupled

cavity narrow band-pass filter.

4.2 REVIEW OF ¢; ALGORITHMS
4.2.1 Formulation of the Problem
The optimization problem to be considered has the following mathgmatical
formulation. Let
fj(*x)éfj (xl, SR xn) ,i=1,2,...,m,
be a set of m nonlinear, continuously differentiable functions. The vector x 2[x; xg..."

xn]T is the set of n parameters to be optimized. We consider the following problem:

m
minimize F(x)& Z [fj(x)l (4.1a)
X i=1
subject to
(4.1b)
alx+b =0, i=12..,¢,
1 i eq
alx+b =0, i=¢ +1,..¢, (4.10)
i i eq .

where ajand b i = 1,2, ..., £, are constants. This is called the linearly constrained €,

problem.
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422 Algorithms for the Nonlinear ¢y Problem

The problem (4.1) is, in principle, very similar to the linearly constrained
minimax problem where the objective function is F(x) £ max|f{(x)|. Therefore, many of
the algorithms for solving the minimax problem may be revised into algorithms for
solving (4.1) and vice versa. For this reason most of the methods mentioned below
have minimax counterparts. A survey of minimax algorithms has recently been given
in Bandler, Kellermann and Madsen (1985b).

Most of the methods for minimizing the €; function solve only the
unconstrained problem (i.e. (4.1) with £=0). For the type of methods to be described
in this chapter, however, it is no complication and computationally costless to add the
linear constraints.

One of the first attempts to solve the ¢; problem was published in the paper of
Osborne and Watson (1971). The method is iterative and at the kth iterate xj the

following linear approximation of the nonlinear €; problem is used:

m
min}ilmize F(x,_,h) £ 21 £, + £,0x) 7l BEENCE)
J=

This linear model problem is solved using linear programming. The direction hy
found is then used in a line search. This method has quadratic final convergencer
under special circumstances but normally the final convergence is much slower. The
global convergence properties of this method are rather poor, and like the Gauss-
Newton method for nonlinear least squares (which is similar) the Osborne and
Watson method may provide fast convergence to a nonstationary point, e.g., a point
which is not a local minimum.

The more recent papers on the €; problem use some second-order information.

Most of the methods require that the user supply exact second (as well as first)
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derivatives. To the be_st of our knowledge the method of Hald and Madsen (1985)> is
the first which uses approximate second-order information (i.e, it is a second-ordér
method, but the user supplies only first derivatives). The methods of the next
paragraph use exact second-order information.

El-Attar, Vidyasagar and Dutta (1979) use a sequence of smooth problems
approximating the (nondifferentiable) €, problem. Each of the smooth broblems is
solved by standard techniques and the sequence of solutions will often converge to a
solution of the ¢; problem. However, this kind of method may have severe ill-
conditioning problems near an ¢; solution because a nondifferentiable function with a
kink is approximated by smooth functions. This gives curvatures in the smooth
functions which tend to infinity as the €| solution is approached. Murray and Overton
(1981) use a nonlinear programming formulation of the f; problem and apply
successive quadratic programming. A special line search algorithm is used to obtain a
reduction in the €; objective function. The algorithm of McLean and Watson (1980) is
a hybrid method like the method of Hald and Madsen (1985). It combines a first-order
method based on (4.2) using trust regions with a Newton iteration. The ﬁfst-order
method is intended to be used initially, and close to a solution the Newton method
should be used. This method often converges rapidly to a solution but the rules for
switching between the two stages do not guarantee convergence. In fact the method ™
may converge to a nonstationary point. |

The linearly constrained €; problem may be formulated as a nonlinear
programming problem. Then it can be solved by standard techniques from that field.
When Powell’s (Powell 1978) method for nonlinear programming is applied to the €,
problem we obtain a method which in its final stages is very similar to the Hald and
Madsen method. [t can be shown that in the neighbourhood of a local solution of (4.1)
their method generates the same points as Powell’s method. However, in' the latter

method a quadratic program must be solved in every iteration, whereas Hald and
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Madsen have to solve only a set of linear equations in the neighbourhood of a solution.
Therefore, the computational effort used per iteration with their method is normally

much smaller.

4.3 THE HALD AND MADSEN ALGORITHM FOR NONLINEAR ¢,

OPTIMIZATION |

The algorithm to be described in this section is based on the work of Hald and
Madsen (1985). It is a hybrid method combining a first-order method with an
approximate second-order method. The first-order method is a robust trust region
method which provides convergence to the neighbourhood of a solution. It is based on
linear model problems of the type (4.2). These are solved subject to the constraints of
the original problem (4.1) and a bound on the step length |h|. The latter bound
reflects the neighbourhood of the iterate xy in which the kth model function (see (4.2))
is a good approximation to the nonlinear € function. If the solution approached by
the first-order method is "singular” (see below) then a higher-order method must be
used in order to obtain a fast ultimate rate of convergence. Therefore a switc}E is made
to a’ quasi-Newton method that solves a set of nonlinear equations that necessarily
hold at a solution of (4.1). This method has superlinear final convergence. Several
switches between the first-order and the quasi-Newton method may take place. The .
reason for allowing this is that the latter method works only close to a solution, so if it
is started too early a switch back to the (more robust) trust region method is
necessary. Notice that the user of this algorithm is required to supply function values
and first-order derivatives, whereas the necessary second derivative information is
generated by the algorithm.

The algorithm is described in more detail in Appendix C, where the two

methods, namely, the first-order method (denoted Method 1) and the approximate
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second-order method (denoted Method 2) are presented and the switching conditions

between the two methods are given.

4.4 NECESSARY CONDITIONS FOR OPTIMALITY OF THE NONLINEAR €;

PROBLEM WITH NONLINEAR CONSTRAINTS
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