

SIMULATION OPTIMIZATION SYSTEMS Research Laboratory

SOME PRACTICAL CONSIDERATIONS ON IMPLEMENTING NONLINEAR LARGE-SIGNAL FET EQUIVALENT CIRCUIT MODELS

J.W. Bandler, S. Ye and Q.J. Zhang

SOS-89-7-R

December 1989

McMASTER UNIVERSITY
Hamilton, Canada L8S 4L7
Department of Electrical and Computer Engineering

SOME PRACTICAL CONSIDERATIONS ON IMPLEMENTING NONLINEAR LARGE-SIGNAL FET EQUIVALENT CIRCUIT MODELS

J.W. Bandler, S. Ye and Q.J. Zhang

SOS-89-7-R

December 1989

[©] J.W. Bandler, S.Ye and Q.J. Zhang 1989

No part of this document may be copied, translated, transcribed or entered in any form into any machine without written permission. Address enquiries in this regard to Dr. J.W. Bandler. Excerpts may be quoted for scholarly purposes with full acknowledgement of source. This document may not be lent or circulated without this title page and its original cover.

		-	
		•	
		-	
		4	

SOME PRACTICAL CONSIDERATIONS ON IMPLEMENTING NONLINEAR LARGE-SIGNAL FET EQUIVALENT CIRCUIT MODELS

J.W. Bandler, S. Ye and Q.J. Zhang

Abstract Two procedures are described which are employed to calculate the drain-to-source current sources of the two widely used nonlinear large-signal FET models, namely, the Materka and Kacprzak model and the Curtice model. Numerical examples show improvements in the behaviour and robustness of the FET models when the procedures are applied.

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada under Grants STR0040923 and OGP0007239 and in part by Optimization Systems Associates Inc.

The authors are with the Simulation Optimization Systems Research Laboratory and the Department of Electrical and Computer Engineering, McMaster University, Hamilton, Canada L8S 4L7. J.W. Bandler and Q.J. Zhang are also with Optimization Systems Associates Inc., P.O. Box 8083, Dundas, Ontario, Canada L9H 5E7.

I. INTRODUCTION

A good equivalent circuit model for FET devices is vital to microwave CAD. Over the years various nonlinear large-signal FET models have been proposed. Some of them have been successfully used in nonlinear circuit simulations and optimizations. The critical nonlinear component in these models is the drain-to-source nonlinear current source. This report discusses specific aspects on implementing the drain-to-source nonlinear current sources of two widely used models, namely, the Materka and Kacprzak model [1] and the Curtice model [2], from the programming point of view.

Section II describes certain aspects of implementing the (modified) Materka and Kacprzak model. The Curtice model is discussed in Section III. These two models have been implemented in the nonlinear microwave CAD programm McCAE [3], where the models are used in the nonlinear harmonic balance simulation environment.

II. THE MODIFIED MATERKA AND KACPRZAK MODEL

The intrinsic part of the Materka and Kacprzak FET model [1] is shown in Fig. 1, where the drain-to-source nonlinear current source i_D is characterized as

$$i_D = I_{DSS} \left[1 - \frac{v_G}{V_p} \right]^2 \cdot \tanh \left[\frac{\alpha_D v_D}{v_G - V_p} \right],$$
 (1)

where

$$V_{p} = V_{p0} + \gamma v_{D}.$$

The characteristics of i_G , i_B and C_1 can be found in [1]. R_1 and C_F are considered as linear elements.

To be more flexible, the model was later modified in Microwave Harmonica [4], where the characteristic of $i_{\rm D}$ becomes

$$i_D = F[v_G(t - \tau), v_D(t)] (1 + S_S \frac{v_D}{I_{DSS}}),$$
 (2)

where

$$F(v_{G}, v_{D}) = I_{DSS} \left(1 - \frac{v_{G}}{V_{p0} + \gamma v_{D}} \right)^{(E + K_{E}v_{G})} \cdot \tanh \left(\frac{S_{1}v_{D}}{I_{DSS}(1 - K_{G}v_{G})} \right).$$
(3)

From the implementational point of view, direct use of (2) and (3) to calculate i_D may not be appropriate due to situations like unpredictable values of v_G and v_D during simulation, model parameter changes in model parameter extraction optimization, and so on. To avoid possible numerical difficulties, the following procedure is employed:

Step 1
$$f_1 = Max[1 \times 10^{-6}, 1 - v_G/(V_{p0} + \gamma v_D)].$$

Step 2
$$f_2 = Max[1 \times 10^{-6}, E + K_E v_G].$$

$$Step \ 3 \ \ \mathbf{f_3} = \ Min[40, \ \mathbf{S_1v_D}/\mathbf{I_{DSS}}(1 \ - \ \mathbf{K_Gv_G})], \ \ \mathbf{if} \ \ \mathbf{S_1v_D}/\mathbf{I_{DSS}}(1 \ - \ \mathbf{K_Gv_G}) \ \geq \ \ 0,$$

and
$$f_3 = Max[-40, S_1v_D/I_{DSS}(1 - K_Gv_G)]$$
, if $S_1v_D/I_{DSS}(1 - K_Gv_G) < 0$.

Step 4
$$f_4 = I_{DSS} + S_S v_D$$
.

Step 5 i_D is then

$$i_D = (f_1^{f_2}) \cdot \tanh(f_2) \cdot f_A . \tag{4}$$

It is not difficult to see in the procedure that f_1 is used to avoid taking the exponential of negative or zero values, and f_2 to avoid a negative exponent which is nonphysical.

Example

To illustrate the above procedure, consider i_D with parameter values taken from [5], i.e.,

$$I_{DSS} = 0.0740$$
 $V_{p0} = -3.185$ $\gamma = 0.0177$ $E = 2.937$ $K_{E} = -0.9077$ $S_{1} = 0.1527$ $K_{G} = -0.4912$ $S_{S} = 0.0022$.

We calculate i_D by varying v_G from -3.5V to 2.0V with a step of 0.25V and v_D from 0 to 9.5V with a step of 0.5V.

Direct use of (2) and (3) results in the same values of i_D as by using (4) when v_G is between -2.0V to 2.0V. However, using (2) and (3), we obtained negative i_D values when v_G is below -2.25V and $v_D > 0$, which is non-physical. An "Undefined exponential" error occurred when $v_G = -3.25$ V. None of these phenomena occur when we use (4) to calculate i_D .

III. CURTICE MODEL

Fig. 2 depicts the intrinsic part of the Curtice model [2]. Similar to the discussions on the Materka and Kacprzak model, we only consider the nonlinear current source i_D, which is characterized as

$$i_D = (A_0 + A_1 v_1 + A_2 v_1^2 + A_3 v_1^3) \cdot \tanh(\gamma v_D)$$
 (5)

where

$$v_1 = v_G[1 + \beta(V_{DS0} - v_D)]$$
.

Assume that i_D is non-negative and i_D is a monotonically increasing function of v_G if v_D has a fixed positive value. From the definition given in (5) i_D is a cubic function of v_G when v_D is fixed. Depending on different values of the coefficients and the actual v_D , the relationship between i_D and v_G behaves in one of the typical forms shown in Fig. 3.

To insure that i_D is always physical, an intuitive procedure has been developed to compute i_D . The main objective is to eliminate part(s) of the cubic curve which may not have any physical meaning. The procedure is as follows.

Step 1 Let $i_D = K(a_0 + a_1v_G + a_2v_G^2 + a_3v_G^3) \cdot tanh(\gamma v_D)$, and solve v_G from $\partial i_D/v_G = 0$. Step 2 If there are no two distinct real solutions, i_D is a monotonic function of v_G . We compute i_D using (5).

If there are two distinct real solutions v_{G1} and v_{G2} with $v_{G1} < v_{G2}$, and $a_3 < 0$ which corresponds to Fig. 3(c), i_D is calculated by

$$\begin{split} & i_D = i_D(v_G, \ v_D), \quad \text{if} \ v_{G1} < v_G < v_{G2} \\ \\ & i_D = i_D(v_{G1}, \ v_D), \quad \text{if} \ v_G \le v_{G1} \\ \\ & i_D = i_D(v_{G2}, \ v_D), \quad \text{if} \ v_{G2} \le v_G \ . \end{split}$$

If there are two distinct real solutions v_{G1} and v_{G2} with $v_{G1} < v_{G2}$, and $a_3 > 0$ which corresponds to Fig. 3(d), i_D is calculated by

$$i_D = i_D(v_G, v_D), \text{ if } v_{G2} < v_G$$

$$i_D = i_D(v_{G2}, v_D), \text{ if } v_G \le v_{G2}.$$

Step 3 If $i_D < 0$ and $v_D > 0$, set $i_D = 0$.

If
$$i_D > 0$$
 and $v_D < 0$, set $i_D = 0$.

Example

Similarly to the example discussed in Section II, i_D in the Curtice model is calculated with v_G from -3V to 2V with a step of 0.5V and v_D from 0 to 9.5V with a step of 0.5V. The parameters of i_D are taken from [2]

$$A_0 = 0.05185$$
 $A_1 = 0.004036$ $A_2 = -0.009478$ $A_3 = -0.009058$ $\beta = 0.04062$ $\gamma = 1.608$ $V_{DS0} = 4.0$.

Fig. 4 shows the results obtained by direct use of (5). It can be seen in this example that when $v_G > 1.0V$ or $v_G \le -2.0V$, the model behaves non-physically. Fig. 5 illustrates the i_D characteristics obtained by using the procedure presented in this section, where v_G and v_D have the same ranges as in Fig. 4. Significant improvement can be observed.

IV. CONCLUSIONS

In this report, practical implementations of the modified Materka and Kacprzak and the Curtice nonlinear large-signal FET models have been presented. Examples have demonstrated that with our calculation procedures, the behaviour of the model can be improved and the model can be more physically robust.

The procedures presented in this report have been implemented and tested in the program McCAE. McCAE has successfully employed the FET models for harmonic balance simulation and optimization.

REFERENCES

- [1] A. Materka and T. Kacprzak, "Computer calculation of large-signal GaAs FET amplifier characteristics", *IEEE Trans. Microwave Theory Tech.*, vol. MTT-33, 1985, pp. 129-135.
- [2] W.R. Curtice, "GaAs MESFET modeling and nonlinear CAD", *IEEE Trans. Microwave Theory Tech.*, vol. 36, 1988, pp. 220-230.
- [3] McCAE, Simulation Optimization Systems Research Laboratory and Department of Electrical and Computer Engineering, McMaster University, Hamilton, Canada, L8S 4L7, 1989.
- [4] Microwave Harmonica User's Manual, Compact Software Inc., Paterson, NJ, 07504, 1987.
- [5] J.W. Bandler, Q.J. Zhang, S. Ye and S.H. Chen, "Efficient large-signal FET parameter extraction using harmonics", *IEEE Trans. Microwave Theory Tech.*, vol. 37, 1989, pp. 2099-2108.

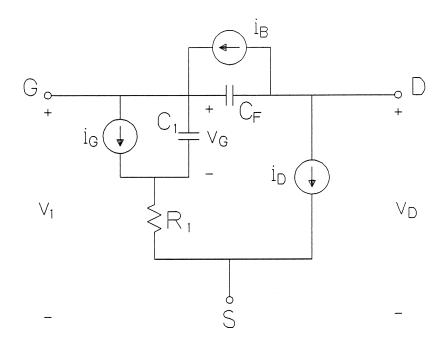


Fig. 1 Intrinsic part of the (modified) Materka and Kacprzak FET model.

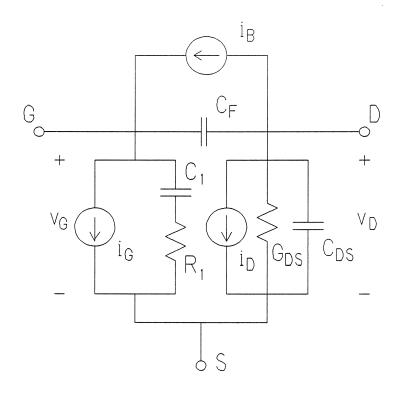


Fig. 2 Intrinsic part of the Curtice FET model.

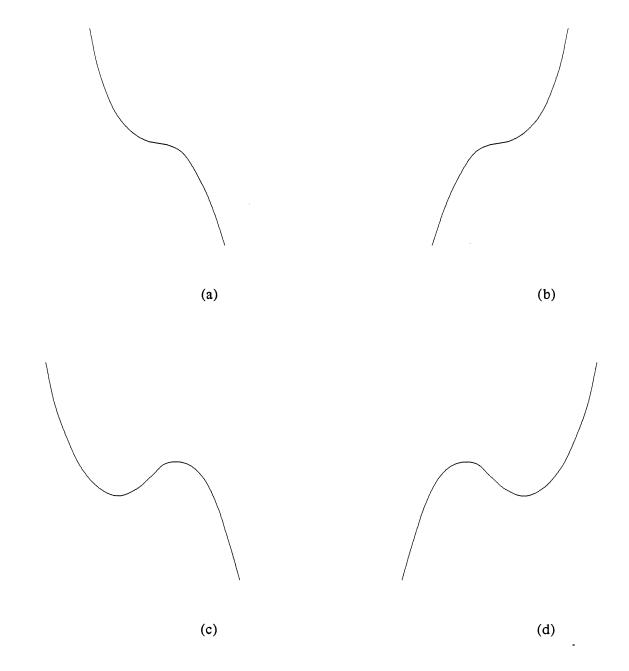


Fig. 3 Possible i_D w.r.t. v_G characteristics. When we solve $\partial i_D/\partial v_G=0$ for v_G , which is equivalent to $a_1+a_2v_G+a_3v_G^2=0$, (a) no two distinct real solutions and $a_3<0$; (b) no two distinct real solutions and $a_3>0$; (c) two different real solutions and $a_3<0$; (d) two real solutions and $a_3>0$.

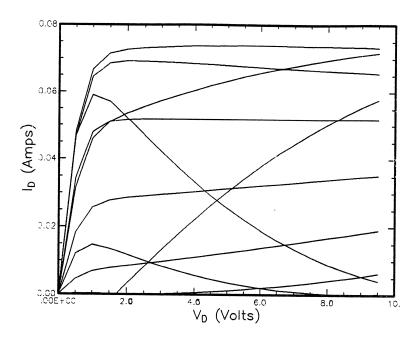


Fig. 4 The characteristics of i_D in the Curtice FET model w.r.t. v_G and v_D obtained by using (5), where v_G is from -3V to 2V with a step of 0.5V, and v_D is from 0 to 9.5V with a step of 0.5V.

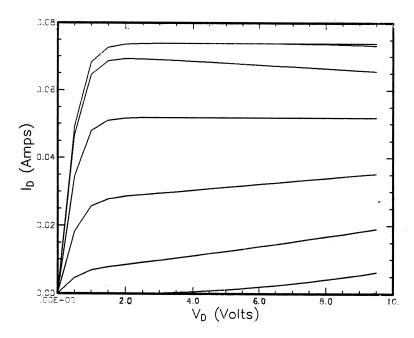


Fig. 5 The characteristics of i_D in the Curtice FET model w.r.t. v_G and v_D obtained by using the procedure presented in Section III, where v_G is from -3V to 2V with a step of 0.5V, and v_D is from 0 to 9.5V with a step of 0.5V.

