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Abstract A flexible and effective algorithm is proposed for efficient optimization with
integrated gradient approximations. It combines the techniques of perturbations, the
Broyden update and the special iterations of Powell. Perturbations are used to provide an
initial approximation as well as regular corrections. The approximate gradient is updated
using Broyden’s formula. The special iterations of Powell are utilized to generate strictly
linearly independent directions. A modification to Broyden’s formula is introduced to exploit
possible sparsity of the Jacobian. Utilizing this algorithm, powerful gradient-based nonlinear
optimization tools for circuit CAD can be employed without the effort of calculating exact
derivatives. Computational efficiency is greatly improved as compared to estimating
derivatives entirely by numerical differentiation. Part I describes the theoretical aspects of
the algorithm and some test problems. Implementation and examples of practical

applications are presented in Part IL.
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I. INTRODUCTION

Many powerful algorithms for nonlinear optimization have been developed and
applied to circuit CAD problems. For example, algorithms for linearly constrained €1 and
minimax optimization have been described by Bandler, Kellermann and Madsen [1],[2]. One
difficulty in extending their application to a wide range of practical problems, however, is
that exact gradients of all functions with respect to all variables must be made available. In
many situations, either an explicit expression of the exact gradient is not available or the
actual implementation of such an expression is very tedious and time-consuming. With only
the function values available, as is the case for typical circuit CAD packages, one usually
resorts to the method of perturbations (numerical differentiation) for the gradient. However,
except for rather simple problems, the computational labor for estimating gradients entirely
by perturbation is very expensive.

In this paper, we propose a flexible and effective approach to gradient approximation
for nonlinear optimization. It is a hybrid method which utilizes perturbations, the Broyden
update [3] and the special iterations of Powell [4]. Perturbations are used to provide an initial
approximation and some subsequent corrections. The Broyden rank-one formula has been
used in conjunction with the special iterations of Powell to update the approximate gradients.
See, for example, Madsen [5] and Zuberek [6]. Such an update does not require extra function
evaluations but its accuracy may not be satisfactory for some highly nonlinear problems or for
a certain stage of the optimizer. In our algorithm, perturbations are introduced in a flexible
manner to provide regular corrections. A suitable compromise between accuracy and
computational labor can be achieved for a particular application. We also propose a
modification of the Broyden update which incorporates a knowledge, if available, of the
structure of the problem (e.g., one that has a sparse Jacobian).

Our presentation is organized into two parts. In Part I, the theoretical aspects of the
algorithm are described and its performance is demonstrated by some test problems. In Part

I1, which is our companion paper [7], the practical impact of the new algorithm is illustrated



through three important implementations with applications to robust FET modelling, worst-
case tolerance design of a microwave amplifier and efficient multiplexer optimization. The

new algorithm is shown to be efficient and effective in handling a large variety of problems.

II. ESTIMATING THE GRADIENT BY PERTURBATIONS

The first-order derivative of fj(x) with respect to x; can be approximated by

afj(x) _ fj (x + hei) - fj(x)

X, h ’

1

(1)

where e; is a vector with zero entries except that the ith component is 1. The accuracy of
approximations of this type can be improved by decreasing the magnitude of h and/or by
averaging the results of a two-sided approximation, i.e., using both positive and negative
perturbations. This method is very reliable but the labor involved grows in proportion to the
dimension of the problem. In actual implementation, we use perturbations to obtain an
initial approximation at the starting point unless the user can provide such an initial
approximation. During the iteration of optimization, with prescribed regularity,

perturbations may also be used to correct the approximate derivatives if so desired.

III. THE BROYDEN UPDATE
It has been shown [2] that for quadratic functions the computational effort is smaller
when the Jacobians are generated by the Broyden rank-one updating formula rather than
approximated at each step by perturbations. Although such an advantage can not be proved
for a general problem, the Broyden formula still provides an efficient alternative for
approximating derivatives. Having an approximate Jacobian Gk at a point xi and the

function values at xi and (xy + hy), we obtain
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The new approximation Gy +1 satisfies the following equation

fx, +h) - fx) =G, h_. (3)



In other words, G +1 provides a perfect linear model between two points xyx and (xk+ hy).
Notice that if xi and (xx+ hy) are iterates of the optimization the Broyden formula does not
require additional function evaluations. Some difficulties in the application of the Broyden
formula, however, have been reported (see, for example, [4],[5] and [6]).

(1) If some functions are linear in some variables and if the corresponding
components of hy are nonzero, then the approximation of constant derivatives are updated by
nonzero values. Take a simple example. Let fj = x12+2x3, x = [x1 x2 x3]T and the gradient
fi'(x) = [g1 82 g3lT. Two components of the gradient, namely gg=0 and g3=2, are constants
and can be determined accurately by perturbations. g1 is the only component that needs to be
updated. Suppose that x; = [1 1 1]T, hi = [0.5 0.5 0.5]T and a perfect estimation of fj'(xy) is
given by [2 0 2]T. The approximation of fj' (xk + hy), as updated by the Broyden formula, would
be [2.167 0.167 2.1671T (the true value is [3 0 2]T).

(2) Along directions orthogonal to hy the Jacobian is not updated:

G, . ,p =G.p, forpThk =0. (4)

To overcome these difficulties, we devise a "weighted" update and adapt the special

iterations of Powell [4].

IV. WEIGHTED BROYDEN UPDATE
In this method, we update the Jacobian matrix on a row-by-row basis. The jth row
vector of the approximate Jacobian, denoted by (g, is an approximation to fj'(xk), the

gradient of fj. Suppose that we know the Hessian of fj and denote it by Hj, then
f'j(xk +h)= f’j (x )+ Hj x)h, . (5)
Analogously to (5), we can devise an update formula to obtain an approximation to fj'(xk + hy)
by
&)y 1 = &) +aH;x)h, . (6)

If we choose the coefficient a as



T
o= fix, +hy) —£(x) - @) by )
T
hTH, b,

then the linear model as given by (3) will be preserved, namely
£z, +hy) - £(x) = (gj)g+1 h, . (8)
In practice we are very unlikely to have access to the Hessian of f;. Even so, two basic
facts are obvious: the Hessian of a quadratic function is constant and if f; is linear in x; then
the ith row as well as the ith column of the Hessian contain only zeros. Hence, we propose the

use of a constant diagonal matrix
Wj = diag [w1j wnj], Wi > 0. 9)

This results in a weighted Broyden update as follows.

fx, +hY) —£,6x) - @, h,

@)1= &)yt T - (10)
95 My
where
_ _ T
q; = Wj h = [lehlk WS h 1°. (11)

The weights wj; provide a measure of the linearity of fj. If fj is linear in x;, we set
wi;=0. If fj is nearly linear in x;, we assign a small value to wjj. It is clear from (10) that only
the relative magnitude of the weights is important, not their absolute values. Consider the
example we have used in the previous section, namely, fj= x;2 + 2x3. We set wo;=w3;= 0 and
wij=1. The approximate gradient given by (10) is [2.5 0 2]T, compared to the result given by
(2), namely [2.167 0.167 2.167]T, and the true value [3 0 2]T. The assignment of weights
requires some knowledge of the functional relationship of fj(x) to determine W;. Such a
knowledge may come from experience or may be found by performing a few perturbations.
For instance, in circuit design optimization, it may be known that some parameters have
little influence on the performance function over a particular frequency or time interval. An

adaptive method for finding Wjis open for investigation.



V. POWELL’S SPECIAL ITERATIONS

The Broyden update is a rank-one method. This means that the approximate
Jacobian is not updated along directions orthogonal to hy, as shown in (4). If some
consecutive steps of optimization are collinear, the updating procedure may not converge.
Powell [4] suggested a method that ensures the steps taken are "strictly linearly
independent”. This is accomplished by some special iterations which intervene between the
ordinary iterations of optimization. The increment vector of such a special iteration is not
calculated to minimize the error functions, instead it is set to a value that is intended to
improve the accuracy of the approximation of first-order derivatives. The algorithm for

computing such an increment vector, as derived by Powell [4], can be found in the Appendix.

VI. AHYBRID APPROXIMATION ALGORITHM

Given a starting point x0 for optimization, an initial approximate Jacobian is either

provided by the user or computed using perturbations. The perturbation method may also be

used with prescribed regularity, say, at every pth iteration of optimization. If this is the case,

the Broyden update with or without weights, depending on whether the necessary knowledge

of f(x) is available, is employed between perturbations. If perturbation (during optimization)

is not desired the Broyden formula will be used throughout the optimization. In both cases,

special iterations are introduced in conjunction with the Broyden update. In our actual

implementation, a special iteration is skipped provided that the changes in the functions

agree fairly well with the linear prediction by the approximate derivatives. This is considered
to be true if

I fj x, +h)— f]. x) - Gh [<0.1] fj x, +h)- fj &I - 12)

Obviously, the purpose of this provision is to avoid unnecessary computations. This

hybrid method, with its flexibility, will enable us to accommodate a large variety of problems

whereby a better compromise between computational labor and accuracy can be achieved.



We have implemented our algorithm in a subroutine which calls a user-supplied
routine for function values (e.g., a circuit simulation routine), carries out the approximation
and returns the approximate gradient to an optimizer. It is independent of and transparent to
the optimizer and the simulator. The optimizer sees only a routine that provides both function
values and gradient. The simulator, on the other hand, sees an optimizer not requiring a
gradient.

Some sophisticated optimizers employ distinct stages of optimization, for example, the
2-stage minimax and € optimizers in [1] and [2]. Usually a particular strategy is devised to
achieve fast convergence near the solution where an approximate gradient of better accuracy
may be desired. Our implementation allows different schemes of approximation to be used at

different phases of optimization.

VII. NUMERICAL RESULTS
A large variety of problems have been solved using our new algorithm. The results
have clearly demonstrated the effectiveness and efficiency of the algorithm. Its impact on
practical microwave circuit optimization is best illustrated through applications to robust
FET modelling, worst-case analysis and multiplexer design. Due to the size and complexity of
these implementations they are presented in detail in Part II of our paper. In this section we
will discuss some test problems. In the following, examples MM1 to MM7 are minimax

problems in which we have to

minimize max {fj(X)} ,
X j

13)
where x is the vector of variables and fj, j=1,...,m, are a set of nonlinear functions. Examples

€11 to €16 are €1 problems in which we have to

minimize £, (14)

x j=1



Comparisons of the computational effort for these examples using gradient
approximation versus estimating derivatives entirely by perturbations are given in Tables I,
IT and III.

Problem MM1 We consider a well-established problem of a two-section transmission-line
transformer as shown in Fig. 1. The reflection coefficient of the transformer is sampled at 11
normalized frequencies w.r.t. 1 GHz, namely, {0.5, 0.6, ..., 1.4, 1.5}. Madsen and Schjaer-
Jacobsen [8] have shown that this is a singular problem when the characteristic impedences
71 and Zg are taken as variables while lengths £; and 3 are kept constant at their optimal
values ¢4, which is the quarter wavelength at the center frequency. Fig. 2 shows the minimax
contours and illustrates the solution reported in [2], which is obtained using exact
derivatives. If the derivatives were to be estimated by perturbations, 24 function evaluations
would have to be performed. Using our gradient approximation, we obtained the solution, as
shown in Fig. 3, after 18 function evaluations.

Problem MM2 It has also been reported in [2] that a regular minimax problem can be defined
by choosing Z; and ¢; as variables. The solution using exact derivatives is shown in Fig. 4.
Fig. 5 shows the solution obtained using the approximate gradient algorithm.

Problem £;1 We formulate an £; problem in which the reflection coefficient of the two-section
transformer at the optimal point was taken as a measurement from which we attempt to
identify the values of Z; and Zg. The solutions obtained with the gradient estimated entirely
by perturbations and by our new method are illustrated in Figs. 6 and 7, where 42 and 27
function evaluations were required, respectively.

Problems MM3 and MM4 Two examples of multi-cavity filter design [9] are considered. The

reflection coefficient in the passband is minimized and the transducer loss over the stopband
is maximized. The couplings and transformer ratios of the filters are optimized. Example
MMS3 is a 4th order filter having 4 variables and MM4 a 6th order filter having 6 variables.

Problems MM5, MM6 and MM7 This is a problem proposed by Brent [10] for which the

Newton-Raphson method is not globally convergent. It is to solve the system of 2 nonlinear



equations

4(x1+x2)=0, (15)

2 2 —
x —x2)(x1—2) +x2)+3x1+5x2—0.

1
Three starting points were used, namely,
2.0 ]

[2.0] [2.01
201’ lool’l1.0

Problem ¢;2 This is a data-fitting problem [5] in which ey is approximated by a third-order

rational function over the interval —1< y < 1. The error functions are

X, +X,¥.
17 % v
£0x) = ! —el,

2 3
1 +x3yj+x4yj + x;

(16)

y==1401G-1,j=1,.,2L

Problem ¢33 This is a nonlinear £; modelling problem due to El-Attar et al. [11] of finding a

third-order model for a seventh-order system involving 6 variables and 51 functions.

_ —x.t. —x .t
fj(x) = x. e 2Joos(x3tj+x4)+x5e 63—yj,

1 -t -2 1 -3 3 -—15t — 2.5t am
y. =—e J—e T+ 3¢ T+ 5 ¢ Jsin(7tj)+e Jsin(5tj),

t.
J

0.1G -1),j=1,..,51

The solution of this problem using exact derivatives has been reported in [1].
Problem ¢4 This example, due to El-Attar et al. [11], involves finding an €; solution to the

set of nonlinear equations
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_ 2 2 2
fl(x) = x1+x2+x3-—1,
L2 2 2
f2(x) = x1+x2+(x3—2) ,

f3(x) = X, +Xy+ X, - 1, 18)

f4(x) = x1+x2—x3—1,

£ = 2x5 + 6x2 + 2(6%, — x, + 1%,
f,®) = x2 — 9%,
The solution, as reported in [1], is singular.

Problem €15 The problem of fault location is considered for a mesh network consisting of 20
elements. The two faulty elements deviate from their nominal values by 50 percent and
tolerances of 5 percent are associated with the other elements. Using measurements on the
circuit with a single excitation, the actual faults are to be identified. More detail can be found
in[1].
Problem ¢;6 In this paper, we have proposed a weighted Broyden update in order to exploit
possible special structure of the Jacobian of a system such as sparsity. A class of equations

has been constructed by Broyden [3], namely

fl(x) =@ - 0.5x1)x1 + Zx2 -1,
= — — — 1= - 19
fj(x) X 3-0.5 xj)xj+2xj+1 1, j=2,3,...,n-1, (19)

f®=x ,-B-05x)x —-1.
In this tridiagonal system the function fj is linear in xy for all k #j. According to the discussion
in Section IV, we can define a set of weights, in which w;j=1 and wy;=0 for k#j, for the
update formula (10). We have solved this problem for n=5, 10 and 20. From the results
shown in Table III, it is clear that the weighted update is more efficient than the original

Broyden formula and the improvement becomes more significant as the size of the system
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increases. In Part II the use of weights is further illustrated through practical applications

which are far more complicated.

VIII. CONCLUSIONS

A new algorithm for gradient approximation has been presented. Methods of
integrating such an algorithm with powerful gradient-based optimization techniques have
been proposed. The effectiveness and flexibility of the new methods have been illustrated by
solving a large variety of problems. It has also demonstrated significant improvement in
computational efficiency compared to the more conventional method of perturbations. The
use of this method facilitates application of advanced optimization tools to a broader range of
practical problems where analytical evaluation of partial derivatives is either unavailable or
very complicated and tedious. Implementations of significant interest to microwave circuit

engineers are described in Part IT [7].
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APPENDIX

We have used Powell’s special iterations [4] to improve the accuracy of the gradient
approximation. This is achieved by applying the Broyden update along a sequence of
directions that satisfies a “strict linear independence condition” [4]. The algorithm for
computing the increment vector for a special iteration, as derived by Powell [4], is shown as
follows.

We denote the increment vector of the kth iteration by hi. A sequence of nXn
(nbeing the number of optimization variables) orthogonal matrices D is constructed as
follows. Dj is set to an identity matrix. At each iteration Dy is revised to yield Dy 4.
Following the notation of Powell, we use n1T, noT, ..., n,T for the rows of Dy. At a special

iteration, the increment vector hy is set to a multiple of the first row vector of D:
(A1)

h =Ayn,,
where Ax>0 is a parameter controlling the step size of hy. Usually Ay is set to the step size
used for the latest ordinary iteration.

It remains to be described as how to revise the matrix Dy. We use {;T, {27, ..., ¢, T for

the rows of Dy +1.

For a special iteration, we simply let

¢=n,,, i=1,.,n-1,

i (A2)
¢, =1, -
For an ordinary iteration, the following steps take place.
1. Compute o; = n;T hg, i=1,...,n. (A3)

2. Find t which is the greatest integer such that oy =0.

3. Letay=0and §&=0. Fori=t—1,t-2,...,1, compute
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& =8 T oMy
(11= 1+1+U +1°
a,n; — o
¢ = -
Va.la. +0?)
1 1 1
Let{; = nj+1,i=t,t+1,...,n-1.
Let
g = o
" Vh'h

(A4)

(A5)

(A6)
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TABLEI

COMPARISON OF COMPUTATIONAL EFFORT FOR MINIMAX EXAMPLES

Number of Function Evaluations

Problem Numerical Differentiation Gradient Approximation
MM1 24 (8) 18 (10)
MM2 24 (8) 18(12)
MM3 59 (11) 30(18)
MM4 84 (11) 66 (41)
MM5 9(3) 5(3)
MM6 32 (10) 19 (14)
MM7 29(9) 14(11)

Note: the entries in parentheses are numbers of optimization iterations.
The solutions obtained using gradient approximations agree with those obtained
using numerical differentiation to 5 significant figures.
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TABLEII

COMPARISON OF COMPUTATIONAL EFFORT FOR ¢; EXAMPLES

Number of Function Evaluations

Problem Numerical Differentiation Gradient Approximation
¢1 42 (14) 27(19)
€12 54 (9) 32(19)
€13 105 (15) 63 (40)
€14 7117 65 (48)
€15 147 (7) 34(10)

Note: the entries in parentheses are numbers of optimization iterations.
The solutions obtained using gradient approximations agree with those obtained
using numerical differentiation to 5 significant figures.
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TABLE III

COMPARISON OF COMPUTATIONAL EFFORT FOR EXAMPLE ¢,6

Number of Function Evaluations

Size of the system Case 1l Case 2 Case 3
n=>5 36 (6) 17 (9) 13 (7)
n=10 66 (6) 25 (10) 19(7)
n =20 126 (6) 39 (13) 29 (1)

Case 1: Using numerical differentiation
Case 2: Using the original Broyden update
Case 3: Using the weighted Broyden update

The entries in parentheses are numbers of optimization iterations
The solutions obtained using gradient approximations agree with those obtained
using numerical differentiation to 5 significant figures.
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Two-section, 10:1 transmission-line transformer.
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Fig. 2 Contours of (13) for the two-dimensional singular minimax problem MM1
arising from optimization of the two-section transmission-line transformer.
Eight iterations using exact derivatives are illustrated.
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Fig. 3 The same problem as shown in Fig. 2 is solved using 10 iterations of our
algorithm for gradient approximations.



Fig. 4
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75

Contours of (13) for the two-dimensional regular minimax problem MM2 arising
from optimization of the two-section transmission-line transformer with
variables £1/€q and Z;. The derivatives are estimated entirely by perturbations.
A total of 8 iterations and 24 function evaluations are required to reach to the
solution. The first 5 iterations are shown.
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Fig. 5 The same problem as shown in Fig. 4 is solved using our algorithm for gradient

approximations. The solution requires 12 iterations and 18 function
evaluations. The first 8 iterations are shown.
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Fig. 6 Contours of (14) for the two-dimensional € problem €1 arising from parameter
identification of the two-section transmission-line transformer. The solution
obtained with the derivatives estimated entirely by perturbations requires 14
iterations and 42 function evalutions. The first 7 iterations are illustrated.
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Fig. 7 The same problem as shown in Fig. 6 is solved using our algorithm for gradient
approximations. The solution requires 19 iterations and 27 function
evaluations. The first 9 iterations are illustrated.



