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Abstract Various implementations of a flexible and effective approach to efficient circuit
optimization with integrated gradient approximations are described. Problems of practical
significance are solved utilizing advanced gradient-based optimizers without requiring
analytical evaluation of derivatives or expensive numerical differentiation. These problems
include robust small signal FET modelling using the techniques of nonlinear ¢ optimization
with simultaneous processing of multiple circuits. Also included are worst-case tolerance
design of a microwave amplifier as well as minimax optimization of a 5-channel manifold
multiplexer involving 75 nonlinear variables. Drastic reduction of computational labor
compared with the traditional approach is achieved in all these cases. Experiments exploiting
circuit structure to further improve computational efficiency are also described. The use of
approximate gradients also significantly simplifies the effort involved in programming

compared with exact derivative approaches.
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I. INTRODUCTION

A flexible and effective approach to efficient optimization with integrated gradient
approximations has been presented in our companion paper [1]. The theoretical aspects of the
algorithm have been described in detail, applications have been suggested and its efficiency
has been demonstrated by some well-established test problems. In the Part II of our
presentation, the impact of the new approach on practical circuit CAD is illustrated by three
diverse implementations. The subjects are of primary interest to microwave circuit
engineers: robust small signal modelling of FET devices, worst-case tolerance design as
illustrated by a microwave amplifier example and efficient optimization of manifold
multiplexers.

An approach to robust device modelling has been proposed by the authors [2] which
employs powerful €; optimization techniques and a novel concept of simultaneous processing
of multiple circuits. In this paper, we apply this approach to FET modelling. Self-consistent
models are achieved using real measurement data. Design of multiplexers in general using a
superlinearly convergent minimax algorithm has been described by Bandler et al. [3] which
well represents very large scale CAD problems in practice. In this paper, a 5-channel non-
contiguous band multiplexer is taken as an example.

The optimization techniques employed in these cases are powerful gradient-based
methods. Analytical evaluation of the exact derivatives could be very tedious and com-
plicated, if at all possible, and is almost always avoided by microwave CAD software
designers. The rather straightforward method of numerical differentiation, i.e., of estimating
gradients by perturbations, is widely adopted. However, this seemingly simple solution
becomes extremely inefficient when large-scale problems have to be dealt with. The example
of FET modelling in this paper involves 408 functions and 25 variables; the one of worst-case
design has 36 functions and 6 variables; the one of multiplexer design has 59 functions and 75
variables. If the gradients required by the optimizers are to be estimated entirely by

perturbations the computational effort is indeed prohibitively expensive. By implementing



the approach to gradient approximation proposed in Part I we are able to reduce drastically
the computational labor involved in estimating the gradients. Through these examples, we
show that advanced optimization tools can be utilized in a very efficient way to solve problems
of practical significance even if analytical gradient evaluation is not available.

In Part I, we introduced a weighted Broyden update to improve the accuracy of
gradient approximation. In this paper, we also show, through our examples, how this can be
implemented, in order to exploit specific circuit structures, to the advantage of further

reducing the computational effort.

II. FET MODELLING USING ¢; OPTIMIZATION
WITH APPROXIMATE GRADIENTS

A. Introductory Remarks

The use of €1 optimization, based on its theoretical properties, has been recommended
for nonlinear data-fitting and device modelling [2],[4],[5]. A novel approach to robust
modelling of microwave devices has been presented by the authors [2] which exploits the
unique properties of the €; norm and employs the concept of simultaneous processing of
multiple circuits. It has the advantage of establishing not only a good circuit model whose
responses match as much as possible the measurement, but also a reliable measure of the self-
consistency of the model. In the context of this paper, an example of FET modelling is given to
illustrate the implementation of €; optimization with integrated gradient approximation.

One of the difficulties frequently encountered in practical modelling of FET devices is
the non-uniqueness of the solution. A family of solutions may exist which all exhibit a
reasonable match between the model responses and the measurement. As has been described
in [2], we can greatly improve the chance of unique identification of the model parameters by
processing simultaneously multiple circuits. In the case of FET modelling, we create multiple
circuits by taking measurements on the scattering parameters under several different biasing

conditions. From the physical characteristics of the device we know that with respect to



different biasing conditions some model parameters should remain almost unchanged while
the others should vary smoothly. Therefore, from a family of possible solutions we prefer the
one that exhibits consistency, i.e., the one that conforms to the physical characteristics of the
device. Such a self-consistent model can be achieved automatically by using €; optimization

and choosing those model parameters that are insensitive to bias as common variables.

B. The Model and the Measurements

The circuit model for the FET that we have taken is widely used by commercial
packages such as TOUCHSTONE [6] and SUPER-COMPACT [7]. It is shown in Fig. 1. The

model has 11 parameters that we will consider as optimization variables:
{Rg Rd Ls TRy R, Rs Cgs Cdngs gm} .
The first four parameters are considered to be bias insensitive.

Three sets of measurements on scattering parameters of a FET device under the

following biasing conditions were made available by R.A. Pucel [8].

1. Vs =4V Vgs = 0.00V Igs = 177 mA
2. Vas =4V Vgs= —1.74V  Igs=92mA
3. Vs =4V Vgs= —3.10V  Igs=37mA

The measurements were taken at 17 frequency points from 2 GHz to 18 GHz, 1 GHz

apart.

C. Formulation of the Problem

Microwave device modelling utilizing multiple circuits has been formulated in
general as an €; optimization problem by Bandler et al. [2]. The following are formulas (12)-

(14) in [2]:
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with superscript and index t identifying the t-th circuit. n. is the number of circuits and ky is
the number of functions arising from the t-th circuit. xt represents the vector of parameters of
the t-th circuit. Vectors xt,, t = 1, ..., n., contain only those parameters that vary between
different circuits. They do not include the common variables, i.e., those parameters that
assume the same values for all circuits. For each circuit, we combine the common variables
and xt, to form the vector xt.

For the FET modelling problem under consideration, which has three sets of
measurements, we specialize these formulas as follows:

3 17 2
minimize Y > > Z {IRel £5 (@)1 + [Iml £ (@)1},
t=1i=1 j=1

X

(4)

where
ft(w) Ft(x oo)—St(oo) (5)

In (5), Ftjx and Sty are the scattering parameters of the model and the measurement,
respectively, with superscript identifying three different biasing conditions. Having 17
frequency points with the real and imaginary parts of the complex S-parameters being
treated separately, we have a total of 408 error functions. The variables to be optimized in (4)

are defined as

2
X é xa . (6)



The vector x1 actually has two parts as

1o [ F @
X = ,
<!
a
where x¢ consists of the common variables as
c _ T
b¢ —[Rng Ls t] . (8)

These are the parameters we expect not to change with respect to different bias. The vector
xt, contains the remaining parameters of model t, namely,

t _ t t pt At t t t T
x, = Ry By By C Cog Cas Bl ©

The total number of variables is 25.
D. Results

We have solved the problem formulated in (1) using a superlinearly convergent €;
optimizer described by Bandler, Kellermann and Madsen [4]. The gradient required by the
optimizer is provided utilizing the approximation method proposed in this paper.

We should point out that in this case analytical evaluation of the gradient is actually
possible using the scheme outlined in [2]. The implementation of the theory, however,
requires lengthy and complicated programming. First of all, two adjoint solutions are needed
to evaluate the sensitivity expressions of the admittance matrix. From these expressions the
sensitivities of the scattering parameters are derived. Since multiple circuits are processed
simultaneously, a complex coding scheme is developed to associate functions arising from
different circuits with the corresponding variables. The task of identifying the appropriate
sensitivity expressions becomes formidable with the concept of common and independent
variables. If changes have ever to be made in the circuit topology or variable designation, the
amount of labor required to modify the software is such that one would rather re-write the
program completely. Comparatively, the evaluation of the function values only requires
much simpler effort. This, from the point of view of reducing program complexity, justifies

our pursuit of gradient approximation.



Three experiments were conducted which have used different schemes of gradient
approximation to solve the problem. From the same starting point they have led to basically
identical results. The starting point and the solution are given in Table I. The match
between the model responses and the measurements, at both the starting point and the
solution, are shown in Figs. 2-7.

The first experiment corresponds to the conventional approach of straightforward
numerical differentiation. At each iteration, n+ 1 model simulations are performed (n being
the number of variables) and the gradient is approximated by finite differences. It took 468
model simulations to reach the solution.

In the second case, the Broyden update without weights was used in conjunction with
special iterations of Powell to obtain the approximate gradient as described in Part I. Regular
corrections to the gradient approximation were also provided by perturbations once in every
five iterations. This experiment needed only 128 model simulations for its solution.

We observed that the multiple circuit formulation introduces a natural decomposition
between functions of one circuit and variables of another. For example, referring to (2) and
(3), the variables in x,1 belong exclusively to the first model and are therefore uncorrelated to
the functions derived from the second and the third models. Obviously, the derivatives
corresponding to such decoupled functions and variables are zeros. However, when we use
Broyden’s formula without weights, these derivatives are updated by nonzero values, thus
introducing apparent errors to the approximation. We can avoid this by using the weighted
Broyden update as introduced in Part I. To be more specific, we modify Broyden’s formula by
assigning zero weights for the decoupled functions and variables. Consequently, the corre-
sponding derivatives are kept at zero throughout the optimization process. Applying this
concept to our third experiment, we were able to reduce the use of perturbations to once in
every 10 iterations and reach the solution after just 79 model simulations. This number is

less than 1/5 of that of the first experiment where the more conventional method was



employed. It also represents a 38% reduction in the effort of estimating gradients as

compared to the second experiment.

III. WORST-CASE TOLERANCE DESIGN OF AMICROWAVE AMPLIFIER
The general formulation of worst-case tolerance design using optimization techniques

has been discussed in [9]. Consider the vector of nominal design parameters
o°=1¢)... 2T, (10)
the vector of associated tolerances

e=[eg ... sn]T, 11

and a tolerance region defined by
Re={¢|<l>°—eS<l>sq>°+e}. (12)

We seek an optimally centered point $0* such that the design specifications are satisfied over

the tolerance region. For minimax design, we have to

minimize max max {f.(})},
¢’ j O€R

where f;, j = 1, ..., m, are error functions derived from the design specifications. In practice,

(13)

we usually consider only the worst-case vertices of the tolerance region. The 2n vertices of the
tolerance region are defined by
= =a? - i= 14
Rv_{¢|q)i_q)i+€’ipi’ lli { 1’1}; 1—1y-“:n}~ ( )
If the functions are sufficiently smooth within the tolerance region, we can use first-

order changes to predict the worst-case vertices. For fj, we define the initial set of worst-case

vertices
. df.
RJV={¢|¢1 =¢?+811_11, }11=SIgn<('i'$]'>, i:]')’n}: (15)
1
where (dfi/d¢;) for all i,j are first derivatives at the nominal point ¢0. Actually the initial set
for each function fj contains only one point. A minimax optimization is then performed

minimize max max {fj(q))} (16)
@ O€R,



At the solution of (16), we use the derivatives at the new nominal point to predict the
worst-case vertices. If any of these vertices are not included in the initial sets Ry, they will be
added to those sets and a new optimization as defined by (16) will be performed. The reason
for augmenting the worst-case sets instead of replacing them is to stablize the algorithm.

As an example, we consider a microwave amplifier consisting of an NEC70000 FET
and five transmission lines [10] as shown in Fig.8. The FET is characterized by tabulated
scattering parameters as provided by the manufacturer. The design variables are the
characteristic impedance Z and the lengths ¢; of the transmission lines. Assuming a five
percent tolerance for each length ¢;, we seek an optimally centered design to best satisfy the
specification given by

7.05dB < 20 log|Se;| < 8.20dB, at w; = 6,7,...,18 GHz .
Using (15), the sets Ry, j = 1,2,...,26 (13 frequencies with both upper and lower speci-
fications), were initialized. Working with these sets, the optimization problem (16) was
solved. At its solution, 10 new worst-case vertices were detected by first-order projection. The
sets R, were augmented by these vertices and the optimization (16) was repeated. At the
second solution we found the sets of worst-case vertices were complete. The parameter values
at the starting point and the final solution are given in Table II. The total number of function
evaluations is 280. We have also solved the same problem with gradients being calculated
entirely by perturbations, which required a total of 585 function evaluations. Fig. 9 shows the

worst-case envelope at the solution.

IV. PRACTICAL DESIGN OF A 5-CHANNEL MULTIPLEXER

A. Introductory Remarks

Design of a five-channel 11 GHz manifold multiplexer by minimax optimization using
exact gradients has been described in detail by Bandler et al. [3]. To obtain the solution
reported in [3], a program with modules capable of computing multiplexer responses and their

sensitivities w.r.t. variables such as filter couplings and waveguide section lengths has been
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utilized. The theoretical aspects of sensitivity evaluation in multiplexer structures have been
discussed by Bandler et al. [11]. However, an actual implementation of the theory has taken
months of effort to develop and test. Furthermore, because the sensitivity expressions depend
highly on the circuit structure and vary from component to component, every change to the
problem such as assigning different variables requires expert modification to the software. In
fact, sensitivities with respect to all possible variables were computed even though some of
them were not actually used, because otherwise the coding scheme would have been
unmanageable. Large amounts of memory are required to store various adjoint solutions and
intermediate expressions. Utilizing our gradient approximation, it is possible to efficiently
design a multiplexer without all these troubles associated with computing the exact gradient.
This greatly reduces the size and complexity of the program. Clearly, evaluation of responses
alone is more straightforward than simultaneous evaluation of responses and sensitivities.

The five-channel multiplexer problem is an excellent choice for application of the
efficient gradient approximation technique for two reasons. First, the problem involves 75
variables and therefore numerical differentiation is indeed prohibitively expensive. To be
more specific, consider the following case. Starting from the initial parameter values
suggested in [3], at which the multiplexer responses are illustrated in Fig. 10, and using
similar specifications as in [3], an optimization w.r.t. all 75 variables resulted in the responses
of Fig. 11 after 50 itertions (45 seconds on the FPS 264 via IBM 4381), when exact
sensitivities were provided by the simulator. To achieve similar results by numerical
differentiation, multiplexer responses should be computed 76 X 50=3800 times. We will
show that the application of the method described in this paper reduces the number of
response evaluations required significantly.

A second feature of the 5-channel multiplexer problem is the fact that it is naturally
suited for the use of the weighted Broyden update in gradient approximation as described in
Part I. Considering Fig. 11, it is intuitively obvious that the common port return loss at lower

frequencies should be almost independent of the coupling values of the two filters with the
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passbands at higher frequencies. Similarly, at higher frequencies the common port return
loss should be independent of the coupling parameters of the three filters with passbands at
lower frequencies. We will show that the use of weights in updating the Jacobian can improve

the performance of the optimization.

B. Results

Before discussing the new results obtained in this paper, we describe the details of the
5-channel multiplexer problem. Some of this information was reported in [3]. The center
frequencies and bandwidths are given in Table IIIl. The waveguide manifold width is 0.75
inches. In all experiments, we start the optimization with five identical 6th order filters

having the following coupling matrix [3]:

0 0.62575 0 0 0 o
0.62575 0 0.57615 0 0 0
0 0.57615 0 0.32348 0 074957
M = ,
0 0 0.32348 0 1.04102 0
0 0 0 1.04102 0 1.04239
o 0 —0.74957 0 1.04239 o |

where M9, M34 and M5 are screw couplings and Mg3, My5 and M3g are iris couplings. Filters
are cylindrical with a diameter of 1.07 inches. The starting values for input and output filter
couplings (transformer ratios) are given as n12=0.68820 and n22= 2.04417. The filters are
lossy with an estimated Q factor of 12000.

The initial spacing for the waveguide section associated with each channel is set equal
to half the guide wavelength evaluated at the center frequency of the corresponding channel
filter. In all experiments, filter losses (dissipation), frequency dispersion and nonideal

junctions were taken into account. The models for these nonideal effects are given in [12].
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In all the experiments which follow, we use the same frequency points and the same
specifications as the ones utilized when the problem was solved with the exact sensitivities.
The major difference is, of course, the fact that we use a simulator which only provides
responses. A total of 52 frequency points is used for common port return loss with the lower
specification of 20 dB. These points are almost uniformly spaced (10 MHz apart) in the pass-
band of each channel with additional single frequencies at the crossover of two contiguous
channels. A lower specification of 20 dB on the transition band insertion loss of some
channels is also imposed. More specifically, the following frequencies are used for the
insertion loss: 10935, 11210, 11215, 11440, 11442, 11712 and 11725 MHz. In Table IV, the
multiplexer parameters at the optimum solution of Fig. 11 are summarized.

Several experiments were performed on the 5-channel multiplexer using the
approximate gradients.

In the first experiment, perturbation was performed at the starting point with no
further corrections, i.e., only the Broyden update and special iterations were used as the
optimization proceeded. A solution was reached after 266 response evaluations (81 seconds on
the FPS 264), of which 75 were used for the initial perturbation. The responses at the solution
are illustrated in Fig. 12. Since the solution is not as good as the one achieved using the exact
gradients (compare Fig. 12 with Fig. 11), it seems that the regular updating of the gradients
using perturbations is necessary in this case.

In a second experiment, we performed perturbations for every 20 iterations of the
optimization. After 500 response evaluations (138 seconds), of which 5 X 75=375 were used
for perturbations, the responses shown in Fig. 13 were obtained. Continuing the process until
1000 response evaluations are performed (298 seconds from the starting point), the responses
in Fig. 14 were obtained. The optimum parameters corresponding to this figure are
summarized in Table V. Comparing Fig. 14 with Fig. 11, it is clear that with the approximate

gradients we have achieved as good a result as with the exact gradients. Recall that 3800
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response evaluations would be required to achieve the responses of Fig. 11 if the exact
gradient calculations were simply replaced by perturbations.

Experiments one and two were both performed with all the weights wy;, i = 1,...,n,
j =1,...,m, being equal to 1. In a third experiment we used zeros for appropriate weights in
positions where it is known that a function is almost independent of a variable. For instance,
the insertion loss of channels 3, 4 and 5 (channel 1 is the one with the highest center
frequency) and the common port return loss over the range of frequencies in the passbands of
channels 3 to 5 are almost independent of the filter couplings in channels 1 and 2. Therefore,
the appropriate weights are set to zero. Repeating experiment 1, i.e., using perturbations
only at the starting point, the responses of Fig. 15 were obtained after 500 response
evaluations (166 seconds). Comparing Figs. 15 and 12 indicates that the use of appropriate
weights has prevented the optimization from stopping prematurely due to accumulation of
error in gradient approximations. The conclusion is that the use of appropriate weights
effectively reduces the number of times that the time-consuming correction of gradients by

perturbation is to be performed.

V. CONCLUSIONS

Implementations of minimax and € optimization with integrated gradient approxi-
mations have been presented. Examples of significant practical interest including multiple
circuit modelling, fixed tolerance worst-case analysis and large-scale design have been
described in detail. A summary of the computational efforts for these examples is given in
Table VI. Our algorithm has demonstrated its effectiveness and flexibility in handling a
large variety of problems. Compared with the commonly used method of estimating gradients
by perturbations, the new approach has significantly improved the computational efficiency.
We have also illustrated the weighted update which exploits decomposed structures to further

reduce computation effort. The utilization of this algorithm in conjunction with existing
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circuit simulation packages will make it more effective and practical, taking advantage of the

powerful tools of gradient-based optimization in modern computer-aided design.
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TABLEI

PARAMETER VALUES OF THE FET MODELS

Casel Case 2 Case 3
Parameter

starting solution starting solution  starting solution

1.0 2.6025 1.0 2.6025 1.0 2.6025 R (OH)

1.0 3.7630 1.0 3.7630 1.0 3.7630 R4 (OH)
143.0 199.1591 143.0 163.8249 143.0 163.1911 Rgs (OH)

1.0 0.0099 1.0 0.0999 1.0 0.3891 R; (OH)

1.0 1.0016 1.0 0.9220 1.0 0.6482 R4 (OH)

0.02 0.0039 0.02 0.0039 0.02 0.0039 Lg (nH)

1.4 0.7181 1.4 0.4417 1.4 0.3454 Cgs (PF)

0.07 0.0306 0.07 0.0475 0.07 0.0609 Cyg (pF)

04 0.2228 0.4 0.2229 0.4 0.2151 Cas (pB)

0.09 0.0696 0.09 0.0521 0.09 0.0410 gm (/OH)

7.0 3.9558 7.0 3.9558 7.0 3.9558 © (ps)

Biasing Conditions
Case 1: Vs = 4V Vgs = 0.00V Igs = 17TTmA
Case 2: Vs = 4V Vgs = —1.74V Igs = 92mA

Case 3: Vis= 4V Vs

—3.10V Igs = 37mA
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TABLE II

PARAMETER VALUES OF THE MICROWAVE AMPLIFIER

Parameter Starting Point Solution
£ 52.96 69.01
€9 148.13 152.01
43 26.80 18.48
N 24.01 5.10
€5 46.63 36.49
Z 81.27 126.39
TABLE III

MULTIPLEXER CENTER FREQUENCIES AND BANDWIDTHS

Channel Center Frequency Bandwidth
1 11618.5 154
2 11495 76
3 11155 76
4 11075 76
5 10992.5 81
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TABLE IV
MULTIPLEXER PARAMETERS AFTER AN OPTIMIZATION
WITH EXACT GRADIENTS
Parameter Ch.1 Ch.2 Ch.3 Ch.4 Ch.5
My —0.0417 0.2194 —0.0859 0.0454 0.0459
Moo —0.0708 0.0301 —0.0596 —0.0098 0.0310
M3s; —-0.0209 -0.0215 —-0.0119 —0.0097 0.0069
Myy —0.0196 —-0.0621 0.0158 —0.0121 —0.0070
M55 0.0414 —-0.0172 0.0121 0.0023 0.0141
Mgg 0.0402 0.0117 0.0339 —0.0058 0.0104
Mj2 0.7598 0.7383 0.7091 0.6115 0.6592
Mag 0.5723 0.6096 0.5845 0.5551 0.5873
M3s4 0.4239 0.4221 0.4086 0.3048 0.3644
Mgg —0.5326 —0.6346 —0.6021 —0.7519 —0.6948
Mys 0.8971 1.0266 0.9916 1.0317 1.0468
M5 1.1023 1.1518 1.1715 1.0558 1.1186
n 1.0547 0.9358 0.9343 0.8188 0.8031
ng 1.4350 1.4311 1.4286 1.4153 1.4120

14 0.7033 0.6039 0.9219 0.7191 0.7295
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TABLE V

MULTIPLEXER PARAMETERS AFTER AN OPTIMIZATION
WITH APPROXIMATE GRADIENTS

Parameter Ch.1 Ch.2 Ch.3 Ch.4 Ch.5
My, —0.0432 0.1801 —0.0788 0.0384 0.0401
Mjq —0.0526 0.0294 —0.0514 —0.0067 0.0254
M3g —0.0082 —0.0178 —0.0082 —0.0055 0.0044
Myyq 0.0158 —-0.0582 0.0160 —0.0064 —-0.0102
Ms5 0.0160 —0.0206 0.0090 0.0021 0.0038
Mge —0.0255 0.0100 —0.0248 —0.0037 0.0066
Mo 0.7427 0.7077 0.6969 0.6124 0.6495
Mag 0.5796 0.5951 0.5815 0.5567 0.5800
M3y 0.3855 0.3876 0.3780 0.3050 0.3491
Mgsg —0.6314 —0.6699 —0.6540 —0.7520 —0.7083
Mys 0.9657 1.0338 1.0064 1.0325 1.0324
M5 1.1330 1.1279 1.1346 1.0553 1.0983
n; 0.9976 0.8915 0.8997 0.7993 0.7862
ng 1.4416 1.4236 1.4223 1.4140 1.4154

14 0.6958 0.6132 0.9235 0.7228 0.7360
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TABLE VI

COMPARISON OF COMPUTATIONAL EFFORT

Number of Function Evaluations

Examples

Casel Case 2 Case 3
FET modelling 468 128 79
Microwave Amplifier 585 280 -
Multiplexer 3800 1000 500

Case 1: gradient estimated entirely by perturbations
Case 2: using the new algorithm without weights

Case 3: using the new algorithm with weighted update
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Fig. 1 The small signal equivalent circuit model for the FET.
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starting point. Vgg = 4V, Vg = 0V and Igs = 177 mA.
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Fig. 2 The S-parameter match between the model and the measurements at the
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Fig. 3 The S-parameter match between the model and the measurements at the
starting point. Vgg = 4V, Voo = —1.74V and I35 = 92 mA.
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Fig. 4 The S-parameter match between the model and the measurements at the
starting point. Vgs = 4V, Vgg = —3.1V and Igs = 37 mA.
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Fig. 5 The S-parameter match between the model and the measurements at the

solution. Vgg = 4V, Vo = 0V and Igs = 177 mA.
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Fig. 6 The S-parameter match between the model and the measurements at the

solution. Vgg = 4V, Vg = —1.74V and Igs = 92 mA.
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Fig. 7 The S-parameter match between the model and the measurements at the
solution. Vgg = 4V, Vgg = —3.1Vand I35 = 37 mA.
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Fig. 8 A microwave amplifier [10].
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Fig.9 The worst-case envelope for the amplifier response at the solution.
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Fig. 10 Responses of the 5-channel, 11 GHz multiplexer at the starting point.
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Fig. 11 Responses of the 5-channel multiplexer obtained after 50 optimization iterations

using exact derivatives. It would require 3800 multiplexer response evaluations
to estimate the derivatives entirely by perturbations.
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Responses of the 5-channel multiplexer obtained using a simple scheme of
gradient approximations. Only the Broyden update and special iterations were
used as the optimization proceeded. Such a simple scheme failed to give the best
possible solution.
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Fig. 13
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Responses of the 5-channel multiplexer obtained after 500 response evaluations.
Approximate gradients were used with regular corrections provided by
perturbations for every 20 iterations.
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Fig. 14 Responses of the 5-channel multiplexer obtained by continuing the process

described in Fig. 13 for another 500 response evaluations.
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Fig. 15
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Responses of the 5-channel multiplexer obtained utilizing the weighted Broyden
update. It required only 500 response evaluations. The use of appropriate
weights has effectively prevented the optimization from stopping prematurely
(Fig. 12) and avoided the time-consuming correction by perturbations (Figs. 13
and 14).
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