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Abstract This paper reviews the current state of the art in circuit optimization, emphasizing
techniques suitable for modern microwave CAD. It is directed at the solution of realistic
design and modeling problems, addressing such concepts as physical tolerances and model
uncertainties. A unified hierarchical treatment of circuit models forms the basis of the pre-
sentation. It exposes tolerance phenomena at different parameter/response levels. The
concepts of design centering, tolerance assignment and postproduction tuning in relation to
yield enchancement and cost reduction suitable for integrated circuits are discussed. Suitable
techniques for optimization oriented worst-case and statistical design are reviewed. A
generalized ¢, centering algorithm is proposed and discussed. Multi-circuit optimization
directed both at CAD and robust device modeling is formalized. Tuning is addressed in some
detail, both at the design stage and for production alignment. Practical examples covering a
wide range of microwave circuit problems illustrate the relevant concepts. State of the art
gradient-based nonlinear optimization methods are reviewed with emphasis given to recent,
but well-tested, advances in minimax, €; and €9 optimization. Useful formulas for sensitivity

calculations and gradient approximations are also presented.
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I. INTRODUCTION

Computer-aided circuit optimization is certainly one of the most active areas of
interest. Its advances continue, hence the subject deserves regular review from time to time.
The classic paper by Temes and Calahan in 1967 [116] was one of the earliest to formally
advocate the use of iterative optimization in circuit design. Techniques that were popular at
the time, such as one-dimensional (single-parameter) search, the Fletcher-Powell procedure
and the Remez method for Chebyshev approximation, were described in detail and well-
illustrated by circuit examples. Pioneering papers by Lasdon, Suchman and Waren
[83,84,121] demonstrated optimal design of linear arrays and filters using the penalty
function approach. Two papers in 1969 by Director and Rohrer [56,57] originated the adjoint
network approach to sensitivity calculations, greatly facilitating the use of powerful gradient-
based optimization methods. In the same period, the work by Bandler [6,7] systematically
treated the formulation of error functions, the least pth objective, nonlinear constraints,
optimization methods and circuit sensitivity analysis.

Since then, advances have been made in several major directions. The development of
large-scale network simulation and optimization techniques has been motivated by the
requirements of the VLSI era. Approaches to realistic circuit design where design parameter
tolerances and yield are tallken into account have been pioneered by Elias [60] and Karafin
[79] and furthered by many authors over the ensuing years. Optimization methods have
evolved from simple, low-dimension-oriented algorithms into sophisticated and powerful
ones. Highly effective and efficient solutions have been found for a large number of
specialized applications. The surveys by Calahan [43], Charalambous [44], Bandler and Rizk
[31], Hachtel and Sangiovanni-Vincentelli [73], and Brayton et al. [38] are especially relevant
to circuit designers.

In the present paper, we concentrate on aspects that are relevant to and necessary for
the continuing move to optimization of increasingly more complex microwave circuits, in

particular to MMIC circuit modeling and design. Consequently, we emphasize optimization



oriented approaches to deal more explicitly with process imprecision, manufacturing
tolerancés, model uncertainties, measurement errors, and so on. Such realistic considerations
arise from design problems in which a large volume of production is envisaged, e.g.,
integrated circuits. They also arise from modeling problems in which consistent and reliable
results are expected despite measurement errors, structural limitations such as physically
inaccessible nodes, and model approximations and simplifications. The effort to formulate
and solve these problems represents one of the driving forces of theoretical study in the
mathematics of circuit CAD. Another important impetus is provided by progress in computer
hardware, resulting in drastic reduction in the cost of mass computation. Finally, the
continuing development of gradient-based optimization techniques has provided us with
powerful tools.

In this context, we review the following concepts: realistic representations of a circuit
design and modeling problem, nominal (single) circuit optimization, statistical circuit design
and multi-circuit modeling, recent gradient-based optimization methods, as well as the
calculation and approximation of gradiénts for the optimizers.

Nominal design and modeling are the conventional approaches used by microwave
engineers. Here, we seek a single point in the space of variables selected for optimization
which best meets a given sgt of performance specifications (in design) or best matches a given
set of response measurements (in modeling). A suitable scalar measure of the deviation
between responses and specifications which forms the objective function to be minimized is
the ubiquitous least squares measure (see, for example, Morrison [93]), the more esoteric
generalized €p, objective (Charalambous [46]) or the minimax objective (Madsen et al. [90]).
We observe here that the performance driven (single circuit) least squares approach that
circuit design engineers have traditionally chosen has proved unsuccessful both in addressing
design yield as well as in serious device modeling. -

Recognition that an actual realization of a nominal design is subject to fluctuation or

deviation led, in the past, to the so-called sensitivity minimization approach (see, for example,



Schoeffler [108] and Laker et al. [81]. Employed by filter designers, the approach involves
measures of performance sensitivity, typically first-order, and including it in the objective
function.

In reality, uncertainties which deteriorate performance may be due to physical
(manufacturing, operating) tolerances as well as parasitic effects such as electromagnetic
coupling between elements, dissipation and dispersion (Bandler [8], Tromp [120]). In the
design of substantially untunable circuits these phenomena lead to two important classes of
problems: worst-case design and statistical design. The main objective is the reduction of cost
or the maximization of production yield.

Worst-cast design (Bandler et al. [28,29]), in general, requires that all units meet the
design specifications under all circumstances (i.e., a 100% yield), with or without tuning,
depending on what is practical. In statistical design [1,31,36,55,111,112,114,115] it is
recognized that a yield of less than 100% is likely and therefore, with respect to an assumed
probability distribution function, yield is estimated and enhanced by optimization. Typically,
we either attempt to center the design with fixed assumed tolerances or we attempt to
optimally assign tolerances and/or design tunable elements to reduce production cost.

What distinguishes all these problems from nominal designs or sensitivity
minimization is the fact that a single design point is no longer of interest: a (tolerance) region
of multiple possible outcomes is to be optimally located with respect to the acceptable
(feasible, constraint) region.

Modeling, often unjustifiably treated as if it were a special case of design, is
particularly affected by uncertainties and errors at many levels. Unavoidable measurement
errors, limited accessibility to measurement points, approximate equivalent circuits, etc.,
result in nonunique and frequently inconsistent solutions. To overcome these frustrations,
we advocate a properly constituted multi-circuit approach (Bandler et al. [16]).

Our presentation is organized into nine sections.



In Section II, in relation to a physical engineering system of interest, a typical
hierarchy of simulation models and corresponding response and performance functions are
introduced. Error functions arising from given specifications and a vector of optimization
variables are defined. Performance measures such as {j objective functions (£, norms and
generalized £, functions) are introduced and their properties discussed.

We devote to Section III a brief review of the relatively well-known and successful
approach of nominal circuit design optimization. Illustrative examples are also given.

In Section IV, uncertainties that exist in the physical system and at different levels of
the model hierarchy are discussed and illustrated by a practical example. Different cases of
multi-circuit design, namely centering, tolerancing (optimal tolerance assignment) and
tuning at the design stage, are identified. A multi-circuit modeling approach and several
possible applications are described.

Some important and representative techniques in worst-case and statistical design
are reviewed in Section V. These include the nonlinear programming approach to worst-case
design (Bandler et al. [29], Polak [99]), simplicial (Director and Hachtel [55]) and multi-
dimensional (Bandler and Abdel-Malek [9]) approximations of the acceptable region, the
gravity method (Soin and Spence [112]) and the parametric sampling method (Singhal and
Pinel [111]). A generalized ¢, centering algorithm is proposed as a natural extension to ¢,
nominal design. It provides a unified formulation of yield enchancement for both the worst-
case and the case where yield is less than 100%.

Illustrations of statistical design are given in Section VL.

The studies in the last two decades on the theoretical and algorithmic aspects of
optimization techniques have produced a great deal of results. Especially, gradient-based
optimization methods have gained increasing popularity in recent years for their effective-
ness and efficiency. The essence of the important Gauss-Newton, quasi-Newton and con-
jugate gradient families, which encompass the majority of gradient-based methods, is

reviewed in Section VII. Emphasis is given to the use of a trust region and the solution of



optimality equations by a quasi-Newton iteration (Madsen [88], Moré [92], Dennis and Moré
[54)). Sbecial attention is also given to minimax and €; optimization when the objective
function is not differentiable (Hald and Madsen [75,76]).

Gradient calculations for linear circuits are introduced in Section VIII. Sensitivity
formulas for networks with a nodal description (Director and Rohrer [56], Branin [37]),
unterminated and terminated two-ports, as well as some commonly used frequency responses
are presented. Obstacles in practical implementation relating to large-scale networks are
addressed. A brief treatment of the subject of gradient approximation (Bandler et al.
[19,20,21]) is also given.

Section IX contains our conclusions to this paper and some comments on future

research directions.

II. VARIABLES AND FUNCTIONS
In this section, we review some basic concepts of practical circuit optimization. In
particular, we identify a physical system and its simulation models. We discuss a typical
hierarchy of models and the associated designable parameters and response functions. We

also define specifications, error functions, optimization variables and objective functions.

The Physical System

The physical engineering system under consideration can be a network, a device, a
process, and so on, which has both a fixed structure and given element types. We manipulate
the system through some adjustable parameters contained in the column vector M. The
superscript M identifies concepts related to the physical system. Geometrical dimensions
such as the width of a strip and the length of a waveguide section are examples of adjustable
parameters.

In the production of integrated circuits, M may include some fundamental variables

which control, say, a doping or photomasking process and, consequently, determine the



geometrical and electrical parameters of a chip. External controls, such as the biasing
voltages .applied to an active device, are also possible candidates for M.

The performance and characteristics of the system are described in terms of some
measurable quantities. The usual frequency and transient responses are typical examples.

These measured responses, or simply measurements, are denoted by FM(¢pM).

The Simulation Models

In circuit optimization, some suitable models are used to simulate the physical
system. Actually, models can be usefully defined at many levels. Tromp [119,120] has
considered an arbitrary number of levels (also see Bandler et al. [24]). (It is our opinion that a
substantial reason for the failures in the practical implementation of CAD and device
modeling is the casual attitude taken to the identification and implementation of parameters
and responses.) Here, for simplicity, we consider a hierarchy of models consisting of four

typical levels as

F = FFl,
FL = Flo", (1)
ot = oM @h.

oL is a set of low-level model parameters. It is supposed to represent, as closely as
possible, the adjustable parameters in the actual system, i.e., M. ¢H defines a higher-level
model, typically an equivalent circuit, with respect to a fixed topology. Usually, we use an
equivalent circuit for the convenience of its analysis. The relationship between ¢L and ¢H is
either derived from theory or given by a set of empirical formulas.

Next on the hierarchy we define the model responses at two possible levels. The low-
level external representation, denoted by FL, can be the frequency-dependent complex
scattering parameters, unterminated y-parameters, transfer function coefficients, etc.

Although these quantities may or may not be directly measurable, they are very often used to



represent a subsystem. The high-level responses FH directly correspond to the actual
measure(i responses, namely FM, which may be, for example, frequency responses such as
return loss, insertion loss and group delay of a suitably terminated circuit.

A realistic example of a one-section transformer on stripline was originally considered
by Bandler et al. [30]. The circuits and parameters, physical as well as model, are shown in
Fig. 1. The physical parameters $M (and the low-level model $L) include strip widths, section
lengths, dielectric constants, strip and substrate thicknesses. The equivalent circuit has six
parameters, considered as ¢H, including the effective linewidths, junction parasitic
inductances and effective section length. The scattering matrix of the circuit with respect to
idealized (matched) terminations is a candidate for a low-level external representation (FL).
The reflection coefficient by taking into account the actual complex terminations could be a
high-level response of interest (FH),

For a particular case, we may choose a certain section of this hierarchy to form a
design problem. We can choose either $L or ¢H as the designable parameters. Either FL or
FH or a suitable combination of the both may be selected as the response functions. Bearing
this in mind, we simplify the notation by using ¢ for the designable parameters and F for the

response functions.

Specifications and Error Functions

The following discussion on specifications and error functions is based on
presentations by Bandler [7], and Bandler and Rizk [31], where more exhaustive illustrations
can be found.

We express the desirable performance of the system by a set of specifications which
are usually functions of certain independent variable(s) such as frequency, time, temperature,
ete. In practice, we have to consider a discrete set of samples of the independent variable(s)
such that satisfying the specifications at these points implies satisfying them almost every-

where. Also, we may consider simultaneously more than one kind of response. Thus, without



loss of generality, we denote a set of sampled specifications and the corresponding set of

calculated response functions by, respectively,

S., j=12,...,m,
! @

F@, §=12..m.

Error functions arise from the difference between the given specifications and the
calculated responses. In order to formulate the error functions properly, we may wish to
distinguish between having upper and lower specifications (windows) and having single
specifications, as illustrated in Figs. 2-a and 3-a. Sometimes the one-sidedness of upper and
lower specifications is quite obvious such as in the case of designing a bandpass filter. On
other occasions the distinction is more subtle, since a single specification may as well be
interpreted as a window having zero width.

In the case of having single specifications, we define the error functions by

= = 3
ej((b) -wlej((b)—Sjl, i=12,..,m,

where wj is a nonnegative weighting factor.
We may also have an upper specification Sy and a lower specification Sgj. In this case

we define the error functions as

euj((b) = wuj(Fj(d))—Suj) . T &,

(4)
eej((b) = wej(Fj@)"Sej) ) i€d,.
where wyj and we; are nonnegative weighting factors. The index sets as defined by
J ={.dgs0dct s
u 1792 k (5)

o= Uerrodirg rinh

are not necessarily disjoint (i.e., we may have simultaneous specifications). In order to have a
set of uniformly indexed error functions, we let

e = euj(d)) , i=j, i= 1,2,..,k, ®

e = —eej((b), ] =ji’ i=k+1,k+2,...,m.

The responses corresponding to the single specifications can be real or complex,

whereas upper and lower specifications are applicable to real responses only. Notice that, in



10

either case, the error functions are real. Clearly, a positive (nonpositive) error function
indicates a violation (satisfaction) of the corresponding specification. Figures 2-b and 3-b

depict the concept of error functions.

Optimization Variables and Objective Functions

Mathematically, we abstract a circuit optimization problem by the following

statement

minimize Ux) N

where x is a set of optimization variables and U(x) a scalar objective function.

Optimization variables and model parameters are two separate concepts. As will be
elaborated on later in this paper, x may contain a subset of ¢ which may have been
normalized or transformed, it may include some statistical variables of interest, several
parameters in ¢ may be tied to one variable in x, and so on.

Typically, the objective function U(x) is closely related to an €, norm or a generalized
¢, function of e(¢). We shall review the definitions of such ¢p functions and discuss their

appropriate use in different contexts.

The €, Norms

The €, norm (Temes and Zai [117]) of e is defined as

p
)]

m
= P
lel, [ 2 lel
=1
It provides a scalar measure of the deviations of the model responses from the
specifications. Least-squares (£3) is perhaps the most well-known and widely used norm

(Morrison [93]), which is
172

lel,= [i lej|2] : €)

-1
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The £2 objective function is differentiable and its gradient can be easily obtained from
the partfal derivatives of e. Partly due to this property, a large variety of €2 optimization
techniques have been developed and popularly implemented. For example, the commercial
CAD packages TOUCHSTONE [118] and SUPER-COMPACT [113] have hitherto provided
designers soley the least-squares objective.

The parameter p has an important implication. By choosing a large (small) value for
p, we in effect place more emphasis on those error functions (ej's) that have larger (smaller)

values. By letting p = » we have the minimax norm
10)

lel, = max |e]

i
which directs all the attention to the worst case and the other errors are in effect ignored.
Minimax optimization is extensively employed in circuit design where we wish to satisfy the

specifications in an optimal equal-ripple manner [3,17,18,26,45,47,75,78,90,95].

On the other hand, the use of the €; norm,as defined by

m
11
lel, =2 lel, , (an
i=1 ‘

implies attaching more importance to the error functions that are closer to zero. This
property has led to the application of ¢; to data-fitting in the presence of gross errors
[27,35,76,96] and, more recently, to fault location [10,11,33] and robust device modelling [16].

Notice that neithez; llello nor |ejl; is differentiable in the ordinary sense. Therefore,
their minimization requires algorithms that are much more sophisticated than those for the

€2 optimization.

The One-sided and Generalized €, Functions

By using an ¢, norm, we try to minimize the errors towards a zero value. In cases
where we have upper and lower specifications, a negative value of ej simply indicates that the
specification is exceeded at that point which is, in a sense, better than having e; = 0. This fact

leads to the one-sided ¢, function defined by
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U
ZIejlp] y (12)

j€d
where J = {j| ej = 0}. Actually, if we define e;+ = max {e;, 0}, then Hp*(e) = [le*] .

H;'(e) =

Bandler and Charalambous [12,46] have proposed the use of a generalized €}, function

defined by

HY(e) ifthesetdisnot £
p not empty (13)

Hp(e) =(
Hp' (e) otherwise

where

-ie (14)

H () = _[-21 (—e)7P
J=

In other words, when at least one of the e;j is nonnegative we use Hp*, and H,™ is defined if all
the error functions have become negative.

Compared to (12), the generalized £, function has an advantage in the fact that it is
meaningfully defined for the case where all the ej are negative. This permits its minimization
to proceed even after all the specifications have been met, so that the specifications may be
further exceeded. The current versions of TOUCHSTONE [ilS] and SUPER-COMPACT
[113] provide only the one-sided €3 objective function, thus the optimization stops once the
specifications are met.

A classical example is the design of Chebyshev type bandpass filters, where we have

to minimize the generalized minimax function

H,(e) = max fe}. (19

J
Very recently, Bandler et al. [27] have reported the use of the one-sided ¢; function in

network design with an aim of providing a good starting point for subsequent minimax

optimization.
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The Acceptable Region

We use H(e) as a generic notation for [le] ,, Hp+(e) and Hy(e). The sign of H(e(d))
indicates whether or not all the specifications are satisfied by &. An acceptable region is

defined as

R, = {®|H (@) <0}, (16)

Figures 2-c, 2-d, 3-c and 3-d depict the £, functions and the acceptable regions.

III. NOMINAL CIRCUIT OPTIMIZATION
Introduction

In a nominal design, without considering tolerances (i.e., assuming that modeling and
manufacturing can be done with absolute accuracy), we seek a single set of parameters, called
a nominal point and denoted by 0, which satisfies the specifications. Furthermore, if we
consider the functional relationship of $H = ¢H(PL) to be precise, then it does not really
matter at which level the design is conceived. In fact, traditionally it is often oriented to an
equivalent circuit.

A classical case is network synthesis where ¢H.0 is obtained through the use of an
equivalent circuit and/or a transfer function. A low-level model $L.0 is then calculated from
¢H.0, typically with the help of an empirical formula (e.g., the number of turns of a coil is
calculated for a given indu;:tance). Finally, we try to realize 1.0 by its physical counterpart
MO,

With the tool of mathematical optimization, the nominal point $0 (at a chosen level) is
obtained through the minimization of U(x), where the objective function is typically defined
as an €p function H(e). The vector x contains all the elements of or a subset of the elements of
$0. It is a common practice to have some of the variables normalized. It is also common to
have several model parameters tied to a single va_riable. This is true, e.g., for symmetrical

circuit structures but, most importantly, it is a fact of life in integrated circuits. Indeed, such
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dependencies should be taken into account both in design and modeling to reduce the

dimensionality.

Manifold Multiplexer Example

As illustrations, we consider nominal design optimization of contiguous band miero-
wave multiplexers consisting of multi-coupled cavity filters distributed along a waveguide
manifold. This has been a problem of significant interest (Atia [4], Chen et al. [48,49]). We
devote our attention to description of the circuits and set-up of the design problems, while
leaving the mathematics of the optimization techniques to Section VII.

A typical multiplexer structure is shown in Fig. 4. Recently, a general approach to
simulation and sensitivity analysis of multiplexers has been presented in [23]. A major task
in multiplexer optimization is to design the channel filters and to determine the location of
these filters along the waveguide manifold. The responses of interest for a typical problem
are common-port return loss and insertion loss between common port and channel output
ports.

The physical parameters for a channel filter include the geometrical dimensions of the
cross slots through which the cavities are coupled and the penetrations of the coupling screws
by which different modes in the same cavity are coupled. The cavity resonant frequencies
may also be adjusted using tuning sci'ews. The narrowband equivalent circuit introduced by
Atia and Williams [5] can be used where we consider, as high-level model parameters, a
coupling matrix as well as input and output transformer ratios. Exact sensitivity formulas
for such filters have been given by Bandler et al. [15].

The interface between the filter and manifold waveguides can be a T-junction for
which an empirical model due to Chen et al. [49] may be used. The location of channel filters
along the manifold can be described by spacings.. They prove to be critical parameters in

design.



15

The first example is a 12 GHz, 12 channel multiplexer recently described by Bandler,
Kellermann and Madsen [27]. It is a contiguous band multiplexer having a channel
frequency separation of 40 MHz and a usable bandwidth of 39 MHz. The center frequency of
channel No. 1 is 12180 MHz. Twelve 6th order filters are used which have designable
couplings indicated in the following matrix
[~ 7

M, M, -0 0 0 0

M, M, M23 0 0 0

0 0 M36 0 M, M66

The diagonal elements M;j; represent deviations from the synchroneously tuned
resonance. Notice that M is symmetrical such that Mj; and M;; depend on the same variable.
Elements of M may be cohsidered as H. A lower specification of 20 dB on the common port
return loss is imposed over the passband of all 12 channels. As shown in Fig. 5, the
specification is seriously violated at the starting point.

The design process is started with a one-sided €; optimization using the algorithm in
[27]. We use ¢, to deemphasize the worst violations of the specification and concentrate on the
smaller errors. At this stage only the waveguide spacings are optimized since they are
considered as the dominant variables of the problem, based on an initial sen§itivity analysis.
The spacing between the kth and (k—1)th channels is initially set to half the wavelength
corresponding to the kth center frequency. The result of the one-sided €; optimization is
shown in Fig. 6. Serious violations of the specification occur in the frequency range corre-
sponding to channels 1-2 and 8-12. This motivates us to release additional variables

associated with these channels including filter couplings and transformer ratios. From that
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point minimax optimization [26] is employed involving 60 variables. The final optimized
return loss is shown in Fig. 7.

As a second example, we consider expanding the previous 12 channel design into a 16
channel multiplexer. It involves 240 nonlinear designable parameters. Instead of making a
blind attempt to optimize all the variables simultaneously, we utilize the new decomposition
approach to lafge scale problems described in [18,34]. By adding one channel at a time, we
are able to define a localized problem involving a relatively small number of variables and
functions. For example, when the 13th channel is added, we optimize only variables in
channels 12 and 13 with specifications imposed on responses in channels 11, 12 and 13.
Although this may be justified intuitively, it is actually soundly based on sensitivity
analyses. By repeating such a decomposition process four times, in which channels 13-16 are
added and optimized successively, an optimal design is reached, as shown in Fig. 8.

Optimization of non-contiguous band multiplexers has also been considered in [26].

Extensions of Nominal Design to Modeling

Traditionally, the approach of nominal design has been extended to solving modeling
problems. A set of measurements made on the physical system serves as single specifications.
Error functions are created from the differences between the calculated responses F(¢0) and
the measured responses FM. By minimizing an €, norm of the error functions, we attempt to
identify a set of model parameters ¢0 such that F(¢0) best matches FM. This is known as data
fitting or parameter identification.

Such a casual treatment of modeling as if it were a special case of design is often
unjustifiable, due to the lack of consideration to the uniqueness of the solution. In design, one
satisfactory nominal point, possibly out of many feasible solutions, may suffice. In modeling,
however, the uniqueness of the solution is almost.always essential to the problem. Affected
by uncertainties at many levels, unavoidable measurement errors and limited accessibility to

measurement points, the model obtained by a nominal optimization is often nonunique and
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unreliable. To overcome these frustrations, a recent multi-circuit approach will be described

in Section IV.

IV. AMULTI-CIRCUIT APPROACH
The approach of nominal circuit optimization, which we have described in Section III,
focuses attention on a certain kind of idealized situation. In reality, unfortunately, there are
many uncertainties to be accounted for. For the physical system, without going into too many

details, consider

! = FM9M) + aFM,
@0 a7

‘bM =‘1>M,0_‘}_ AQ)M ,

where AFM represents measurement errors, $M.0 a nominal value for $M and ApM some
physical (manufacturing, operating) tolerances.
For simulation purposes, we may consider a realistic representation of the hierarchy

of possible models as

F = FLOFL + AFH,

_ 0,3 H
Fr = F94M)+ AFE, 1s)

" = ¢™%eh+ ao",

ol = 0+ AL .
where $L.0, $H.0, FL.0 and FH.0 are nominal models applicable at different levels. A¢L, AdH,
AFL and AFH represent uncertainties or inaccuracies associated with the respective models.
AL corresponds to the tolerances ApM. AdH may be due to the approximate nature of an
empirical formula. Parasitic effects which are not adequately modeled in H will contribute
to AFL, and finally we attribute anything else that causes a mismatch between FH,0 and FM.0
to AFH.

These concepts can be illustrated by the one-section stripline transformer example

[30] which we have considered in Section II. Tolerances may be imposed on the physical
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parameters including the strip widths and thicknesses, the dielectric constants, the section
length aﬁd substrate thicknesses (see Fig. 1). Such tolerances correspond to A$M and are
represented in the model by ApL. We may also use AdH to represent uncertainties associated
with the empirical formulas which relate the physical parameters to the equivalent circuit
parameters (the effective linewidths, the junction inductances and the effective section
length). Mismatches in the terminations at different frequencies may be estimated by AFH
(FH being the actual reflection coefficient; see [30] for more details).

The distinction between different levels of model uncertainties can be quite subtle. As
an example, consider the parasitic resistance r associated with an inductor whose inductance
is L. Both L and r are functions of the number of turns of a coil (which is a physical
parameter). Depending on whether or not r is modeled by the equivalent circuit (i.e., whether
or not r is included in $H), the uncertainty associated with r may appear in A¢H or in AFL,

When such uncertainties are present, a single nominal model often fails to represent
satisfactorily the physical reality. One effective solution to the problem is to simultaneously

consider multiple circuits. We discuss the consequences for design and modeling separately.

Multi-Circuit Design
Our primary concern is to improve production yield and reduce cost in the presence of
tolerances AL and model uncertainties ApH. First of all, we represent a realistic situation
by multiple circuits as
d° =¢° +s*, k=1,2,..,K, (19
where ¢0, ¢k and sk are generic notation for the nominal parameters, the kth set of
parameters and a deviate due to the uncertainties, respectively. A more elaborate definition

is developed as we proceed.

For each circuit, we define an acceptance index by

1, if He@)so
L@ = { (20

0, otherwise
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where H(e) < 0, defined in (13), indicates satisfaction of the specifications by ¢. An estimate

of the yield is given by the percentage of acceptable samples out of the total, as

K
Y = [ S Ia(d>k)]/K. 21)
’ k=1

The merit of a design can then be judged more realistically according to the yield it promises,
asillustrated in Fig. 9. Now we shall have a closer look at the definition of multiple circuits.

In the Monte Carlo method the deviates sk are constructed by generating random
numbers using a physical process or arithmetical algorithms. Typically, we assume a
statistical distribution for AL, denoted by DL(eL) where €L is a vector of tolerance variables.
For example, we may consider a multidimensional uniform distribution on [-eL, eL].
Similarly, we assume a DH(eH) for A¢H. The uniform and Gaussian (normal) distributions
are illustrated in Fig. 10.

At the low level, consider
Lk = L0 + Lk, k=1,2,..,K", @
where sL.k are samples from DL. At the higher level, we have, for each k,
kL =pHO L KL 5= 9 KH, (23)

where

HO _ 4H0 L,
10 = %Y, 24

s.H,k,i = (bH'O(¢L’k)—¢H’°(¢L’°)+6k’i
with 8k.i being samples from DH.

One might propose a distribution for sH.k.i which presumably encompasses the effect
of distribution DL and distribution DH. But, while we may reasonably assume simple and
independent distributions for AL and A$H, the compound distribution is likely to be

complicated and correlated and, therefore, much less desirable.

Centering, Tolerancing and Tuning

Again, in order to simplify the notation, we use ¢9 for the nominal circuit and e for

the tolerance variables.
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An important problem involves design centering with fixed tolerances, usually
relative to corresponding nominal values. We call this the fixed tolerance problem (FTP).
The optimization variables are elements of $?, the elements of € are constant or dependent on
the variables, and the objective is to improve the yield.

Since imposing tight tolerances on the parameters will increase the cost of the com-
ponent fabrication or process operation, we may attempt to maximize the allowable tolerances
subject to an acceptable yield. In this case both ¢$0 and € may be considered as variables.
Such a problem is referred to as optimal tolerancing, optimal tolerance assignment, or the
variable tolerance problem (VTP). Incidentally, the nominal optimization problem, i.e., the
traditional design problem, is sometimes referred to as the zero tolerance problem (ZTP).

Tuning some components of M after production, whether by the manufacturer or by
a customer, is quite commonly used as a means of improving the yield. This process can also
be simulated using the model by introducing a vector of designable tuning adjustments tk for

each circuit, as

o =0 +s* +1¥, k=12, ,K- (25)

We have to determine, through optimization, the value of tk such that the specifications will
be satisfied at ¢k which may otherwise be unacceptable, as depicted in Figs. 11 and 12. The
introduction of tuning, on the other hand, also increases design complexity and
manufacturing cost. We seek a suitable compromise by solving an optimization problem in
which tk are treated as part of the variables.

From nominal design, centering, optimal tolerancing to optimal tuning, we have
defined a range of problems which lead to increasingly improved yield but, on the other hand,
correspond to increasing complexity. Some specific formulations are discussed in Section V.
Analogously to ZTP, FTP and VTP we can define zero tuning, fixed tuning and variable

tuning problems [25].
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Multi-Circuit Modeling

The uncertainties that affect circuit modeling can be discussed under the following

categories.

1)

2)

3)

4)

Measurement errors will inevitably exist in practice, as represented by AFM in (17):
FM = FM,0(¢pM) + AFM.

Even without measurement errors, the calculated response FH.0 may never be able to
match FM.0 perfectly, due to, for example, the use of a model of insufficient order or
inadequate complexity. Such an inherent mismatch is accounted for in (18) by
FH = FH,0 + AFH.

Even if neither AFM nor AFH exists so that FH,0 = FM, we may still not be able to
uniquely identify ¢ from the set of measurements that has been selected. This
happens when the system of (generally nonlinear) equations FH.0(¢) - FM = 0, where
FM is the data, is underdetermined. Typically, this problem occurs when, for any
reason, many internal nodes are inaccessible to direct measurement. An over-
complicated equivalent circuit, including unknown parasitic elements is frequently at
the heart of this phenomenon.

The parasitic effects that are not adequately modeled by ¢H contribute to the
uncertainty AFL. This is another source of interference with the modeling process.

First we consider the case in which modeling is applied to obtain a suitable ¢ such

that FH(p) approximates FM. The nominal circuit approach may be able to cope with the

uncertainties in 1) and 2), and comes up with a ¢ which minimizes the errors AFM and AFH in

a certain sense. But it will not be able to overcome the problem of uniqueness. In practice, we

are often unable to determine unambiguously the identifiability of a system, because all these

uncertainties can be present at the same time. There will be, typically, a family of solutions

which produce reasonable and similar matches hetween the measured and the calculated

responses. We can not, therefore, rely on any particular set of parameters.
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The approach of multi-circuit modeling by Bandler et al. [16] can be used to overcome
these diﬁ‘iculties. Multiple circuits are created by making deliberate adjustments on the
physical parameters $M. For example, we can change the biasing conditions for an active
device and obtain multiple sets of measurements. By doing so, we introduce perturbations to
the model which cause some parameters in ¢ to change by an unknown amount. For this
approach to be successful, each physical adjustment should produce changes in only a few
parameters in ¢.

Although we do not know the changes in ¢ quantitatively, it is often possible to
identify which model parameters may have been affected by the physical adjustments. Sucha
qualitative knowledge may be apparent from the definition of the model or it may come from
practical experience. In the attempt to process multiple circuits simultaneously, we define
those model parameters that are not supposed to change as common variables and, at the
same time, allow the others to vary between different circuits. By doing so, we force the solu-
tion to exhibit @he desired consistency and, therefore, improve the reliability of the result. In
other words, from a family of possible solutions we select the one that conforms to the topo-
logical constraints. Bandler et al. have shown an example ([16], Section III.A) in which ¢ can
not be uniquely identified due to inaccessible nodes. The problem was effectively addressed
using the multi-circuit app_roach.

To formulate this mathematically, let

¢ (26)

where ¢k; contains the common variables and ¢k, contains the variables which are allowed
to vary between the kth circuit and the reference circuit $0. We then define the optimization

variables by
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o]
1
a
x = , (27
¢,
and state the optimization problem as to
minimize U(x) = || fllp , @8)
X
where
(29)

f=[eT@®) eT@) .. eT@NI".
Although any €, norm may be used, the unique property of ¢; discussed in detail by

Bandler et al. [16] can be exploited to great advantage. The concept of common and
independent variables is depicted in Fig. 13.
Now, suppose that we do not have a clear idea about which model parameters may

have been affected by the adjustment on $M. In this case, we let

&°
1
(30)

d)K

and change the objective function to an €p norm of

e@Y

E

K
e(®™) (31)
a,@'- 99

| ax@" - 4;0)_

where aj, as,..., ag are nonnegative multipliers (weights).
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Using this formulation, while minimizing the errors e, we penalize the objective
function for any deviates between ¢k and ¢9, since our only available knowledge is that only
a few parameters in ¢k should have any significant changes. To be effective, an ¢; norm
should be used. A similar principle has been successfully applied to the analog circuit fault
location problem [11,33].

Another important application of multi-circuit modeling is to create analytical
formulas which link the model ¢ to the actual physical parameters M. Such formulas will
become extremely useful in guiding an actual production alignment or tuning procedure. A
sequence of adjustments on $M can be systematically made and multiple sets of measure-
ments are taken. By nominal circuit optimization, these measurements would be processed
separately to obtain a set of static models. In the presence of uncertainties, a single change in
&M may seem to cause fluctuations in all the model parameters. Obviously, such results are
of very little use. In contrast, multi-circuit modeling 1s more likely to produce models that are
consistent and reliable. Since the measurements are made systema@ically, it certainly makes
sense to process them simultaneously. Actually, the variables need not be equivalent circuit
model parameters. They can include coefficients of a proposed formula as well.

The multi-circuit approach can also be applied to model verification. This is typically
related to cases where the parasitic uncertainty AFL has put the validity of a model in doubt.
Instead of deﬁning common and independent variables explicitly, we use the formulation of
(30) and (31). If consistent results are obtained, then our confidence in the model is
strengthened. Otherwise we should probably reject the current model and consider
representing the parasitics more adequately. A convincing example has been demonstrated
by Bandler et al. ([16], section V, Test 2).

The commercial packages TOUCHSTONE [118] and SUPER-COMPACT [113] allow
a hierarchy of circuit blocks and permit the use-of variable labels. Multiple circuits and
common variables can be easily defined utilizing these features. ¢; optimiztion, however, is

not yet available.
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Examgleé of Multi-circuit Modeling

Our first example is robust modeling of a FET device. Consider the equivalent circuit
model shown in Fig. 14 (which has been widely used by commercial packages such as
TOUCHSTONE [118] and SUPER-COMPACT [113]). Practical modeling of FET devices has
been commonly troubled by nonunique solutions.

In order to demonstrate the multi-circuit modeling approach, we employ three sets of
actual measurements on scattering parameters of a FET device which were taken at 17
frequency points from 2GHz to 18GHz, 1GHz apart, under the following biasing conditions
[105].

1. Vias = 4V, Vgs = 0.00V, Igs = 177TmA.

2. Vis = 4V, Vgs = =174V, Igs = 92mA.

3. Vgs = 4V, Vgs = —3.10V, Igs = 3TmA.

Eleven model parameters, namely {Rg, Rq, Ls, T, Rgs, Ri, Rs, Cgs, Cag, Cds, 8m}, are
taken as variables. The first four parameters are considered to be bias insensitive and,
therefore, treated as common variables. Formulas (27)-(29) are used, where K = 3 (three
circuits) and €; optimization is employed. The match between the model responses and the
measurements, at both the starting point and the solution, for the first biasing condition is
shown in Fig. 15. Complete details have been reported by Bandler et al. [21].

The second example uses data provided by Com Dev [51]. It is related to establishing
an experimental relationship between physical and model parameters (Daijavad [52]).
Consider a 6th order multi-cavity filter centered at 11783MHz with a 56 MHz bandwidth. The
equivalent circuit of Atia and Williams [5] has been described in Section III. Starting from a
reference position, three coupling screws, whose positions are represented as elements of ¢L,
which were assumed to control the couplings M;s, M34 and Msg, i.e., elements of $H were
adjusted. Each one was adjusted four times, twice in the clockwise direction (screw

increasingly penetrates the cavity) for 90 and 180 degrees, as well as twice counterclockwise.
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After each adjustment, the filter responses (input/output return loss, insertion loss and group
delay) were measured. Using formulas (30)-(31), the measurements have been processed
simultaneously to identify the filter coupling values. The variation of coupling values versus

the relative position of the screws is shown in Fig. 16.

Concluding Remarks

In the foregoing discussions, for each of the problems we have focused on the dominant
uncertainties. The statistical design approach has addressed AL and ApH. By multi-circuit
modeling we try to overcome the difficulties caused by AFM, AFH, AFL and the possible rank
deficiency in FH(¢). The complete problem in which all these uncertainties are accounted for
has not been formally solved.

Consider the problem of computer-aided actual tuning of an outcome. Here, the
physical parameters $M and the measured responses FM are the fundamental variables and
functions, respectively. A plausible scheme involves three phases at each tuning iteration.
At the modeling phase, measurements are made from which models at different levels are
established. At the design phase a computer program will suggest the necessary tuning
adjustments using the models. The implementation phase involves actual tuning by a human
operator or through some automated mechanism. The modeling must be robust despite
possible uncertainties. The crucial relationship between ¢H and ¢L must be constantly
updated. Anticipating imprecisions in the implementation, the determination of tuning
adjustments must be toleranced. In other words, an implementable algorithm will have to

combine the concepts of multi-circuit modeling and design.

V. TECHNIQUES FOR STATISTICAL DESIGN
In Section IV we have generally discussed uncertainties at different levels and, in

particular, we have expressed our desire to maximize yield in the presence of uncertainties.
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Optimal tolerancing and tuning have also been identified as means to further reduce cost in
the actua-.l production.

We begin this section with a review of some existing techniques for statistical design.
Some of the earliest work in this area came from Karafin [79], Pinel and Roberts [97], Butler
[42], Elias [60], Bandler, Liu and Tromp [29]. During the years, significant contributions
have been made by, among others, Director and Hachtel [55] (the simplicial method), Soin
and Spence [112] (the gravity method), Bandler and Abdel-Malek [1,2,9] (multi-dimensional
approximation), Biernacki and Styblinski [36] (dynamic constraint approximation), Polak
and Sangiovanni-Vincentelli [100] (a method using outer approximation), as well as Singhal
and Pinel [111] (the parametric sampling method). Following the review, we propose a
generalized ¢p centering algorithm.

A commonly assumed cost versus yield curve [111] is shown in Fig. 17. Actually, hard
data is difficult to obtain and, as we shall see, rather abstract objective functions are often
selected for the tolerance-yield design problem. Figu;e 18 shows a design with a 100% yield

and a second design corresponding to the minimum cost.

Worst-case Design

By this approach, we attempt to achieve a 100% yield. Since it means that the
specifications have to be satisfied for all the possible outcomes, we need to consider only the
worst cases.

Bandler et al. [28,29] have formulated it as a nonlinear programming:problem as

minimize C(x) (32)
x
subject to e(pk) = 0, forallk,

where C(x) is a suitable cost function and the points ¢k are the worst cases. For instance, we

may have

a.
1
Cw= 2 —+ 2 bt (33)
iEIe i iEIt
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where I and I; are index sets identifying the toleranced and tunable parameters, respectively.
¢; and ti'are the tolerance and the tuning range, respectively, associated with the ith
parameter. a; and b; are nonnegative weights. A cost function can also be defined for relative
tolerances and tuning by including cl)oi into (33). A critical part of this approach is the
determination of the worst cases. Vertices of the tolerance region, for example, are possible
- candidates for the worst cases by assuming one-dimensional convexity. The yield function
does not enter (32) explicitly, instead, a 100% yield is implied by a feasible solution.

Bandler and Charalambous [13] have demonstrated a solution to (32) by minimax
optimization. Polak and Sangiovanni-Vincentelli [100] have proposed a different but
equivalent formulation which involves a nondifferentiable optimization.

A worst-case design is not always appropriate. While attempting to obtain a 100%
yield, the worst-case approach may necessitate unrealistically tight tolerances, or demand
excessive tuning. In either case, the cost may be too high. A perfect 100% yield may not even

be realizable.

Methods of Approximating the Acceptable Region

Since yield is given by the percentage of model outcomes that fall into the acceptable
region, we may wish to find an approximation to that region. The acceptable region has been
defined in (16) as Ry = {& | H(e(®)) = 0}.

Director and Hachtel [55] have devised a simplicial approximation approach. It
begins by determining points ¢k on the boundary of Ry which is given by
Q. = {®|H(e(d)) = 0}. The convex hull of these points forms a polyhedron. The largest
hypersphere inscribed within the polyhedron gives an approximation to R, and is found by
solving a linear programming problem. Using line searches more points on the boundary are
located and the polyhedron is expanded. The process thus provides a monotone increasing

lower bound on the yield. The center and radius of the hypersphere can be used to determine
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centered nominal point and the tolerances, respectively. The application of this method is,
however,. severely limited by the assumption of a convex acceptable region.

Bandler and Abdel-Malek [1,2,9] have presented a method which approximates each
ej(d) by a low-order multi-dimensional polynomials. Model simulations are performed at
some ¢k selected around a reference point. From the values of ej(dk) the coefficients of the
approximating polynomial are determined by solving a linear system of equations.
Appropriate linear cuts are constructed to approximate the boundary Q,. The yield is
estimated through evaluation of the hypervolumes that lie outside R, but inside the tolerance
region. In critical regions these polynomial approximations are updated during optimization.
The one-dimensional convexity assumption for this method is much less restrictive than the
multi-dimensional convexity required by the simplicial approach. Sensitivities for the
estimated yield are also available.

Recently, Biernacki and Styblinski [36] have extended the work on multi-
dimensional polynomial approximation by considering a dynamic constraint approximation
scheme. It avoids the large number of base points required for a full quadratic interpolation
by selecting a maximally flat interpolation. During optimization, whenever a new base point
is added the approximation is updated. It shows improved accuracy compared with a linear

model as well as reduced computational effort compared with a full quadratic model.

The Gravity Method

Soin and Spence [112] proposed a statistical exploration approach. Based on a Monte
Carlo analysis, the centers of gravity of the failed and passed samples are determined as,

respectively,

q;fz [Z q’k]/Kfaj] s
ked )

(34)
_ k
q,P_ [ z (0] ]/Kpass ,

k& J
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where J is the index set identifying the failed samples. Kgyj and Kpags are the numbers of
failed an.d passed samples, respectively. The nominal point ¢ is then adjusted along the
direction s = ¢p— Pf using a line search. This algorithm is simple but also heuristic. It is not
clear as how the gravity centers are related to the yield in a general multi-dimensional

problem.

The Parametric Sampling Method

The parametric sampling approach by Singhal and Pinel [111] has provided another
promising direction. A continuous estimate of yield (as opposed to the Monte Carlo estimate

using discrete samples) is given by the following integral

+o

Y(x) = J L@ (@, 0dd

(35)

where I;(¢) is the acceptance index defined in (20) and I'(,x) the parameter distribution
density function which depends on the design variables x (e.g., the nominal point specifies the
mean value and the tolerances control the standard deviations). Normally, in order to
estimate the yield, we generate samples ¢k, k = 1, 2,..,, K, fr;)m the component density T,
perforrﬁ K circuit analyses and then take the average of I;($k). For each new set of variables
x we would have a new density function and, therefore, the sampling and circuit analyses
have to be repeated.

The approach of parametric sampling is based on the concept of importance sampling

as

+e I'($,x) A; (36)
Yex) = I L@ o hede,

where h(¢) is called the sampling density function. The samples ¢k are generated from h(¢)

instead of I'(¢,x). An estimate of the yield is made as

K k K
1 K [@% Ky wr (K (37
Y = ¢ gl L@" 2 L@IW@S ).

1
hgs K o)
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The weights W(dk,x) compensate for the use of a sampling density different from the
componeht density.

This approach has two clear advantages. Firstly, once the indices I,($k) are
éalculated, no more model simulations are required when x is changed. Furthermore, ifTisa
differentiable density function, then gradients of the estimated yield are readily available.
Hence, powerful optimization techniques may be employed. In practice the algorithm starts
with a large number of base points sampled from h(¢) to construct the initial databank. To
maintain a sufficient accurary, the databank needs to be updated by adding new samples
during optimization.

This approach, however, can not be applied to non-differentiable density functions
such as uniform, discrete and truncated distributions. It can be extended to include some
tunable parameters if the tuning ranges are fixed or practically unlimited. In this case the
acceptance index I(¢k) is defined as 1 if ¢k is acceptable after tuning. If ¢k is unacceptable
before tuning, then whether it can be tuned and, if so, by how much may have to be deter-
mined through optimization. Variable tuning range (in order to minimize cost) can not be

accommodated by the parametric sampling method.

Generalized €, Centering
Here, we propose a generalized ¢, centering algorithm which encompasses, in a
unified formulation, problems of 100% yield (worst-case design) and less than 100% yield.
First we consider the centering problem where we have fixed tolerances and no
tuning. Only the nominal point ¢ is to be optimized. We can achieve a worst-case minimax
design by
e(®)

minimize U) = H ( . ) =. max max {ej(q>k)},

9

b4 . k

(38)

e((bK)
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where the multiple circuits ¢k are related to 9 according to (19).

It a 100% yield is not attainable, we would naturally look for a solution where the
specifications are met by as many points (out of K circuits) as possible. For this purpose
minimax is not a proper choice, since unless and until the worst case is dealt with nothing else
seems to matter. An apparent remedy is to use a generalized {3 or ¢; function (i.e., Ha(.) or
H1(.)) instead of Hw in (38). However, even with such a modiﬁcation; in (38) each circuit is
represented by a set of error functions and the meaning of such a representation is not
altogether clear.

A better approach to the problem is to find, for each ¢k, a scalar function which will
indicate directly whether ¢k satisfies or violates the specifications and by how much. For
this purpose, we choose a set of generalized £, functions as

39
v @ =He@"), k=1,2.,K. (39)

The sign of vy indicates the acceptability of ¢k while the magnitude of vy measures, so to
speak, the distance between ¢k and the boundary of the acceptable region. For example, with
p = o the distance is measured in the worst-case sense whereas for p = 2 it will be closer to a
Euclidean norm.

We can define a generalized ¢p centering as

minimize U(x) = Hp(u(x)) , (40)
X
where
av, | | aH @
u(x) = = (41)
o] LagH @)

and aj, ag,..., ag are a set of positive multipliers. With different p and q it leads to a variety of
algorithms for yield enchancement. We discuss separately the case where a nonpositive U(x)

exists and the case where we always have U(x) > 0.
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In the first case, the existence of a U(x) < 0 indicates that a 100% yield is attainable.
We should point out that for a given x the sign of U(x) does not depend on p, q or any ag.
However, the optimal solution x at which U(x) attains its minimum is dependent on p, q and
a. This means that using any values of p, q and a we will be able to achieve a U(x) < 0 (i.e,, to
achieve a 100% yield). Furthermore, by using different p, q and a, we influence the centering
of $0. Interestingly, the worst-case centering (38) becomes a special case by letting both
P, @ = » and using unit multipliers.

Now consider the case where the optimal yield is less than 100%. In this case we
propose the use of p = 1and q = 1in (40). Also, given a starting point xo, we define the set of

multipliers by
(42)

a, = 1/|vk(x0)| , k=1,2,.,K
Our proposition is based on the following reasoning (a more complete theoretical justification

is reserved for a future paper).

Consider the €, sum given by

(43)

> &P
ke J

where J = {k | ugx > 0}. As p — 0 (43) approaches the total number of unacceptable circuits
which we wish to minimize. The smallest p that gives a convex approximation is 1. This leads

to the generalized €; objective function given by

U= D u,®=2 av@. (44)
ked ked
With the multipliers defined by (42), the value of the objective function at the starting

point, namely U(xg), is precisely the count of unacceptable circuits. Also; notice that the
magnitude of vi measures the closeness of ¢k to the acceptable region. A small |vy indicates
that ¢k is close to be satisfying or violating the specifications. Therefore, we assign a large
multiplier to it so that more emphasis will be given to ¢k during optimization. On the other
hand, we deemphasize those points that are far away from the boundary of the acceptable

region because their contributions to the yield are less likely to change.
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A sequential process may also be constructed in which we solve (40), update the
multipliers at the solution and repeat the optimization. Bearing in mind the fact that yield
optimization should always be initiated from a good nominal design and, therefore, drastic
changes in the variables are unlikely to take place, we can expect a stable process of updating
the multipliers.

The objective function U(x) in (40) can be rewritten, whenp = q = 1 and U(x) > 0, as
U(x) = Hy +(f), where

f=la,e" @) ae"@) .. a e’ @O (45)

On the other hand, when it is negative, U(x) is a continuously differentiable function.

Optimal Tolerancing and Tuning

The generalized £, centering algorithm can be extended to accommodate
considerations of tolerances and tuning.

We need to define a function or functions which appropriately relate the tolerances
and tuning to the cost of production. One possible choice of such a cost function is, similar to
(33),

3

Cx= > —+ > bt —Cp, (46)

i€l i i€l

e t
where I; and I; are index sets identifying the toleranced and tunable parameters, respectively.
a; and b; are nonnegative weights. Cy is a realistic target for the cost. It is also possible to
define several cost functions representing separate tradeoffs in a complex environment such
as in the design of integrated circuits (similarly to the multiple objectives described by
Brayton et al. [38]). For example, (46) may be broken up into several cost functions associated

with separate groups of parameters.
By this formulation, the cost function is treated in the same way as we treat e(¢).

When C(x) = 0, we say that x satisfies the specification on the cost (as given by Cq). In fact,
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we can adjust Co and the weights a;, b; in (46) such that C(x) is made comparable in value
with the ;error functions.

The set of optimization variables x should include the nominal circuit parameters ¢°,
the tolerances g, i€I;, and the tuning adjustments o5, ‘tk,'_l =t;, i€l, k=1,2,..,K, for the K
circuits defined by (25).

In this way, the approach of generalized €, centering can be applied directly as

minimize U(x) = H (u(x), (47)
x
where
oy, | [eH @]
u@@) = . = . : (48)
A vy a H (@™)
Lok Vkerd L Ok C®

Following the discussions of the last subsection, we should be able to obtain a solution,
say x*, for (47). If U(x® < 0 then the design specifications ha;ve all been satisfied and the
target for cost has been met. If, on the other hand, U(x*) > 0, we can conclude that either the
design specifications are too tight or the target cost is unrealistic or perhaps both.

One important feature of the £, centering approach is its capability of accommodating
arbitrary tolerance distributions at different levels (AL, AdH or both), because they only
influence the generation of ¢k. It provides a unified formulation for the various statistical
design problems (worst-case, yield enhancement, tolerancing, tuning, et::.). In fact, the
similarity between the formulas for €, centering and those for multi-circuit modeling, as
appeared in Section IV, suggests that they belong to the same family of multi-circuit

optimization approaches.
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VI. EXAMPLES OF STATISTICAL DESIGN
Examgle‘l
The classical two-section 10:1 transmission line transformer, originally proposed by
Bandler et al. [28] to test minimax optimizers, is a good example to illustrate graphically the
basic ideas of centering and tolerancing. An upper specification on the reflection coefficient
as |p| = 0.55 and 11 frequencies {0.5, 0.6,..., 1.5 GHz} are considered. The lengths of the
transmission lines are fixed at the quarter-wave length while the characteristic impedances
Z; and Zy are to be toleranced and optimized. Fig. 19 shows the minimax contours, the
minimax nominal solution, as well as the worst-case solutions [28] for
minimize C, = Z(l’/t:1 + dez
PO: ,
subjectto Y = 100%
minimize 02 = 1/e, + 1/,
P1: 5

subjectto Y = 100%
where €1, £2 denote tolerances on Z; and Z3 (assuming independent uniform distributions),

and Y is the yield. The cost functions Cy and Cg correspond to, respectively, relative and
absolute tolerancing problems.

Another two problems of less than 100% yield have been considered by Bandler and
Abdel-Malek [9] as

P2: minimize Cy subjectto Y = 90%,

P3: minimize Cy/Y.

The optimal tolerance regions and nominal values for P2 and P3 are shown in Fig. 20.

For more details see the original paper [9].
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Example 2
The example due to Singhal and Pinel [111] of statistical design of a Chebyshev

lowpass filter is used as the second example. The circuit is shown in Fig. 21. Fifty-one
frequencies {0.02, 0.04,..., 1.0, 1.3 Hz} are considered. An upper specification of 0.32 dB on the
insertion loss is defined for frequencies from 0.02 to 1.0 Hz. A lower specification of 52 dB on
the insertion loss is defined at 1.3 Hz. A nominal design obtained by standard filter synthesis
is given in Table I.

For statistical design the 11 components are assumed to be independently normally

distributed. A costfunction of

11
C= [Z (q>?/ei)]/Y
i=1

is considered, where ;0 is the mean value (nominal value), &; = 30; with o; being the standard
deviation, and Y is the yield.

A worst-case design and a minimum cost design were reported in [111] and
reproduced in Table I. As one can see, the worst-case solution gives a perfect (100%) yield but
a rather high cost (18.68). The minimum cost design was obtained using the parametric
sampling techniques [111] with two design cycles starting from the worst-case solution. A
total of 800 circuit analyses were required to construct the database. The total CPU time
required was reported to be 75 seconds on the IBM 370/158. This excludes the cost of worst-
case design and yield verification by Monte Carlo analyses.

In an interesting arrangement by Wehrhahn and Spence [122] the performance of
seven design centering algorithms was compared. The filter used here wa"s one of the test

problems.

Example 3

As we have pointed out earlier in this paper, the parametric sampling method can not

be applied to non-differentiable (such as uniform) distributions. Our third example considers
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the same filter as in Example 2 but assumes a uniformly distributed 1.5% relative tolerance
for each component. The generalized ¢, centering algorithm described in section V is used
with p = 1. The nominal solution by standard synthesis was used as starting point which has
a 49% yield (w.r.t. the tolerances specified). A 84% yield is achieved at the solution which
involves a sequence of three design cycles with a total CPU time of 66 seconds on the VAX

8600. Some details are provided in Table II.

Discussion

In relation to the generalized ¢, centering, we should point out that as long as the
yield is less than 100%, negative error functions do not contribute to the generalized ¢,
objective. Therefore, under certain conditions, the circuit analyses corresponding to these
error functions can be saved. Such a saving becomes even more significant when a higher
yield is achieved (since more functions become negative). A suitable technique has been
incorporated in solving Example 3. A similar concept can be found in worst-case design
where we consider candidates for the worst case only.

Another point worth making is that a statistical design should always be initiated
from a good nominal solution. Any attempt to demonstrate yield optimization starting from

an unacceptable nominal point (i.e., from a very low yield) has no practical value.

VII. GRADIENT-BASED OPTIMIZATION METHODS
So far we have concentrated on translating our practical concerns into mathematical
expressions. Now we turn our attention to the solution methods for optimization problems.
The studies in the last two decades on the theoretical and algorithmic aspects of
optimization techniques have produced a great deal of results. Modern state-of-the-art
methods have largely replaced the primitive trial-and-error approach. Especially, gradient-

based optimization methods have gained increasing popularity in recent years for their
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effectiveness and efficiency. They demonstrate in general a far superior performance to the
random oAr direct methods.

The majority of gradient-based methods belong to the Gauss-Newton, quasi-Newton
and conjugate gradient families. All these are iterative algorithms which, from a given
starting point X, generate a sequence of points {Xx}. The success of an algorithm depends on
whether {xi} will converge to a point x* and if so, whether x* will be a stationary point. An
iterative algorithm is described largely by one of its iterations as how to obtain xk +1 from x.

The following notation is used: x for a set of n variables, U(x) for the objective function
and VU for the gradient vector of U. When U(x) is defined by an ¢, function, we use f to
denote the set of m individual functions so that U = H(f). The first-order derivatives of a

function fj are written as

O A '} (48)
1 Bxl 8x2 axn
and the Jacobian matrix of fas
G=If f,..f I : (49)

€p Optimization and Mathematical Programming

¢4, €2 and £, are the most distinctive and by far the most useful members of the ¢
family. Apart from their unique theoretical properties, it is very important from the
algorithmic point of view that linear €1, €2 and £, problems can be solved exactly using linear
or quadratic programming techniques. Besides, all the other members of the €, family have a
continuously differentiable objective function and, therefore, can be treated similarly to the €3
case.

An €y, €3 or £ optimization problem can be converted into a mathematical program.
The concepts of local linearization and optimality conditions are often clarified by the
equivalent formulation.

For instance, the minimization of |f]]; is equivalent to
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m
. (50)
minimize Z ¥
X,y j=1
subject to
Y = fj(x), ¥ = -fj(x), j=12,..,m

The one-sided € problem can be treated as

(51)

m
minimize .
2 i

X,y j=1

subject to
¥ = fj(x), Y =0, j=1,2,...,m.

Other equivalent formulations are summarized in Table III. For the convenience of
presentation, we denote these mathematical programming problems by P(x,f). One
important feature of P(x,f) is that it has a linear or quadratic objective function. If fis a set of
linear functions, then P(x,f) becomes a linear or quadratic program which can be solved using
standard techniques. Equally importantly, linear constraints can be easily incorporated into
the problem. Let P(x,£,D) be the problem of P(x,f) subject to a set of linear constraints of the
form

a,x+b,=0, €=1,2,.,L_, (52)

eq
D:
a§x+beao ¢=L +1,..,L,
eq

where ay and bg are constants. If P(x,f) is a linear or quadratic program, so is P(x,f,D). In
other words, unconstrained and linearly constrained linear €;, €2 and €» problems can be

solved using standard linear or quadratic programming techniques.

Gauss-Newton Methods Using Trust Regions

For a general problem, we may, at each iteration, substitute f with a linearized model
fso that P(x,ﬁ can be solved.

For a Gauss-Newton type method, at a given point Xy, a linearization of f is made as

f() = fix) + Gxh, (53)
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where G is the Jacobian defined in (49). We then solve the linear or quadratic program

P(h,f D), where

Akah., i=1,2,...,n,
]
D:

(54)

Akz —hj, i=1,2,..,n.

These additional constraints define a trust region in which the linearized model f is believed
to be a good approximation to f.

Another way to look at it is that we have applied a semi-linearization (Madsen [88]) to
U(x) = H(f) resulting in

— - (55)
U (h) = H(f (h)).

It is important to point out that (55) is quite different from a normal linearization as U(h) =
U(xy) + [VU(xp)ITh which corresponds to a steepest descent method. In fact VU may not
even exist.

Denote the solution of P(h,fD) by hx. If xi+hy reduces the original objective
function we take it as the next iterate, i.e., if Ur+hy) < U(xy) then xx4+1 = xx+hyg.
Otherwise we let Xg+1 = Xi. In the latter case, the trust region is apparently too large and,
consequently, should be reduced.

Actually, the local bound Ay in (54) is adjusted according to the goodness of the

linearized model. More precisely, if

Ux) - U, +h) =8[Ux) - U, (56)
then the trust region appears to be too large and the bound is decreased: Ax+1 = KAk
Otherwise, if

Ux,) - Ulx, +h) = 5,[UGx,) — Ty, (57
then the bound is increased: Ax+1 = K2Ag. If neither (56) nor (57) holds then Ag 4+ = Ag.
The constants {81, 82, K1, Ka} should satisfy 0 < §; < 82 <1and 0 < K; <1 < Ks. {0.25,
0.75, 0.25, 2} have been used in some implementations [26,27,75,76].

The above describes the essence of a class of algorithms due to Madsen who has called

it Method 1. Madsen [88] has shown that the algorithm provides global convergence in which
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the proper use of trust regions constitutes a critical part. In some other earlier work by
Osborne.and Watson [95,96] the problem P(h,f) was solved without incorporating a trust
region and the solution hy was used as the direction for a line search. For their methods no
convergence can be guaranteed and {xi} may even converge to a non-stationary point.

Normally for the least-squares we have to solve a quadratic program at each iteration,
which can be a time-consuming process. A remarkable alternative is the Levenberg-
Marquardt [86,91] method. Given xy, it solves

minimize h"(G"G + 8, )h + 2 Gh + £'f, (58)
h

where G = G(xy), f = f(x¢) and 1 is an identity matrix. The minimizer hy is obtained simply
by solving the linear system
G'G+6,Dh =G'f (59)

using, for example, LU factorization. The Levenberg-Marquardt parameter 6y is very critical
for this method. First of all, it is made to guarantee the positive definiteness of (59).
Furthermore, it plays, roughly speaking, an inversed role of Ay to control the size of a trust
region. When 8 — o, hy gives an infinitesimal steepest descent step. When 6 = 0, hy
becomes the solution to P(h,p) without bounds, which is equivalent to having Ay — «.
Therefore, the rules for updating 8y should be opposite to those for Ay.

The Gauss-Newton method using trust regions has been implemented as an
important element in the minimax and ¢, algorithms of Hald and Madsen [75,76]. Also, the
concept of trust region has been discussed in a broader context by Moré in a recent survey

[92].

Quasi-Newton methods

Quasi-Newton methods (also known as variable metric methods) are originated in and
steadily upgraded from the work of Davidon [53], Broyden [39,40] as well as Fletcher and

Powell [65].
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For a differentiable U(x), a quasi-Newton step is given by
h = B-lvu (60)
k= 9 By VU,
where By is an approximation to the Hessian of U(x) and the step size controlling parameter
ag is to be determined through a line search. However, on some occasions such as in the ¢; or
minimax case, the gradient VU may not exist, much less the Hessian.
We can gain more insight to the general case by examining the optimality conditions.
Applying the Kuhn-Tucker conditions for nonlinear programming [80] to the equivalent
problem P(x,f), we shall find a set of optimality equations
R(x)=0. (61)
Since a local optimum x* must satisfy these equations, we are naturally motivated to
solve (61), as a means of finding the minimizer of U(x). A quasi-Newton step for solving
nonlinear equations (61) is given by
h = J-R (62)
k= —9%J RE,
where Jy is an approximate Jacobian of R(x). Only when U(x) is differentiable will we have
the optimality equations as R(x) = YU(x) = 0 and (62) reverts to (60).

Consider minimax as an example for the non-differentiable case. The optimality

equations can be shown as (see, for instance, Hettich [78], Bandler et al. [26])

- a
Z Aj fj (x)

JEA(X)

(63)

RxN= | 1- > A |=0,
jEA(x)

z

where A is a set of nonnegative Kuhn-Tucker multipliers and A(x) is an index set, as A(x) =
{j | fi(x) = Ho(f}, identifying the active functions. z has the components fi(x) - fi(x),j € A(x),
j # jo, where jo € A(x) is fixed. The approximate Jacobian Jy of (63) contains a mixture of the
first derivatives fj' and approximations to the Hessians fj" (for details see [26]). An

incremental vector is obtained by solving the linear system
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b,

Jy AAJ = -R(x,, A).

This example has demonstrated that the quasi-Newton method is more than just (60). It can

(64)

be quite involved in cases where the ordinary gradient VU does not exist. A similar result for
¢; can be found in [27]. Clarke [50] has introduced the concept of generalized gradient with
which optimality conditions can be derived for a broad range of problems.

Quasi-Newton methods, whether in (60) or (62), all require updates of certain
approximate Hessians. Many formulas have been proposed over the years. The most well-
known are the Powell Symmetric Broyden (PSB) update [102], the Davidon-Fletcher-Powell
(DFP) update [53,65] and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

[41,62,70,109]. They are given by, respectively,

BPSB B + wsT+sz wTs ssT
k+1 k STS (STS)2 ’
T T T T
DFP Wy + yw W Syy (65)
Bk+1= Bk+ T - T \2
ys (y~s)
T T
BBFGS CB o4 yy Bkss Bk
k+1 T Tk - ’

yTs st Bks

where s = Xg4+1 — X, ¥ = VU(XE+1) = YU(xg) (if B is to approximate the Hessian of U) or
y= t}'(xk.,.l) - fj'(xk) (if B is to approximate fj"), and w = y — Bygs. Dennis and Moré [54]
have given a thorough treatment of the theory underlying these updates. As they have
pointed out, numerical evidence seems to support the BFGS update as the best formula for use
in minimization. The interesting expression J

(66)

0 _ DFP BFGS
Bk+1 - eF"’k+1 B (I—G)Bkn

describes the Broyden family (Broyden [40], Fletcher [62]). The merits of a great many
variations are often compared in terms of their preservation of positive definiteness,
convergence to the true Hessian and numerical pérformance (see for instance Fletcher [63],

Gill and Murray [69]).
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When we apply (60), instead of computing Bx-1, usually a linear system is solved
using LU or LDLT factorization. Yet a more efficient approach is to update the inverse of an

approximate Hessian. Suppose Hy = Bi—1, then we can use

— 67)
hk = —a, I-Ik VU(xk).
We have
T
DFP ss'  H.yy Hy
Hk+1=Hk+ T " T .
T TH
sy yoHy (68)
BFGS _ zs! + sz' zTy sst
Hk+1 - Hk +

sty - sy’

where z = s — Hyy. The similarity between (65) and (68) is due to the fact that if y = Bs
thens = Hy. By interchanging the roles of y and s, as well as B and H, the DFP formula for
B becomes the BFGS update for H. For this reason, the BFGS formula is sometimes called
the complementary DFP update.

Another important point to be considered is the line search. Ideally, ay is chosen as
the minimizer of U in the direction of line search so that hyTVU(xx +hy) = 0. If exact line
searches are executed, Dixon [58] has shown that theoretically all members of the Broyden
family (66) would have the same performance. In practice, however, exact line search is
deemed too expensive and therefore replaced by other methods. An inexact line search
usually limits the evaluation of U and VU to only a few points. Interpolation and
extrapolation techniques (such as a quadratic or cubic fit) are then incorporated. The result,
namely Xg4+1 = X + hy, is normally required to satisfy conditions like

Ux, , ) <Ukx),

k+1 (69)

Il VUG, , )l < Blby VUG, B<1.

k+1
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Combined Methods

The distinguished advantage of a quasi-Newton method is that it enjoys fast rate of
convergence near a solution. However, like the Newton method for nonlinear equations, the
quasi-Newton method is not always reliable from a bad starting poeint.

Hald and Madsen [75,76,88] have suggested a class of 2-stage algorithms. A first-
order method of the Gauss-Newton type is employed in Stage 1 to provide global convergence
to a neighbourhood of a solution. When the solution is singular, Method 1 suffers from a very
slow rate of convergence and a switch is made to a quasi-Newton method (Stage 2). Several
switches between the two methods may take place and the switching criteria ensure the
global convergence of the combined algorithm. Numerical examples of circuit applications
have demonstrated a very strong performance of the approach [26,27,89,90].

Powell [103] has extended the Levenberg method and suggested a trust-region
strategy which interpolates between a steepest descent step and a Newton step. When far
away from the solution, the step is biased toward the steepest descent direction to make sure
that it is downhill. Once close to the solution, taking a full Newton step will provide rapid

final convergence.

Conjugate Gradient Methods

Some extremely lérge-scale engineering applications involve hundreds of variables
and functions. Although the rapid advances in computer technology have enabled us to solve
increasingly large problems, there may be cases in which even the storage of a Hessian
matrix and the solution of an n by n linear system become unmanageable.

Conjugate gradient methods provide an alternative for such a problem. A conjugate

gradient iteration is generally defined by
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X =xk+akdk,

‘ (70)
dp,,=-VU&x )+ B dy.,
d0= -—VU(XO),

where ay is determined through a line search. Different choices of i lead to variations of the

method. For example, the choice given by Fletcher and Reeves [66] is

B, = [VUx, )T VU, . )/[VU&)IT VU(x,) @
k k+1 k+1 k k
and the one due to Polak and Ribiere [98] is
T T (72)
B, = VU, ) - VU VUK, , )/[VUGE)I' VUCx,).

Very recently a more sophisticated formula has been proposed by Le [85] where a
comprehensive comparison between various methods is also available.

A distinct advantage of conjugate gradient methods is the minimal requirement of
storage. Typically three to six vectors of length n are needed, which is substantially less than
the requirement by the Gauss-Newton or quasi-Newton methods. However, proper scaling or
preconditioning, near-perfect line searches and appropriate restart criteria are usually
necessary to ensure convergence. In general, we have to pay the price for the reduced storage

by enduring a longer computation time.

Constrained Optimization
As have stated in a previous subsection, we can easily incorporate linear constraints
in the form of

T — - .
a,x+b,=0, ¢=1,2,..,L_, R (73)

eq
ajx+b,=20, €=L_+1,.,L,

eq
into a linear ¢, problem which can then be solved using linear or quadratic programming
techniques. Recall that by the Gauss-Newton method we have to solve a linearized
subproblem P(h,f D), where D normally contains _only the local bounds. Clearly, we may

include in D other linear constraints as well. In other words, the Gauss-Newton method can

be extended to include (73).
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We can also apply a quasi-Newton method to solve the optimality equations derived
from thé Kuhn-Tucker conditions for a constrained minimum. Due to the linearity of the
constraints, the extension from an unconstrained algorithm is usually manageable. See, for
example, the algorithms for linearly constrained minimax and ¢; problems [26,27,75,76].

In circuit applications, it is quite common to have bounds on some variables. Easily

we can express ¢ = x; = d by a pair of linear constraints as

-Xj+c¢=0,
(74)
X;—d=0.

The positivity of model parameters is almost implied in circuit optimization. One
simple trick is to let x; = exp(x;") and use X as a variable in optimization. While x;' is free to
assume any value, x; > 0 is guaranteed. As an advantageous by-product, it introduces an

automatic scaling to the variables, as

AU AU
Ax; Axi/xi

(75)

where A stands for an incremental change. Many practical experiences seem to endorse this
simple transformation in lieu of a more sophisticatt;d algorithm:

The subject of treating general nonlinear constraints is much more complicated. The
methods of penalty function and barrier function (see, for example, Zangwill [123], Fiacco and
McCormick [61]) are relatively easy to adopt. The Han-Powell method [77, 104] is more
powerful yet more complex to implement.

Actually, the ideas of penalty and barrier functions have been implied in the
definition of a cost function in (33), where we use the barrier terms of ai/;i to prohibit the
tolerance g; from becoming too small and the penalty terms of b;t; to discourage any excessive
tuning. Alternatively, we may specify the minimum allowance for a component tolerance, in

the form of a linear constraint on the variable ¢;: &; = &j min. Also, the tuning on ¢; can be
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explicitly restricted by imposing t; < t; max. Such a set of linear constraints in effect specifies
a maxirnﬁm cost which is not to be exceeded under any circumstances.

The generalized €, function provides a perfect example of a combined penalty-barrier
method. When outside the acceptable region (i.e., when Hy(e) > 0), the objective function is
defined by (12) which is like a penalty function, and when inside it is given by (14) which is

like a barrier funection.

VIII. GRADIENT CALCULATION AND APPROXIMATION
A common assumption of the gradient-based €, optimization methods is that the first-
order derivatives of f1, fs,..., fi, with respect to xi, x3,..., X, are available. The gradient of the
objective function, if it exists, can be readily obtained by applying the chain rule. For

example, the gradient of the €, norm is given by

m
VU = ViEI, = 48" > (eI, (76
j=1

which exists for p < » and when f; = 0 for allj. If f is defined f_or multiple circuits as f(x) =
[eT($0) eT(d1) ... eT(K)]T, we have
(a«p"ﬂ‘ aeT(q»")) ( a@™)" 2"@™ )
P 20 e P ok .

Furthermore, since each error function ej($k) is derived from a circuit response Fi(dk)

afT

ax

T

and a constant specification (see Section II), we need to consider only the sensitivities of

Fj(k). The application of the chain rule can be illustrated by

aF. aeT afT
——;{—)—-—k—>—-—>VU(x).
od b ax

In the following, we first consider linear circuits in the frequency domain, in which

(78)

case exact sensitivity analysis is usually possible. We also point out some common obstacles
to the implementation of sensitivity calculations in practice. Then some algorithms of

gradient approximation are discussed.

JWB-125d
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Sensitivities for a Nodal Description

Assume that a nodal description of the circuit is available. For simplicity, we further
assume an admittance matrix. The formulas are, of course, applicable to an impedance or
hybrid matrix.

We have

YV=I (79
where Y is the N by N admittance matrix, V the nodal voltages and I the excitation vector.

Differentiating (79) w.r.t. a generic variable ¢ gives

V_ _y1 ¥y (80)
o ad

To select the sensitivity for a particular voltage of interest, say, V¢, we define a unit
vector ug which is the €th column vector of an N by N identity matrix (its fth element is 1 and

the others are zeros). Premultiply (80) by uT,,

€ Ar oY N A
=yl v T v= Y Y vy, (81)
od od ob i=1 j=1 op ' J
where we define an adjoint system by
A (82)
Y'V=u,.

For example, consider a capacitor connected between nodes aand b. The parameter C

appears in four places in Y: as jwC in Yy, and Yy and as —jwC in Yap and Ype. Therefore,

BVe

LA A A A A A
;6- = —JG)(VaVa'f‘ Vbe- VaVb— vaa) = —‘](.n)(va—~ Vb)(Va— Vb)‘

If we solve the original circuit (79) by LU factorization, then the adjoint solution (82)

(83)

requires minimal extra effort.
It is also possible to arrive at the same results from Tellegen's theorem (see, for
instance, Director and Rohrer [56] and Bandler [7]). The concise derivation through matrix

algebra as shown here was first presented by Branin [37].
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Sensitivities for Terminated Two-ports

If the nodal equations (79) describe an unterminated network and we focus our

attention on a pair of input and output variables, then the circuit is characterized by an

[VI] _ [zu zm] [Il] (84)
Vx Zg %0 | |In ’

where node 1 being the input and node N the output is just a convenient assumption. Writing

unterminated two-port

(84) as Vp, = zI,, it can be shown that the two-port open-circuit impedance matrix is given by

Ty-1 Ty-1
[ul Y ul ’I;ll Y uN ] [pl q]} (85)
z= =
T yv-1 T yv-1 ’
u Y u, u Y uy Py Oy
where p and q are solutions of, respectively,

Yp=up, (36)
Yq= uy.
Following (81), we obtain these sensitivity expressions:
A A
& 1 o, 9 % al aYij PiPj Py (87
= — = - I A A ’
a¢ a¢ apN an i=1 j=1 aq) ql.p] qlq]
where two adjoint systems are defined by
TA _

Yp=u, (88)
YTQ =y

Assume that the two-port is terminated by a load Y, and a source J = 1A with an

admittance Ys. Then

I1 1 YS 0 V1 89)
I 0 0 Y, VN
Denoting
Y. O
]
- 0
0 L

we can express (89) more concisely as I, = u; — T V. From (84) and (89), we can solve for V,

as

1
Vp: a+ zT)'lzu1 1)
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and, after some algebraic manipulations, obtain its sensitivity expression as

oV
-—g=(l+zT)'1(§-z-I —Z£V>. (92)
ad o P o P

We notice that in order to complete the derivation, four linear systemé have been
defined. If the network is reciprocal then YT = Y and consequently (88) is identical to (86),
which means that only two systems need to be solved. Furthermore, it has been shown that
for lossless two-p<;rts one circuit analysis will suffice (Orchard et al. [94], also Bandler et al.
[14]). Insome cases second-order sensitivities can be derived as well [15]. It is not difficult to
see that the above results can be extended for general multi-ports, the difference being that
more linear systems will have to be defined and solved. We should emphasize the fact that in

any of these cases, only one LU factorization of Y is required.

Sensitivities for Frequency Responses

In the microwave area, the use of reflection coefficient, return loss, insertion loss and
scattering parameters is very popular. Once we have the sensitivities of the two-port
voltages and currents, to derive the corresponding formulas for those frequency responses is

more of an algebraic exercise. We simply summarize some of the basic results in Table IV.

Obstacles to Practical Implementation

We ought to recognize that an explicit and elegant sensitivity expression is not always
available. For time-domain responses and nonlinear circuits an exact formula may not exist.
Even for linear circuits in the frequency domain, large-scale networks presént new problems
which need to be addressed.

Often, a large-scale network can be described through compounded and
interconnected subnetworks. Many commercial CAD packages such as SUPER-COMPACT
[113] and TOUCHSTONE [118] have facilitated such a block structure. In this case, one

possible approach would be to assemble the overall nodal matrix and solve the system of



53

equations using sparse techniques (see, e.g., Duff [59], Gustavson [71], Hachtel et al. [72]).
Another possibility is to rearrange the overall nodal matrix into a bordered block structure
which is then solved using the Sherman-Morrison-Woodbury formula [73,110]. Sometimes it
is also possible to develop efficient formulas for a special structure, such as the approach of
Bandler et al. [22] for branched cascaded networks.

In conjunction with these approaches, the analyses and sensitivity calculations as
outlined in the previous subsections can be carried out at the subnetwork level. Perhaps the
most perplexing and time-consuming part of the task is to devise an index scheme through
which pieces of lower-level information can be brought into the overall sensitivity expression.
It may also require a large amount of memory storage for the various intermediate results.
Partly due to these difficulties, methods of exact sensitivity calculations have yet to find their
way into general-purpose CAD software packages, although the concept of adjoint network
has been in existence for nearly two decades and has had success in many specialized

applications.

Gradient Approximations

In the case where either exact sensitivities do not exist or they are too difficult to
calculate, we can implement gradient approximations in order to furnish the necessary link
between a simulation mo&ule which provides function values and an optimization module
which demands gradients.

Approximations to second-order derivatives have been extensively studied in the
context of quasi-Newton methods. Those results are not directly applicable to gradient
approximations because certain important properties of a Hessian such as symmetry and
positive definiteness are not generally relevant to a Jacobian.

Traditionally, approximate first-order derivatives are obtained by perturbations

(finite differences) as
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afj(x) _ fj(x +hu) - fj(x)
ox. h

1

(93)

It gives a reliable result but the computational labor involved grows in proportion to the
dimension of the problem.

Recently, Bandler et al. [19-21] have proposed an effective and flexible approach to
gradient approximations. Their work has extended and improved upon the earlier results
by Madsen [87] and Zuberek [124]. It ié a hybrid approach combining perturbations, the
Broyden update [39] and the special iterations of Powell [101]. Let (gj)x be an approximation
to f{. The Broyden rank-one formula is given by

fj(xk + hk) - fj(xk) - (gj);l(‘ hk . (94)

@1 = @)+ T h

k 'k
If x; and x+hy are iterates of optimization then (94) does not require extra function
evaluations. Powell's special iterations are incorporated to overcome a particular deficiency
of the Broyden update by guaranteeing strictly linearly independent directions. A weighted
update has also been suggested which is especially suitable for a multi-circuit structure. Such
an algorithm has been integrated with minimax and €; optimization for circuit applications.

It has proved to be efficient and reliable through practical examples in areas including

multiplexer design, FET modeling and worst-case design.

VII. CONCLUSIONS
In this review, we have formulated realistic circuit design and modeling problems and
described their solution methods. Models, variables and functions at differe;:t levels, as well
as the associated tolerances and uncertainties have been identified. The concepts of design
centering, tolerancing and tuning have been discussed. Recent advances in statistical design,
yield enchancement and robust modeling techniques suitable for microwave CAD have been

exposed in detail. State-of-the-art optimization techniques have been addressed from both
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the theoretical and algorithmic points of view. Sensitivity calculations and gradient
approxirr‘lations have been discussed in some detail and useful formulas have been given.

We have concentrated on aspects that are felt to be immediately relevant to and
necessary for modern microwave CAD. There are, of course, other related subjects that have
not or not adequately been treated in this paper. Notably among these are special techniques
for very large systems (Geoffrion [67, 68], Haimes [74], Lasdon [82]), third generation simu-
lation techniques (Hachtel and Sangiovanni-Vincentelli [73]), fault diagnosis (Bandler and
Salama [33]), supercomputer-aided CAD (Rizzoli et al. [106]), and the new automated
decomposition approach to large scale optimization (Bandler and Zhang [34]).

This paper is particularly timely as software, based on techniques which we have
described, is being integrated by EEsof Inc. into TOUCHSTONE and Compact Software Inc.

into SUPER-COMPACT.
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TABLE I
STATISTICAL DESIGN OF A LOW-PASS FILTER USING

PARAMETRIC SAMPLING TECHNIQUE [111]

Component Starting Worst-Case Minimum Cost
Point Design Design
&i $i0 $i0 £i/i0(%) $;0 £i/$i0(%)
X1 0.2251 0.21200 .62 0.21069 2.90
X2 0.2494 0.23300 .58 0.23299 3.71
X3 0.2523 0.23499 .45 0.23519 2.00
X4 0.2494 0.23300 .58 0.23169 3.40
X5 0.2251 0.21200 .62 0.21430 2.76
Xg 0.2149 0.23499 .85 0.23340 4.72
X7 0.3636 0.38902 .57 0.39240 2.63
Xg 0.3761 0.40201 .51 _ 0.39840 2.50
X9 0.3761 0.40201 .51 0.40589 2.36
X10 0.3636 0.38902 .57 0.38542 2.54
X11 0.2149 0.23499 .85 0.23020 2.83
Yield 100% 78.67%
Cost 18.68 5.00

M

Independent normal distributions are assumed for each component with mean values ¢;0.
The tolerances ¢; are related to the standard deviations g; by &; = 30;. The yield is estimated

based on 300 samples.
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TABLEII
STATISTICAL DESIGN OF A LOW-PASS FILTER USING

GENERALIZED ¢; CENTERING TECHNIQUE

Component Nominal Design Casel Case2 Case 3

i $;0.0 ;01 $i0.2 ;0.3
X1 0.2251 0.21954 0.21705 0.21530
X2 0.2494 0.25157 0.24677 0.23838
X3 0.2523 0.25529 0.24784 0.24120
X4 0.2494 0.24807 0.24019 0.23687
X5 0.2251 0.22042 0.21753 0.21335
Xg 0.2149 0.22627 0.23565 0.23093
X7 0.3636 0.36739 0.37212 0.38225
xg 0.3761 0.36929 0.38012 0.39023
X9 0.3761 0.37341 038371 0.39378
X10 0.3636 0.36732 0.37716 0.38248
X11 0.2149 0.22575 0.22127 0.23129

Yield 49% 77.67% 79.67% 83.67%

Number of samples 50 100 100

used for design

Starting point 0.0 0. : 0.2

Number of iterations ' 16 18 13

CPU time (VAX 8600) 10 sec. 30 sec. 26 sec.

Independent uniform distributions are assumed for each component with fixed tolerances

g; = 1.5% ;0. The yield is estimated based on 300 samples.
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TABLEIII
" MATHEMATICAL PROGRAMMING EQUIVALENT FORMULATIONS

FOR ¢y, £2 and £ OPTIMIZATION

The original problem: minimize H(f)
x
The equivalent problem: minimize V(x,y) subject to the constraints as defined below
X,y
H(f) V(x,y) constraints (forj = 1,2, ..., m)
m
I£1, Z Y; y; =21, y; = —f,
=1
T, =
€1, y yzf,y=-f
m
+
H Z Y; yjzt‘j, yJEO
=1
+ T .
Hz(f) yy yjzfj,yj_o
H' y y=fy=0
H_(£) y y=f

Note: A generalized € function Hy(f) is defined through Hp"'(f) and Hy"(f). Hp is a

continuously differentiable function for all p < .
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TABLE IV

SENSITIVITY EXPRESSIONS FOR SELECTED FREQUENCY RESPONSES

Response Formula Sensitivity Expression
Y Y.G Y.G. &V
d
input reflection coefficient Pin -;Sj 2 Gs vV, -1] 2 [V1 = ( S‘ S) + S* s _ 1
YS ad YS YS
, 20 1 %,
input retumn loss —20log olp. | - Re| — —
10%in In10 p,,
20 1 9V 1 9Y
insertion loss — 20 log OIV Y, - Re| — — 4 — —*
100N In10 Ve @ Y. 3
. . - - -1 1 0z
scattering matrix (z -1)(z+1 _2Z 1-8—Q0Q-9
0

Gs =Re(Ys) Yr=Ys + YL
Ys® is the complex conjugate of Yg

Z = z/Z¢ where Zg is the normalizing impedance. S is the scattering matrix.
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1
Z
A B'
(a)
A B
YT j
Ly L,
zZy Z; Z3
o el Ly
&
A' !
g=bIn2 B
k.8
(b)
Fig. 1 A microwave stripline transformer showing (a) the physical structure and (b) the

equivalent circuit model [30]. The physical parameters are
OM =[w; wy w3 € Very Verg Ve by bz by ter ts2 tsalT

where w is the strip width, ¢ the length of the middle section, &, the dielectric
constant, b the substrate thickness and tg the strip thickness. ¢M is represented in
the simulation model by ¢L. The high-level parameters of the equivalent circuit
are

oH =[Dy Dy D3 Ly Ly €T

where D is the effective linewidth, L the junction parasitic inductance and ¢ the
effective section length. Suitable empirical formulas that relate ¢L to $H can be
found in [30].
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a
upper spec pasr;;nceeter
unacceptable
q acceptable
lower spec
eb
0
(a) (c)
€y
0 T
a 0— T T
e
0
BRERERY 1
. Hy Hp Heo
éu y
114
’ ] [ [ \
> b 0 I
ey
2 11 7
0 l l l 1 1 ]
(b) (d)
Fig. 2 Illustrations of (a) upper specifications, lower specifications and the responses of

circuits a and b, (b) error functions corresponding to circuits a and b, (¢) the
acceptable region and (d) generalized €}, objective functions defined in (13).
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parameter space
. xb «
a Ex (empty acceptable region)
a
0
(a) (c)
e a

a b

6 e Ile o 1 I 0 I I
lel, lel, lel,

) (d)

Fig. 3 Nlustrations of (a) a discretized single specification and two discrete single
specifications (e.g., expected parameter values to be matched), as well as the
responses of circuits a and b, (b) error functions related to circuits a and b, (c) the
(empty) acceptable region (i.e., a perfect match is not possible) and (d) the
corresponding €, norms.
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parameter space

(zero yield)

low yield

high yield

Fig.9 Three nominal points and the related yield.
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uniform

gaussian

0o

Fig.10  Typical tolerance distributions: uniform and Gaussian (normal).
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Fig. 13
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A cO

_C!

FOTFCE

cZ

1
é;

» O,

An illustration of multi-circuit modeling. Three circuits are created by making
two physical adjustments. Assume that we know that ¢y should not be affected by

the physical adjustments.
corresponding to the three circuits.

CO, C1 and C2 are contours of the error functions

(a) By treating the three circuits separately, we obtain ¢0, d1 and 2. $°, ;! and
12 turn out to have different values (which is inconsistent with our knowledge)

because of uncertainties.

(b) Consistent results can be obtained by defining ¢; as a common variable and
processing three circuits simultaneously.
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Fig. 14

1
11
O
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7

source

The small signal equivalent circuit model for a FET device [21].
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MSi4 MS24 MSi2 Msaa

AS14 AS21 AS12 AsS22

(b) -

Fig. 15 The scattering parameter match [21] between the model and the measurements at
(a) the starting point and (b) the solution. The biasing conditions are Vys = 4V,
Vgs = 0Vand Igs = 177TmA.
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———————————————— =M23
— — - — —---=M34
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-0 - - -~ =M56 -

=M36
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=180 -30 0 30 180

CHANGE IN THE SCREW ANGLE

Fig.16  The identified coupling values versus the relative position of the screw in degrees

for the 6th order filter example. The screw was assumed to control Mjs.
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Fig. 17

100%
yield

A typical cost-versus-yield curve [111].
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parameter space

maximum yield
(100%)

minimum cost
(<100% vyield)

Fig.18 A maximum yield design and a minimum cost design.
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Fig.19  Contours of max |pj| with respect to Z; and Z3 for the two-section transformer
indicating the minimax nominal solution a, the centered design with relative
The values in

tolerances b and the centered design with absolute tolerances c.
brackets are the optimized tolerances (as percentages of the nominal values). The

specification is |p| < 0.55.
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Fig.20  The optimized tolerance regions and nominal values for the worst case design P1,
90% yield design P2 and minimum cost design P3 of the two-section transformer.



88

X1 X2 X3 X4 X5

IR AR A s S s

FFREREE

Fig.21  The Chebyshev lowpass filter [111].
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