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Abstract A flexible and effective algorithm is proposed for efficient optimization
with integrated gradient approximations. It combines the techniques of perturba-
tions, the Broyden update and the special iterations of Powell. Perturbations are
used to provide an initial approximation as well as regular corrections. The ap-
proximate gradient is updated using Broyden’s formula in conjunction with the
special iterations of Powell. A modification to the Broyden update is introduced
to exploit possible sparsity of the Jacobian. Utilizing this algorithm, powerful
gradient-based nonlinear optimization tools for circuit CAD can be employed
without the effort of calculating exact derivatives. Applications of practical
significance are demonstrated. The examples include robust small signal FET
modeling using the ¢; techniques and simultaneous processing of multiple circuits,
worst-case design of a microwave amplifier as well as minimax optimization of a
5-channel manifold multiplexer. Computational efficiency is greatly improved as

compared to estimating derivatives entirely by perturbations.
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I. INTRODUCTION

Many powerful gradient-based algorithms have been developed in recent
years for nonlinear optimization and applied to circuit CAD problems. For exam-
ple, Bandler, Kellermann and Madsen have described algorithms for linearly cons-
trained minimax and ¢; optimization [1], [2]. However, the effort to extend their
application to a wide range of practical problems has been frustrated by the
requirement of exact gradients of all functions with respect to all variables. For
some applications, either an explicit sensitivity expression is not available, e.g.,
when time-domain analysis and nonlinear circuits are involved, or the actual
evaluation of such an expression is very tedious and time-consuming, e.g., for
large-scale networks. Partly due to these difficulties, exact sensitivity calculati-
ons have not been implemented in many general-purpose CAD software packages,
although the concept of adjoint network has been in existence for nearly two
decades and has had success in many specialized applications. The inability or
inconvenience in calculating the exact derivatives has created a gap between
the theoretical advances in gradient-based nonlinear optimization techniques and
their actual implementation.

With only the function values available, as is the case for many CAD pack-
ages on the market, one usually resorts to the method of perturbations (finite
differences) for gradients. However, this seemingly simple alternative becomes
extremely inefficient when large-scale problems have to be dealt with.

In this paper, we propose a flexible and effective approach to optimization
with integrated gradient approximations. It is a hybrid approach which incorpo-
rates the use of perturbations, the Broyden update [3] and the special iterations
of Powell [4]. The proposed algorithm extends the previous work by Madsen [5]
and Zuberek [6] in two aspects. Perturbations are integrated in a flexible manner

to allow regular corrections to the approximate gradients. Therefore, a suitable



compromise between accuracy and computational labor may be achieved for va-
rious applications, especially for large-scale circuit optimization. We also propose
a modified Broyden update to take advantage of a possible sparse structure of
the problem.

The practical usefulness of the new algorithm is demonstrated through three
diverse applications. The subjects are of primary interest to microwave circuit
engineers: robust small signal modeling of FET devices, worst-case fixed tole-
rance design of a microwave amplifier and large-scale optimization of manifold
multiplexers. Applying an approach to robust device modeling proposed by the
authors [7] which employs the ¢; optimization techniques and a novel concept of
simultaneous processing of multiple circuits, we have obtained self-consistent
models of a FET device using real measurement data. By integrating gradient
approximations with a powerful minimax algorithm [l1], we are able to optimize a
5-channel noncontiguous band multiplexer efficiently and without exact deriva-

tives. The multiplexer problem involves 75 nonlinear variables.

II. GRADIENT APPROXIMATIONS
A. Estimating the Gradient by Perturbations
The first-order derivative of f ;(x) with respect to x; can be estimated by
af;(x) fi(x+hy;) - £ (%)

~ ; 1)
axi h

where x = [X; X, .. X,]T is the vector of variables, and u; is a column vector
which has 1 in the ith position and zeros elsewhere. The accuracy of such an
estimate may be improved by using a smaller h as well as by averaging the res-
ults of a two-sided approximation (using both positive and negative perturba-
tions). This method is straight forward and reliable. However, the computational

labor involved grows in proportion to the dimension of the problem.



In the new algorithm described in this chapter, perturbations are used to»
obtain an initial approximation to the gradient at the starting point of an opti-
mization process. During the optimization, we may also incorporate a regular use
of perturbations to maintain the accuracy of gradient approximations at a desira-

ble level.

B. The Broyden Update
The Broyden update refers to a rank-one formula proposed by Broyden [3]
as
f(x+hy) - f(x}) - Gyhy

Gys1 = Gy + hi , )]
hihy

where Gy is an approximation of the Jacobian [3fT/8x]T at x,, h, is an incre-
ment vector and Gy,; provides an updated Jacobian. The values of the function f
at x, and (x,+hy) are assumed available. If the two points (x, and (x,+h,)) are
iterates of the optimization process, then the Broyden update requires no addi-
tional function evaluations, regardless of the dimension of the problem.

Apparently, the approximate Jacobians generated by the Brc;yden update are
in general less accurate as compared with those obtained from perturbations.
Hence, the optimization may require more steps to reach the solution or may not
reach the correct solution at all. Broyden [3] has shown that for quadratic func-
tions the Broyden update will converge and will reduce the overall computational
effort. Although such properties can not be proved for a general nonlinear prob-
lem, the Broyden update still provides an efficient alternative for approximating
derivatives.

The updated approximation Gy, satisfies the following equation

f(xy+hy) - £(xy) = Gyyqhy . )

In other words, Gy,; provides a perfect linear interpolation between the two



points x, and (x,+hy).

Some difficulties in the application of the Broyden update have been obser-
ved by many researchers (see, for example, [4], [5] and [6]).

(1) If some functions are linear in some variables and if the corresponding
components of h, are nonzero, then the approximation of constant derivatives
are updated by nonzero values. Consider a simple example. Let fj = x*} + 2x3 be
a function in f. Denote the variables by x = [x; X, x3]T and the gradient by
f;(x) = [g; 82 g3]T. Two components of the gradient, namely g, = 0 and g; = 2,
are constants and can be found accurately by perturbations. g; is the only com-
ponent that needs to be updated. Suppose that x, = [1 1 1]T, h = [0.5 0.5 0.5]T
and a perfect estimation of f;(xk) is available as [2 0 2]T. The approximation to
f:‘(xk+hk), as given by the Broyden update, would be [2.167 0.167 2.167]T (the
true value is [3 0 2]T).

(2) Along directions orthogonal to hy the Jacobian is not updated:

Gy,1pP = Gyp, for pThk = 0. “4)

To overcome these difficulties, we implement a weighted update and the

special iterations of Powell [4].

C. Weighted Broyden Update

The weighted update is to be applied to the Jacobian matrix on a row-by-
row basis. The jth row vector of the approximate Jacobian, denoted by (gj)k, is
an approximation to f}(xk), the gradient of f ;- Suppose that the Hessian of f f is
available to us and denoted by H;, then

£xchy) & £x) + Hy(x,) by )

Analogously to (5), we devise an updating formula to obtain an approximation to
f;(xk+hk) as

(8)k+1 = (8;)x + a Hj(xy) hy. (6)



If we choose the coefficient a as
fj(xk+hk) - fj(xk) - (gj)Ehk

hT Hj(xy) hy

Q=

, (7

then the linear model as given by (3) will be preserved, namely
fi(xe+hy) - £5(x) = (g;)f1hy. ®)
In practice we are very unlikely to have access to the Hessian of any f;.
Even so, two basic facts are obvious: the Hessian of a quadratic function is
constant, and if f; is linear in x; then the ith row and the ith column of the
Hessian contain only zeros. Hence, we propose the use of a constant diagonal
matrix
W; = diag[wj1 v Wipls w20, i=1,..,n, 9)
This leads to a weighted Broyden update as follows.
fj(xk+hk) - fi(xy) - (gj)Ehk

(gj)k+1 = (gj)k + T 9k »
qji hy

(10)
qjk = WJ hk = [wjlhkl e anhkn]T,
The weights w; provide a measure of the linearity of f;. If f; is linear in

X;, we set w;=0, and if f; is nearly linear in x;, we assign a small value to wj.
It should be clear from (10) that only the relative magnitude of the weights is
important, not their absolute values.

Consider the simple example we have used in the previous section, namely
fi= x? + 2x4. Since f; is independent of x, and linear in x3, we set wj, = w3 =
0 and wj; = I. The approximate gradient given by (10) is [2.5 0 2]T, compared to
the result given by the Broyden update as [2.167 0.167 2.167]T, and the true
gradient [3 0 2]T.

The assignment of weights requires some knowledge of the functional rela-

tionship of f j(x). Such a knowledge may come from experience or may be gained

from sensitivity analyses by performing a few perturbations. For instance, for a



particular circuit, it may be known that some designable parameters have little
influence on the performance function over some frequency or time intervals.
Using an adaptive method to find W; might be of some theoretical interest. But
it was felt to be unnecessary and too complicated to be practical at the present

time.

D. Powell’s Special Iterations

The Broyden update is a rank-one method. As has been shown in (4), along
directions orthogonal to h, the approximate Jacobian is not updated. If some
consecutive steps of optimization happen to be collinear, the updating procedure
may not converge. Powell [4] suggested a method which produces strictly linearly
independent directions. For this purpose, special iterations are introduced which
intervene between the ordinary iterations of optimization. The increment vector
of such a special iteration is not calculated to minimize the error functions,
instead it serves the purpose of improving the accuracy of gradient approxima-
tions. The algorithm for computing the increment vector for a special iteration,

as derived by Powell, is given in the Appendix.

III. A HYBRID APPROXIMATION ALGORITHM

Our hybrid algorithm for gradient approximations consists of an initial
approximation, the Broyden update, Powell’s special iterations and regular correc-
tions provided by perturbations.

At the starting point of optimization, the initial approximate Jacobian G, is
usually computed by perturbations. However, G, may be already available, for
example, it may have been stored from a previous optimization, and can be utili-
zed to avoid unnecessary computations. This option would be useful if similar

problems are being solved repetitively (e.g., the same circuit is optimized with



respect to different specifications). The accuracy of Gy is not very critical to
the overall approximation. We have observed for some examples that convergence
was achieved despite the erroneous estimates of G.

There 1is little hard evidence as to how frequently the special iterations
should be used. Numerical experience, ours as well as other authors’, has sugge-
sted the use of a special iteration between every two ordinary ones (i.e., every
third iteration is a special iteration). Also, in our implementation, a special iter-
ation is skipped provided that the changes in the functions agree fairly well with
the linear prediction by the approximate gradient. This is considered to be true
if

| £5(xic+hy) - £5(x5) = Gyhy || < 0.1 [ £5(xp+hy) = £5(x) || (11
The purpose of this provision is to avoid unnecessary computations.

Whether perturbations should be used during optimization depends on the
application. For small or mildly nonlinear problems, the Broyden update may
suffice. For large-scale problems, especially in circuit applications where highly
nonlinear functions are involved, the correction provided by perturbations is
likely to be necessary. We have incorporated in our algorithm the use of pertur-
bations with prescribed regularity, say, at every kth optimization iteration.

The Broyden update with or without weights, depending on whether the
necessary knowledge of f(x) is available, is employed between perturbations.

Software for gradient-based optimization typically requires a user-defined
routine which accepts a set of values for x as input and returns the values of
f(x) as well as the first-order derivatives. We have implemented an interface
which integrates gradient approximations with optimization. Taking a set of val-
ues for x from an optimizer, it calls a user-defined routine for the function
values, carries out necessary operations for gradient approximations, and then

returns to the optimizer the values of f(x) as well as the approximate Jacobian.



The interface is transparent to both the optimizer and the user-defined simula-_
tion routine. The optimizer is provided with the required gradients, and the user-
defined routine (typically a circuit simulation module) works as if the optimizer
did not require gradients.

We have integrated our gradient approximation algorithm with two recent

optimization methods [1], [2], for the minimax problems as

minimize max {f ;(x)} (12)
x j
and the ¢; problems as
m
minimize ). lfj(x)l . (13)
X j=1

respectively. The methods described in [1] and [2] are 2-stage algorithms. The
second stage is to be employed near the solution to accelerate the rate of con-
vergence, for which the accuracy of the approximate gradient may become criti-
cal. Hence, our implementation allows a more frequent use of perturbations in
the second stage.

The effectiveness and efficiency of the new approach are clearly shown
from the results of solving a large variety of problems. The results on some

mathematical test problems can be found in [8], [9] and [10].

IV. A TWO-SECTION TRANSMISSION-LINE TRANSFORMER EXAMPLE

Consider the classical two-section 10:1 transmission-line transformer shown
in Fig. 1. Originally proposed by Bandler and Macdonald [11], this problem has
been widely used to test minimax algorithms. The error functions (fj) are given
by the reflection coefficient sampled at 11 frequencies normalized with respect
to 1GHz {0.5, 0.6, .., 1.5). Madsen and Schjaer-Jacobsen [12] have shown that

when we take the characteristic impedances Z; and Z, as variables and keep the
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lengths £; and ¢, constant at their optimal values (the quarter wavelength at the
center frequency), the minimax problem is singular. Fig. 2 shows the minimax
contours and illustrates the solution obtained wusing exact derivatives. If the
derivatives were to be estimated by perturbations, 24 function evaluations would
have to be performed. Using our gradient approximation, we obtained the solu-
tion, as shown in Fig. 3, after 18 function evaluations.

For the same transformer, we also formulate an ¢; problem. The reflection
coefficient at the minimax optimum was taken as a measurement from which we
attempt to identify the values of Z, and Z,. The solutions obtained with the
gradients estimated entirely by perturbations and by our new algorithm are illus-
trated in Figs. 4 and 5, respectively.

A comparison between Figs. 2 to 5 reveals that the solutions obtained using
approximate gradients require more iterations of the optimization but overall

fewer function evaluations, which is expected.

V. FET MODELING USING ¢, OPTIMIZATION
WITH APPROXIMATE GRADIENTS

A. Introductory Remarks

The use of ¢, optimization, based on its theoretical properties, has been
recommended for nonlinear data-fitting and device modeling [1], [7], [13]. Jansen
and Koster [14] have investigated the use of generalized £, optimization in the
modeling of microwave transistors, and they concluded that values of p around
unity would lead to relatively stable solutions with good convergence properties.
A novel approach to robust modeling of microwave devices has been presented by
the authors [7] which exploits the unique properties of the ¢; norm and employs
the concept of simultaneous processing of multiple circuits. It has the advantage

of establishing not only a good equivalent circuit model but also a reliable mea-
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sure of the self-consistency of the model. In the context of this paper, an exam-
ple of FET modeling is given to illustrate the £; optimization with integrated
gradient approximations.

One of the concerns in practical modeling of FET devices is the uniqueness
of the solution. A family of solutions may exist which all exhibit a reasonable
match between the calculated and measured responses. The approach described in
[7] is intended to improve the chance of unique identification of the model para-
meters by processing simultaneously multiple circuits. In the case of FET model-
ing, we create multiple circuits by taking measurements on the scattering para-
meters under several different biasing conditions. From the physical characteris-
tics of the device we know that with respect to different biasing conditions
some model parameters should remain almost unchanged while the others should
vary smoothly. Therefore, from a family of possible solutions we give preference
to the one that exhibits the desired consistency. Such a self-consistent model
can be achieved automatically by using the ¢; optimization and choosing those

model parameters that are insensitive to bias as common variables.

B. The Model and the Measurements

The small signal equivalent circuit model for the FET is shown in Fig. 6
which is widely used by commercial programs such as TOUCHSTONE [15] and
SUPER-COMPACT [16]. The model has 11 parameters that we will consider as
optimization variables:

{Rg, Ry, Ly, 7, Rgg, Ry, Ry, Cpqy Cyys Cogo 8-

The first four parameters are considered to be bias insensitive.

Three sets of measurements on scattering parameters of a FET device which
were taken at 17 frequency points from 2GHz to 18GHz, 1GHz apart, under the

following biasing conditions were made available by R.A. Pucel [17].
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1. Vg =4V, V= 0.00V, I = 177mA.

2. Vg =4V, Vg, =-174V, Iy, = 92maA.

3. Vg =4V, Vg = -3.10V, Iy, = 37mA.

C. Formulation of the Problem
Microwave device modeling utilizing multiple circuits has been formulated in
general as an ¢; optimization problem by the authors [7]. The following are for-

mulas (12) to (14) in [2]:

n. kt
minimize Y. Y. Iff], (14)
X t=1 i=l
where
ff = w [Ff(x*) - (FMY (15)
and
[ x! ]
x2
X = . , (16)
Eal

with superscript and index t identifying the t-th circuit. n. is the number of
circuits and k, is the number of functions arising from the t-th circuit. x* rep-

resents the vector of parameters of the t-th circuit. Vectors x!, t = 1, .., n

a?’ (4]

contain only those parameters that vary between different circuits. They do not
include the common variables, i.e., those parameters that assume the same values
for all circuits. For each circuit, we combine the common variables and x! to
form the vector xt.

For the FET modeling problem under consideration, which has three sets of

measurements, we specialize the formulas as follows:



13

3 17 2 2
minimize . Y Y 3 {(Re[fh(w)] + Mm[fh (w1}, 17
x t=1 i=1 j=1 k=1

where

£ (wp) = Fh(xtw) - Sh(w;). (18)
In (18), f}k and S}k are the calculated and measured scattering parameters, res-
pectively, with superscript identifying three different biasing conditions. Having
17 frequency points with real and imaginary parts of the complex S-parameters
being treated separately, we have a total of 408 error functions. The variables to

be optimized in (17) are defined as

2. (19)

The vector x! actually has two parts as x! = [x® x!]T, where x¢ consists of the
common variables as
x¢ = [Rg Ry L, 7]T. (20)
These are the parameters we expect not to change with respect to different bias.
The vector xt contains the remaining parameters of model t, namely
x; = [Rg, Rf Rf CL, Cg C, ghl™. (21)

The total number of variables is 25.

D. Results

To solve the problem we have formulated, the ¢; optimizer described in [2]
was employed. The gradient required was provided by the approach proposed in
this paper. We should point out that in this case the evaluation of exact sensiti-
vities is actually possible using the scheme outlined in [7]. However, it involves
lengthy and complicated programming. First of all, two adjoint solutions are

needed to evaluate the sensitivity expressions for the admittance matrix. From
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these expressions the sensitivities of the S-parameters are derived. Since multiple
circuits are processed simultaneously, a complex coding scheme is needed to
associate functions arising from different circuits with the appropriate variables.
It is then very difficult to modify the software when needed. Comparatively, the
calculation of the function values alone requires much simpler effort. This, from
the view point of reducing software complexity, justifies the pursuit of gradient
approximation.

Three experiments were conducted which have used different schemes for
gradient approximation. From the starting point given in Table I, they have rea-
ched practically the same solution, which is also given in Table I. The match
between the calculated and measured responses for the first circuit, at both the
starting point and the solution, are shown in Figs. 7 and 8. The match for the
other two biasing conditions is similar and hence omitted.

The first experiment corresponds to the conventional approach, in which
the gradients were estimated solely by perturbations. A total of 468 circuit simu-
lations were required to reach the solution.

In the second case, the Broyden update without weights was used. Regular
corrections were also provided by perturbations for every five iterations. Only
128 circuit simulations were needed for this solution.

For the third experiment, we took advantage of an inherent decomposition
in the multi-circuit formulation. Notice that the responses (and error functions)
of one circuit are absolutely uncorrelated to the independent parameters (x%) of
any other circuits. Obviously, the derivatives corresponding to such decoupled
functions and variables are always equal to zero. However, when we use the
Broyden update without weights, these derivatives may be changed to some non-
zero values, thus introducing apparent errors to the approximation. We can avoid

this by using the weighted update. By assigning zero weights to decoupled func-
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tions and variables, we can keep the zero derivatives undisturbed throughout the
optimization process. The application of this concept has reduced the use of
perturbations and led to the solution after only 79 circuit simulations. This rep-
resents less than 1/5 of the simulations required by the first experiment as well

as a 38% saving in computational effort as compared to the second experiment.

VI. WORST-CASE DESIGN OF A MICROWAVE AMPLIFIER
Worst-case design using optimization techniques in general has been discus-

sed in [18]. Consider a vector of nominal designable parameters

¢° = [4]... 9317, (22)
a vector of associated tolerances
€ =[e ... ]T, (23)
and a tolerance region defined by
R =(¢1¢°-€<¢p<¢’+e) (24)

We seek an optimally centered design such that the specifications are satis-
fied over the tolerance region. It can be formulated as a minimax problem, as

minimize max max {fi(#)}, (25)
#° i ¢<R,

where f;, j = 1, .., m, are a set of error functions derived from the design
specifications. In practice, we usually consider as candidates .for the worst case
the vertices of the tolerance region defined by
R,=(¢|é=0%¢p, p;;€(-1,1),i=1,..,n) (26)
Consider the worst-case fixed tolerance design of a microwave amplifier. As
shown in Fig. 9, the amplifier consists of a NEC70000 FET and five transmission-
lines [15]. The FET is characterized by tabulated scattering parameters provided
by the manufacturer. The design variables are the characteristic impedance Z and

the lengths 4 of the transmission-lines. For each length ¢ we assume a five
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percent tolerance. The design specifications are given by

7.05dB < 20log|S,,| < 8.2dB, for w; = 6, 7,..., 18GHz.
A total of 26 error functions (fj) arise from the upper and lower specifications
at 13 frequencies.

The worst-case design was accomplished by two phases of optimization. In
the first one, we predicted an initial set of worst-case vertices by first-order
changes. For each f j» & vertex @3 was selected by

¢l = ¢0+ pl ¢, pl=sign(3f;/84;), i=1,..,n, (27)
where the derivatives afj/aqSi‘were estimated at the nominal point at the start of
the optimization by perturbations. Consequently, 26 vertices (one for each f 5)
were considered for the minimax problem

minimize max {f j(¢j)}. (28)
¢° j

At the solution, by using (27) with respect to the new nominal point, we
found that 10 of the worst-case vertices had changed (i.e., the signs of some
of;/3¢; had changed). The new vertices were added to the worst-case set. The
corresponding old vertices were képt, instead of replaced, in order to stabilize
the algorithm. We had, therefore, a total of 36 worst-case vertices. A second
optimization was performed and at its solution the worst-case set was found to
be complete (i.e., no more sign change in (27)).

The nominal parameter values at the starting point and the final solution
are given in Table II. The total number of function evaluations is 280, opposed
to 585 required if perturbations were used throughout the optimization. Fig. 10

depicts the worst-case envelope at the solution.
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VII. PRACTICAL DESIGN OF A 5-CHANNEL MULTIPLEXER
A. Introductory Remarks

A minimax solution of a 5-channel 11GHz noncontiguous band multiplexer
was given in detail by Bandler et al. [1]. In order to provide the exact sensitivi-
ties required, the theory due to Bandler et al. [19] was implemented in a com-
puter program which has taken months of effort to develop and test. Further-
more, because the sensitivity expressions depend highly on the circuit structure
and vary from component to component, every change to the problem, such as
" assigning different variables, requires expert modification to the software. In
fact, the sensitivities with respect to all possible variables were computed even
though some of them have not been actually used, otherwise the coding scheme
would have become unmanageable. Large amounts of computer memory were requ-
ired to store various adjoint solutions and intermediate expressions. By utilizing
our gradient approximation, it is possible to efficiently design a multiplexer
without all these troubles associated with computing the exact sensitivities. The
complexity and size of the program can therefore be considerably reduced.

The 5-channel multiplexer provides an excellent illustration of efficient
gradient approximations for two reasons. First, it involves 75 variables and,
therefore, to rely on perturbations would be prohibitively expensive. To be more
specific, suppose that we use the initial parameter values and specifications
suggested by Bandler et al. [1]. The multiplexer responses at the starting point
are shown in Fig. 11. We have reached a result similar to the one reported in
[1] after 50 iterations of optimization using exact derivatives. To rely on pertur-
bations for the gradients, we would have to compute multiplexer responses 3800
times (50 x 76). We will show that efficient gradient approximations reduce the
number of response evaluations significantly.

Also, this example is naturally suited for the use of the weighted Broyden
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update described earlier in this paper. From Fig. 11 it is intuitively obvious that
the response functions at lower frequencies should be almost independent of the
variables that are related to the filters of channels 1 and 2 (channel 1 has the
highest center frequency). Similarly, the responses at higher frequencies are
almost independent of the variables related to the filters of channels 3, 4 and 5.

We will demonstrate the advantage of using the weighted update.

B. Results

Details of the 5-channel multiplexer structure, such as the channel center
frequencies, bandwidths and coupling matrices, can be found in [1]. The channel
filters are assumed lossy. Frequency dispersion and nonideal junctions are also
taken into account. For all the results that follow, we have used the same spec-
ifications and starting point as given in [lI]. Three experiments were performed
each using a different method for gradient approximation.

In the first experiment, perturbations were used only at the starting point
but not during the optimization. The approximation of gradients relied on the
Broyden update in conjunc.tion with the special iterations, which was similar to
the methods of Madsen [5] and Zuberek [6]. The optimization stopped after 266
response evaluations, of which 75 were used for the initial perturbations. The
responses at this solution as depicted in Fig. 12 are considerably inferior to the
result reported in [l1]. The optimization has stopped prematurely. This experiment
has demonstrated that the Broyden update may not be sufficient for large-scale
nonlinear problems.

In a second experiment, regular corrections were provided during the opti-
mization by perturbations for every 20 iterations. After 500 response evaluations,
of which 375 were used for perturbations, we obtained the responses shown in

Fig. 13. Continuing the process for another 500 response evaluations the respon-
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ses shown in Fig. 14 were achieved, which are as good as the ones in [1]. From
the starting point, a total of 1000 response evaluations was performed. Recall
that 3800 response evaluations would be required if the gradient calculations
were simply replaced by perturbations.

The third experiment is intended to demonstrate the weighted update propo-
sed in this paper. To apply this updating formula, a weight wj; is set to zero if
we know that a function fj is almost independent of a variable x;. For instance,
the insertion loss of channels 3, 4 and 5 and the common - port return loss over
the passbands of these channels are almost independent of the filter couplings in
channels 1 and 2. Similarly, the responses within the frequencies of channels 1
and 2 are almost independent of the filter couplings in channels 3, 4 and 5.
Therefore, we set the corresponding weights to zero.

Utilizing the weighted update, we optimize the multiplexer without any
regular correction by perturbations. After 500 response evaluations we obtained
the responses shown in Fig. 15. By comparing this result with experiment 1 we
can clearly see that the use of appropriate weights has prevented the optimiza-
tion from stopping prematurely. We can also conclude from a comparison between

experiments 2 and 3 (also, between Figs. 13 and 15) that the application of the

weighted update has effectively reduced the use of time-consuming perturbations.

VIII. CONCLUSIONS
A new algorithm for gradient approximations has been presented. Integration
of this algorithm with powerful gradient-based optimization techniques has been
described and illustrated by the minimax and ¢; implementations. The effective-
ness and efficiency of the proposed approach has been demonstrated through
diverse examples of practical significance, including FET modeling, worst-case

centering and multiplexer design. A weighted update has also been proposed
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which exploits possible sparsity and decoupled structures to further reduce the
computations involved in estimating gradients. The new approach is very useful
when analytical evaluation of partial derivatives is unavailable or tedious. The
prospect of integrating our method with existing CAD packages and thus bringing
the full power of advanced optimization techniques into practical microwave

applications is especially promising.
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APPENDIX
FORMULAS FOR POWELL’S SPECIAL ITERATIONS

The formulas for computing the increment vector for a special iteration, as
derived by Powell [4], are as follows.

An n by n (n being the dimension of x) orthogonal matrix D, is construc-
ted at each iteration. Denote the rows of D, by df, i = 1, 2,.., n. At a special
iteration, the increment vector is set to a multiple of the first row vector of
Dy, as

hy = A dy, (A.1)
where A, is a parameter controlling the step size of h,. Usually it is set to the
step size of the latest ordinary iteration.

At the starting point D; is set to an identity matrix. At the kth iteration
D, is revised to produce Dy,;. We use yT for the rows of D,,,;. For a special
iteration, we simply let

yi=di,;, i=1,2,..,n-1,

(A.2)
Yo = d;.
For an ordinary iteration, the following steps take place.
Step 1 Compute o; = dThy, i = 1, 2,..., n.
Step 2 Find t which is the greatest integer such that o, # 0.
Step 3 Let oy = 0 and z, = 0. For i = t-1, t-2, ..., 1, compute
Z; = Zjyy + Oadiyg,
o = G4y + Ofyy, (A3)

¥; = (od; - 0;7))/[o5(ey; + o)

Step 4 Let y; = d;,, i = t, t+1,..., n-1. Let y_ = h,/(hTh )L
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TABLE I

PARAMETER VALUES OF THE FET MODELS

Solution

Parameter Starting Point

Case 1 Case 2 Case 3
R, (OH) 1.0 2.6025 2.6025 2.6025
Ry (OH) 1.0 3.7630 3.7630 3.7630
Ry, (KOH) 0.143 0.1992 0.1638 0.1632
R; (OH) 1.0 0.0099 0.0999 0.3891
R, (OH) 1.0 1.0016 0.9220 0.6482
L, (nH) 0.02 0.0039 0.0039 0.0039
Cgs (PF) 1.4 0.7181 0.4417 0.3454
Cqg (PF) 0.07 0.0306 0.0475 0.0609
C4s (PF) 0.4 0.2228 0.2229 0.2151
gn (/OH) : 0.09 0.0696 0.0521 0.0410
T (ps) 7.0 3.9558 3.9558 3.9558

Biasing Conditions
Case I: Vg=4V  V=0.00V I3=177mA
Case 20 Vg=4V  V=-174V I4=92mA
Case 31 Vg=4V = Vg =-3.10V  I;=37mA

The starting points for the three circuits are identical.
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TABLE II

PARAMETER VALUES OF THE MICROWAVE AMPLIFIER

Parameter Starting Point Solution
I 52.96 69.01
I 148.13 152.01
I 26.80 18.48
A 24.01 5.10
I 46.63 36.49
Z 81.27 126.39

The starting point is a minimax nominal design
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Fig. 2 Minimax contours for the two-dimensional singular minimax problem
arising from optimization of the two-section transmission-line transform-
er. Eight iterations using exact gradients are illustrated.
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Fig. 3 Minimax optimization of the two-section transmission-line transformer.
Ten iterations using approximate gradients are illustrated.
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Z1

Fig. 4 ¢, contours for problem arising from parameter identification of the
two-section transmission-line transformer. Using perturbations for the
gradients, the solution required 14 iterations (42 function evaluations).
The first 7 iterations are illustrated.
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Fig. 5 Parameter identification of the two-section transmission-line transformer
using ¢; optimization with approximate gradients. The solution has re-
quired 19 iterations and 27 function evaluations. The first 9 iterations
are illustrated.
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Fig. 6 The small-signal equivalent circuit model for FET devices.
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Fig. 7 The scattering parameter match between the FET model and the measu-
rements at the starting point, for Vg4, = 4V, V= 0V and I, = 177mA.
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Fig. 8 The scattering parameter match between the FET model and the measu-
rements at the solution, for V4, = 4V, Vo = 0V and I3, = 177mA.
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Fig. 10 Worst-case envelope for the amplifier response at the centered solution.



(DB)

RETURN AND INSERTION LOSS

10

15

20

25

30

35

40

45

50

35

1 1 AN 1 1 ' 1 1

1

10880 10960 11040 11120 11200 11280 11360 11440 11520 11600 11680

FREQUENCY (MHZ)

Fig. 11 Responses of the 5-channel multiplexer at the starting point.

11760

11840



36

T Y ryrrr Ty T

Can) 5 I~
m
a

) 10 -
i)
[1)]
3 15+~
z
[s) 20 - M \
H
]._
5 25|
0
4
H 30+
a
E s+
Z
18 40 -
2
l._
11]
C 45t

50 1 A 1 L 1 1 1 L L 1 1

10880 10860 11040 11120 11200 14280 11360 11440 11520 11600 11680 11760 14840
FREQUENCY (MHZ)

Fig. 12 Responses of the 5-channel multiplexer obtained using only the Broyden
update and special iterations for gradient approximations. The optimiza-
tion has stopped prematurely.
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Fig. 13 Responses of the 5-channel multiplexer obtained after 500 response eval-
uations. Regular corrections to the approximate gradient by perturbations
were provided for every 20 iterations.
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Fig. 15 Responses of the 5-channel multiplexer obtained using the weighted
update for gradient approximations. The use of appropriate weights has
effectively prevented the optimization from stopping prematurely and
reduced the use of time-consuming perturbations.
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