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Abstract

We present a novel and general technique applicablé to the optimization of large
microwave systems. Using sensitivity information obtained from a suitable Monte-Carlo
analysis, we extract possible decomposition properties which could otherwise be deduced only
through a detailed physical and topological investigation. The overall problem is
automatically separated into a sequence of subproblems, each being characterized by the
optimization of a subset of circuit functions w.r.t. variables which are sensitive to the selected
responses. The decomposition patterns are dynamically updated until a satisfactory solution
is reached. The partitioning approach proposed by Kondoh for FET modelling problems is
verified. The technique was successfully tested on large scale optimizations of microwave

multiplexers involving 16 channels, 399 nonlinear functions and 240 variables.
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I.INTRODUCTION

A serious challenge to researchers in microwave CAD areas is due to the size of
practical microwave systems. Existing CAD techniques, mature enough to handle systems of
ordinary size, generally balk at large circuits. The reasons for their failure include
prohibitive computer storage and CPU times required. A frequent frustration with large
scale optimization is the increased likelihood of stoppping at an undesired local optimum.
Other difficulties, especially in prototype and production tuning, are due to human inability
to cope with problems involving large numbers of independent variables to be adjusted
simultaneously to meet a specified response pattern over a wide frequency range.

Recently, FET modelling[1] and manifold multiplexer design [2] problems were solved
using appropriate decomposition schemes. The optimization problems were cleverly treated
by systematically or repeatedly selecting and adjusting various small sets of parameters and
responses until the system becomes acceptably operational. The success of these efforts
motivated us to pursue the generalization and automation of decomposition approaches for
microwave optimization problems.

The concept of decomposition has been a traditional mathematically based vehicle for
approaching large scale problems. Himmelblau[3] has an excellent collection of surveys from
the areas of mathematics, engineering, economics and management sciences. In the present
paper, we will be interested in such aspects of decomposition that are beneficial to circuit
optimization problems.

Decomposition methods used in mathematical programming theory usually assume
certain structures for the objective function and constraints. Theoretical investigations have
been performed for linear programming, nonlinear programming and minimax
optimizations[3-6].

In circuits and systems, diakoptic analysis, generalized hybrid analysis and network

tearing methods have been developed[7-13]. Important to those methods are circuit relations,



especially topological relations. The methods have been used for circuit analysis, design and
fault diagnosis[3,7-14].

Decomposition has also been an active subject in electrical power systems since such
problems easily result in thousands of variables and equations. Examples can be found in
optimal power flow [15,16], state estimation[17] and real and reactive power optimization
problems[18]. The decomposition patterns involved are obtained using both physical and
analytical investigations of the systems.

Microwave engineers have their own special difficulties. Thorough laboratory
experimentation has to be performed before using certain function structures assumed in
mathematical programming theory. They do not take advantage of topological analysis often
exploited in the areas of circuits and systems since microwave device models are oriented
more to physical than topological analysis. Unlike power systems, most microwave responses
are much more complicated and highly nonlinear. It is often difficult for microwave engineers
to analytically indicate possible decomposition patterns.

The state-of-the-art in large-scale optimization of microwave circuits is still device
dependent and based on heuristic judgement[1,2,19]. To our knowledge, there does not exist a
general and abstract theory describing a decomposition approach to microwave circuit
optimization not requiring particular physical or topological knowledge of the system.

In this paper, we present a novel technique applicable to the optimization of large
microwave systems. Using sensitivity information obtained from a suitable Monte-Carlo
analysis, we extract possible decomposition properties which could otherwise be deduced only
through a physical and topological investigation. The overall problem is automatically
separated into a sequence of subproblems, each being characterized by the optimization of a
subset of circuit functions w.r.t. variables which are sensitive to the selected responses. Our
suggested technique has been successfully tested on microwave multiplexers involving up to

16 channels and 240 variables.



In Section II, we describe the basic concepts of decomposition for circuit optimization
problems. Using these concepts, the partitioning approach for FET modelling problems
suggested by Kondoh[1] is verified. Section III illustrates the automatic determination of
suboptimiztion problems. An automated decomposition algorithm for large scale microwave
optimization is presented in Section IV. In Section V, the method is applied to the
optimization of microwave multiplexers. Interesting results demonstrating the whole
procedure of automated decomposition for a 5-channel multiplexer are depicted in illustrative

graphs. The results of optimizing a 16-channel multiplexer using our approach are provided.

II. THE DECOMPOSITION APPROACH FOR CIRCUIT
OPTIMIZATION PROBLEMS

Circuit Optimization Problems

Let = [d1 d2 ... dulT represent the system parameters. The circuit responses,
denoted as Fy(¢, w), k=1, 2, ..., np, are functions of variables ¢ and frequency w. Fig. 1 gives
a graphical explanation of different response functions for a general microwave system. In an
optimization problem for circuit design, the objective function usually involves a set of
nonlinear error functions fi(), j=1,2, ..., m. Typically, the error functions represent the
weighted differences between circuit responses and given specifications in the form

wuk(0)(Fr(d, ®) — Syk(w))
— wpk(@)(Fr(d, @) — Spx(w)) 1)
k€{1,2,...,np},
where Syk and Sy are upper and lower specifications, respectively. wyk and wyi are
weighting factors.

Suppose sets [ and J are defined as

124,2,.,n), )
JAa,2,.,m). 3)

The overall optimization problem, e.g., a minimax optimization, is



minimize max f(). (4)
&, i€l j€d

Description of the Decomposition Approach
In a decomposition approach, one attempts to reach the overall solution by solving a

sequence of subproblems. A typical subproblem is characterized by

minimize max f(9), (5)
o, €15 jEJ?

where I® and J® are subsets of I and J, respectively.

The basic idea for decomposition is to decouple a variable ¢; from a function fj if the
interaction between them is weak. A subproblem contains only the sensitively related
variables and functions. A proper arrangement of the sequence of different subproblems to be

solved is often important to ensure convergence and efficiency.

Sensitivity Analysis
We perform sensitivity analysis at a set of randomly chosen points ¢, € = 1,2, .... A

measure of the interaction between ¢; and fj is defined as

2

¢ 40
b3 (104
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where ¢;0 and f0 are used for scaling. Allthe S;,1i=1,2,..,n and j = 1,2, ..., m, constitute a

nxm sensitivity matrix 8. It is reasonable to conclude that ¢; and fj can be decoupled if Sjj is

very small.

Grouping of Variables and Functions

The examination of various interaction patterns between ¢;, i € I, and fj, j € J, results
in the breakdown of all variables ¢ into p groups identified by index sets Iy, Iy, ..., I, and all
functions f into q groups identified by sets J1,Jg, ..., J4. We have

I=Tul U.. Ul @)



and
J=J1UdaU...Ud4 . €))
The partitioning of ¢ or f can be achieved either manually or automatically. The
manual procedure corresponds to the manual determination of variable groups and function
groups using a priori knowledge. Such knowledge is typically obtained through extensive
laboratory experiment and an excellent understanding of the particular device. The
automatic procedure corresponds to the computerized partitioning of ¢ or f based upon the
sensitivity matrix S. The partitioning of ¢ and f can be performed 1) both manually, 2)
manually for ¢ and automatically for f, 3) automatically for ¢ and manually for f, 4) both
automatically.
As an example for manual partitioning of f, we consider a N-channel multiplexer.
The common port return loss and channel insertion loss responses associated with the same
channel can be grouped together since their behavior is similarly affected by variables ¢.
Therefore, we have N groups of functions, i.e., g=N. Jp contains indices of error functions

related tochannel ¢,¢ = 1,2, ...,N.

A Procedure for Automatic Partitioning of Variables ¢

Suppose the function groups have been determined, i.e., J has been decomposed into

Jde,© = 1,2, ...,q. We define a nxq matrix C whose (i, €)th component is

Ce= 2 WS, ©)
j€d ¢

where wj; is a weighting factor. A very small value of an entry in the C matrix, say, Cie,
implies that the ith variable and the ¢th function group are weakly interconnected.

Let Cgve represent the average value of all components in the C matrix. For a given
factor A, A = 0, the matrix is made sparse such that Ci¢ is set to zero if it is less than AC4y.. By
making C sparse, insensitive variables are eliminated and weak interactions between

variables and function groups are decoupled.



Two variables ¢; and ¢; belong to the same group if they interact only with the same
groups of functions, i.e., if the ith and the jth rows of C have the same zero/nonzero pattern. A
thorough computerized checking of the C matrix results in the automatic determination of

indexsets I,k =1,2,...,p.

An Ilustrative Example of Matrix C

Consider the fictitious relations between variables and function groups shown in Fig.
2(a). The functions f have been arranged into 5 groups. The C matrix (already made sparse)

is

[ 22. 100. 32. 0. 0. A
0. 100. 0. 0. 0.
0. 100. 0. 0. 0.
0. 0. 83. 100. 0.
0. 0. 0. 0. 100. . 10)
0. 0. 100. 86. 0.
0. 0. 100. 0. 0.
0. 78. 100. 55. 0.
L 100. 0. 0. 0. 0. J

As seen from Fig. 2(a), ¢2 and ¢3 both affect only the 2nd function group. In the C
matrix, rows 2 and 3 both have only one nonzero located at the 2nd column. Therefore,
variables ¢g and ¢g are grouped together. Similarly, variables ¢4 and ¢g belong to the same
group. The resulting index sets for variable groups are Iy = {9}, Is = {2, 3}, I3 = {7}, I3 = {5},
I5 = {4, 6}, Ig = {1} and I; = {8}. The index sets have been ordered such that the kth variable
group correlates with no more function groups than the (k + 1)th variable group does, k = 1,

2, ..., 6. Such an arrangement is made to keep subsequent description simple.



Decomposition Dictionary
To manipulate directly with groups of variables and groups of functions, we construct

a pxq dictionary decomposition matrix D. Define the (k, €)th component of D as

A
Do = Z Z (Wijsij) (11)
i1, jed,
S ¢,

iEIk

If Dye is zero, variables in the kth group are decoupled from functions in the €th group.
Otherwise if Dge # 0, we say that ¢, i€, and f}, j€Je, are correlated. The decomposition
dictionary gives a clear picture of the correlation patterns between groups of variables and
functions, facilitating the automatic determination of suboptimization problems. The ideal
dictionary is a diagonal matrix where a subproblem simply corresponds to a diagonal
element. In this case, only one variable group and one function group is involved in a
subproblem. If a diagonal dictionary can be obtained without artificially making C sparse
(i.e., using sparse factor A = 0), then the system is completely decomposable[20]. For a

completely decomposable system, different subproblems can be calculated in parallel.

An Illustrative Example for Constructing the Decomposition Dictionary

Consider the previous example with the resulting C matrix defined in (10). According
to the index sets I, k = 1, 2, ..., 7, the decomposition dictionary D can be obtained from C by
adding rows 2 and 3, and adding rows 4 and 6, respectively. The relations between groups of

variables and functions are shown in Fig. 2(b). The resulting dictionary is



( 100. 0. 0. 0. 0. )
0. 200. 0. 0. 0.
0. 0. 100. 0. 0.
0. 0. 0. 0. 100. R 12)
0. 0. 180. 180. 0.
20. 100. 30. 0. 0.
0. 70. 100. 50. 0.
\ /

where each entry has been rounded to multiples of 10.

Sensitivity Analysis and Decomposition for FET Device Models

Through extensive experiment on practical FET devices, Kondoh[1] summarized 8
suboptimization problems which can be repeatedly solved to yield a FET model with improved
accuracy. The equivalent circuit is shown in Fig. 3. The parameter values of a reference point
¢0 are listed in Table . We perform sensitivity analysis at 10 randomly chosen parameter
points in the 10% neighborhood of 0. The function fj used in (6) is defined as the weighted
difference between the calculated and the measured values of the modulus or the phase of a
particular S parameter. Functions associated with the same S parameter are grouped
together. Table II shows the C matrix of (9) before being made sparse, indicating strong as
well as weak interconnections between each individual parameter and different groups of
functions. Table III provides an example of the decomposition dictionary calculated and
normalized from Table II. Table III yields 8 subproblems which agree with and further verify
the decomposition scheme proposed in [1]. When the C matrix is made sparse, certain entries,
whose values are only slightly less than the dominant ones, are also set to zero. Therefore, as
mentioned in [1], repeated cycling and careful ordering of the 8 suboptimizations are
necessary. The feasibility of computerized automatic decomposition is demonstrated by this

example.
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[II. AUTOMATIC DETERMINATION OF SUBOPTIMIZATION PROBLEMS

The Reference Function Group

Usually, the decomposition dictionary is not diagonal. A suboptimization often
involves several function groups and several variable groups. Among the function groups
involved, there is a key group which we call the reference group. Such a group typically con-
tains the worst error function. The reference function group is used to initiate a subproblem

as described in the subsequent text.

Candidate Groups of Variables

Suppose the index set J¢ indicates the reference function group. The candidate groups
of variables to be used for the suboptimization are those which affect fj, j € J¢.

In the decomposition dictionary, the £th column associates with the reference function
group. Rows having a nonzero in the £th column are candidate rows, each corresponding to a
candidate variable group. Take Fig. 2(b) as an example. Suppose that the function group
associated with index set Jg is the reference group, i.e., £=2. The candidate groups of
variables are Ig, Ig and I7 since they correlate with the reference function group.
Correspondingly, in the D matrix of (12), rows 2, 6 and 7 are candidate rows since they all

have a nonzero in the 2nd column.

Determination of a Suboptimization Problem

An automatic procedure for the determination of IS and J° for the suboptimzation of
(5) has been developed. Suppose J¢ indicates the reference function group. For a selected
candidate variable group, e.g., the one corresponding to set Ix, the index set J° indicates the
union of all function groups which correlate with variable group k. I° identifies variables in
the kth group, as well as all other variables which correlate with functions only within fj, j €
J8. Also, IS excludes variables not correlating with any active functions in fj, j € J°. A function

fis said to be active if
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f> 0.8My when M¢e>0
(13)
f>125Mf when Me<O0,

where

A
Mf = ma)S( fj. (14)
j€d

Priority of Candidate Groups of Variables

It can be seen that a pair of (I%, J%) associate with a pair of (I, J¢). For a selected
reference function group, each candidate variable group leads to a subproblem. The sequence
of subproblems used to penalize fj, j € J¢, are determined by the priority of all resulting
candidates.

Since each candidate determines the function set J° for a suboptimization, the priority
of the candidate is based upon the pattern of error functions it will affect, i.e. patterns of fj,
j€JS5. Firstly, the fewer the number of function groups in J°%, the higher the priority.
Secondly, the worse the overall error functions in J%, the higher the priority. The overall error

functions in J® are ranked by the generalized least pth function (GLP)[21] as
ol
M, E@MYHT i M, =0
GLP = [ JeK (15)
0 ifM, =0,
where Mg was defined in (14) and

ifM, >0, thenK:{i|fj20,j€Js} and q =p
(16)
ifM, <0 thenK = J° andq = —p.

Typically, we choose p = 2.
The priority of candidate variable groups can be similarly determined in the
decomposition dictionary. The fewer the number of nonzeros that exist in a candidate row,

the higher the priority. For two candidate rows containing an equal number of nonzeros, a
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higher priority is given to the candidate having a larger value in its generalized least pth

function.

An Example for Deciding on a Subproblem and Candidate Priority

For the example of Fig. 2, suppose that the maximum error functions within each of
the 5 function groups are [3.8 4. 1. -1. 2.]. Suppose that we choose the worst group, i.e.,
group 2, as the reference function group. According to our previous discussions, the candidate
variable groups are Iy, Ig and I7. I has the highest priority since it affects fewer (i.e. only one)
function groups than Ig or I7 does (I and I7 both affect three function groups). To rank the
priority between candidates I and I7, we compare the overall error functions they will affect.
The functions affected by variables in Ig (or I7) are £}, j €45 = J; U Jg U J3 (or J5 = Ja U J3 U
J4). Ig has a higher priority than I since the overall error functions in J; U Jg U J3 are worse
than thatinde U J3 U J4.

Correspondingly, in the decomposition dictionary of (12), rows 2, 6 and 7 are
candidates. Row 2 has the highest priority since it contains fewer nonzeros than others. Row
6 has the second highest priority since its GLP value is obviously larger than the GLP value
for row 7.

To formulate a suboptimization problem, i.e., to decide I* and J%, we choose a pair of
(I, Ip), e.g., candidate variable group I and reference function group J2. The index set J° =
J1 U Jg U J3. The variable index set I® includes Ig (indicating the candidate variable group),
as well as Ij, Iy and I3 (indicating all other variables affecting functions only within J%).
Further, I3 can be excluded from I® since variables in I3 do not affect active functions in J*.

Therefore, we have I = Ig U I; U I5.

Circuit Responses and Sample Frequencies for a Subproblem

When a subset of error functions fi(}), j € J°, are included in a subproblem, the

necessary circuit response functions Fy(d, wp), a € {1, 2, ..., nf} and frequency points wy,
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b€ {1, 2, ..., ng}, should be selected for circuit simulation programs. This is accomplished
using a coding scheme representing the one-to-one correspondence between j and (a, b). We
define weighting factor matrices Wy (for upper specification) and Wy, (for lower specification).
Both matrices are np by n,,. The (a, b)th component of Wy and Wy, are the weighting factors
wya(op) and wia(wy), respectively, as defined in (1). wya(wp) or wa(wp) is zero if no upper or
lower specification is imposed on Fu(¢, wp). The coding scheme relating the index of fj to the
indices of nonzeros in Wy and Wy, are constructed by systematically scanning through Wy

and then W, respectively.

IV. AN AUTOMATIC DECOMPOSITION ALGORITHM FOR
CIRCUIT OPTIMIZATION
An automatic decomposition algorithm for optimization of microwave systems has

been developed and implemented. The algorithm can decide when to update the sensitivity
matrix and the decomposition dictionary. The formulation and the sequence of
suboptimization problems are dynamically determined. The degree of decomposition is
reduced as the system converges to its overall solution. As a special case, if all variables
interact with all functions, our approach solves only one subproblem, this being identical to
the original overall optimization.
Step 1 Initialize sparse factor A. Calculate the sensitivity matrix S and the

decomposition dictionary D. Calculate f. |
Comment The initial sensitivity matrix can be obtained from a suitable Monte-Carlo

sensitivity analysis performed off-line. All error functions are calculated in this

step.

Step 2 Define ¢ such that

fworst = max f; = max fj.
j€de j€d



Comment

Step 3

Comment

Comment

Step 5

Comment

Step 6

Comment
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The ¢th function group contains the worst response. Such a function group will
be frequently chosen as the reference group to be penalized.

For the given ¢, determine the sequence of candidate rows in D. Rank the
candidates in decreasing priority. Setk = 0.

The ¢th function group is the reference group to be penalized. All variable groups
correlating with the €th function group are considered as candidates.

Ifk = O then set k to the row index of the first candidate, otherwise set k to the
row index of the next candidate. If such a candidate does not exist then go to
Step 8.

The candidate groups of variables are sequentially selected. Each entry into this
step results in a selection of a candidate with a lower priority than the current
one.

Define IS and J° using the current k, €. If I and J® are identical with their

previous values then go to Step 4. Solve the suboptimization problem

minimize max f() .
d;, i€ jed®

Terminate the optimization if

max fj > N fyorst -
jeds

A subproblem is formulated and solved in this step. By checking the functions
not covered in the present suboptimization, any significant deterioration in the
overall objective function is prevented. The factor A'canbe, e.g., 1.2

IfI® = I and J° = J then stop.

The program terminates following the completion of an overall optimization
which is considered as the last subproblem.

Calculate f. Calculate

fworst = max fj .
j€d



Comment

Step 8

Comment:
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Go to Step 5.
An overall simulation is performed. By going to Step 5, the current reference
function group can be continuously penalized in the next subproblem even if this

group does not include the worst error functions.

If

max f] < max fJ
j€JS j€d

then go to Step 2. If A = 0 then stop otherwise, update S, reduce A, update
dictionary D and go to Step 3.

When the selection of a candidate fails, a new sequence of candidates will be
defined by going to Steps 2 or 3. By reducing the sparse factor A, the degree of
decomposition is reduced as the overall solution is being approached. The
reference function group will be readjusted if the existing one does not contain
the maximum error function. For completely decomposable problems, the
terminating conditions in Step 6 will not be satisfied and the program will exit

from Step 8.

V. LARGE SCALE OPTIMIZATION OF MULTIPLEXERS

The automatic decomposition technique was tested on the optimization of microwave

multiplexers used in satellite communications. Specifications were imposed on the common

port return loss and individual channel insertion loss functions. Each suboptimization was

solved using a recent minimax algorithm[22]. Until our recent paper on multiplexers(2], the

reported design and manufacturing of these devices were limited to 12 channels[23-27].

A contiguous band 5-channel multiplexer was specifically optimized to illustrate the

novel process of automatic decomposition, as shown in Fig. 4. Functions associated with the

same channel are grouped together. Variables for each channel include 12 coupling

parameters, input and output transformer ratios (n; and ng) and the distance measure from
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the channel filter to the short circuit main cascade termination. The overall problem involved
75 variables and 124 nonlinear functions. As the parameters approached their solution, weak
interactions between variables and functions were also considered. The final subproblem was
the overall optimization.

We also tested our approach on a 16-channel multiplexer involving 240 variables and
399 nonlinear functions. The responses at the starting point is shown in Fig. 5. Only 10
suboptimizations were performed before reaching the response of Fig. 6. Then a full optimi-
zation is activated resulting in all responses satisfying their specifications as shown in Fig. 7.
A comparison between the optimal design with and without decomposition is provided in
Table IV. When used to obtain a good starting point for subsequent optimization, the
decomposition approach offers considerable reductions in both CPU time and storage. The
feasibility of obtaining a near optimum for large problems using computers with memory
limitations is observed from the table. However, when close to the desired solution, the sizes
of the subproblems may approach those of the overall problem. In this case, the performance
of optimization does not differ significantly with or without decomposition, unless the original

problem is almost completely decomposable.

VI. CONCLUSION

We have presented an automated decomposition approach for optimization of large
microwave systems. Compared with the existing decomposition methods, the novelty of our
approach lies in its generality in terms of device independency and its automation.
Advantages of the approach are 1) a very significant saving of CPU time and/or computer
storage and 2) efficient decomposition by automation. By partitioning the overall problem
into smaller ones, the approach promises to provide a basis for computer-assisted tuning. It
contributes positively towards future general computer software for large-scale optimization

of microwave systems.
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TABLEI

PARAMETER VALUES FOR ¢° FOR THE FET CIRCUIT MODEL (from [1])

i Parameter ¢; Unit Value for ¢;
1 gm mS 50.0

2 T ps 3.0

3 Cgs pF 0.25
4 Cas pF 0.08
5 Cag pF 0.025
6 Rg Ohm 4.0

7 Rg Ohm 4.0

8 Rqg Ohm 3.0

9 Rgs Ohm 250.

10 R; Ohm 0.2
11 Lg pH 60.0
12 Lg pH 25.0

13 Ls pH 15.0
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TABLE II

THE C MATRIX FOR THE FET MODEL

(a) FUNCTION GROUPS INVOLVING THE ENTIRE FREQUENCY BAND

(1.5 GHZ TO 26.5 GHZ)

Function Groups

Variables

S11 Entire S91 Entire S19 Entire S99 Entire

Freq. Band Freq. Band Freq. Band Freq. Band
m 18.55 100.00 87.55 68.33
Cqgs 100.00 89.74 67.98 62.25
Cas 4.88 67.74 45.73 100.00
Cag 4.24 48.88 100.00 81.27
Rs 35.53 37.14 100.00 5.88
Ras 17.44 97.68 70.51 100.00

Each row of the table has been scaled.




22

TABLE II (continued)
THE C MATRIX FOR THE FET MODEL
(b) FUNCTION GROUPS INVOLVING ONLY THE UPPER HALF FREQUENCY BAND

(14.0 GHZ TO 26.5 GHZ)

Function Groups

Variables

S11 Upper Sg1 Upper S12 Upper S92 Upper

Freq. Band Freq. Band Freq. Band Freq. Band
T 31.91 100.00 36.61 59.31
Rg 100.00 50.67 24.87 29.89
Rg 34.65 74.31 85.85 100.00
R; 100.00 65.63 88.43 39.53
Lg 100.00 87.85 57.16 37.44
Lg 9.99 97.88 61.78 100.00
Lg 62.94 31.31 100.00 21.99

Each row of the table has been scaled




23

TABLE III
NORMALIZED DECOMPOSITION DICTIONARY D

(a) CORRESPONDING TO THE SENSITIVITY ANALYSIS OF TABLE II(a)

Function Groups

Variable
Groups S11 Entire So1 Entire S19 Entire S99 Entire
Freq. Band Freq. Band Freq. Band Freq. Band
Rgs, Cas 0.00 0.00 0.00 1.00
Cqgs 1.00 0.00 0.00 0.00
Cag, Rs 0.00 0.00 1.00 0.00
Sm 0.00 1.00 0.00 0.00

(b) CORRESPONDING TO THE SENSITIVITY ANALYSIS OF TABLE II(b)

Function Groups

Variable
Groups S11 Upper S91 Upper S192 Upper S99 Upper
Freq. Band Freq. Band Freq. Band Freq. Band
R4, Lg 0.00 0.00 0.00 1.00
Rg, R, Lg 1.00 0.00 0.00 0.00
Lg 0.00 0.00 1.00 0.00

T 0.00 1.00 0.00 0.00
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TABLE IV

COMPARISON OF 16-CHANNEL MULTIPLEXER OPTIMIZATION
WITH AND WITHOUT DECOMPOSITION

Purpose Reduction in Criteria for With Without
of Objective Comparison Decomp. Decomp.
Optimizationt  Function

from CPU time * 99 250
to provide a 13.46
good starting working space 2,197 483,036
point for neededf
further opti-
mization to number of
2.4 suboptimizations 10 -
from CPU time * 651 553
to obtain a 13.46
near optimum working space 73,972 483,036
solution needed?
to number of
0.32 suboptimizations 51 —
from CPU time * 1045 1289
to obtain 13.46
optimum working space 483,036 483,036
solution needed?
to number of
-0.09 suboptimizations 11 —

different sparse factors A have been used to control the degree of decomposition for the
three different purposes.

seconds on the FPS-264 mainframe.

of machine memory units (one unit per real number) required by the minimax
optimization package[22].
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Fig. 1 A general representation of multi-input and multi-output microwave system.

Fi, k = 1,2, ..., np are responses being measured, monitored or used as outputs
subject to design specifications. Different types of responses (e.g., return loss,
insertion loss, S parameters) may exist at the same output port.

(a) System representation.

(b) Responses corresponding to each output port.



Fig. 2

26

4 @2 ?3 o o5

jed j€d
) e 1%
o
%9
(a)
@, oM b b
ielg i€ly i€lg i€l,
o
Y
——Pfj '—bfj
J€dq j€ds

iel, i€l i€lg

A fictitious example showing only the strong interconnections between variables
and function groups.

(a) System configuration corresponding to matrix C.

(b) System configuration corresponding to matrix D.
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Return and insertion loss responses of the 5-channel multiplexer for each
suboptimization. The 20 dB specification line indicates which channel(s) is to be
optimized in the next subproblem. The variables to be selected are indicated in
the graph, e.g., 35 representing coupling M3s, d representing the distance of the
corresponding channel filter from the short circuit main cascade termination.
The previously optimized channels are highlighted by thick response curves.

(a) Responses at the starting point.

(b)-(k) Responses for each suboptimization.

(€) Responses at the final solution.
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