IMPLEMENTATION OF A PHYSICS BASED MODEL
FOR THE GaAs MESFET

J.W. Bandler, Q.J. Zhang and Q. Cai
SOS-90-3-U

January 1990

© J.W. Bandler, Q.J. Zhang and Q. Cai 1990

No part of this document, computer program, source code, compiled code, related documentation
and user manuals, magnetic tape, constituent subprograms, test programs, data and data files may
be acquired, copied, reproduced, duplicated, executed, lent, disclosed, circulated, translated,
transcribed or entered in any form into any machine without written permission. Address
enquiries in this regard to Dr. J.W. Bandler. Neither the authors nor any other person,
company, agency or institution make any warranty, express or implied, or assume any legal
responsibility for the accuracy, completeness or usefulness of the material presented herein, or
represent that its use would not infringe upon privately owned rights. This title page and
original cover may not be separated from the contents of this document.

IMPLEMENTATION OF A PHYSICS BASED MODEL FOR THE GaAs MESFET

J.W. Bandler, Q.J. Zhang and Q. Cai

Abstract A physics based model for the GaAs MESFET is dynamically integrated into a
linear/nonlinear simulation environment. The model is based on the work of Khatibzadeh and
Trew. The program, written in C, has been embedded into our research system called McCAE.

This document gives a description of all modules related to the physical model.

This work was supported in part by the Natural Sciences and Engineering Research
Council of Canada under Grants STR0040923 and OGP0007239.

The authors are with the Simulation Optimization Systems Research Laboratory and the
Department of Electrical and Computer Engineering, McMaster University, Hamilton, Canada
L8S 4L7.

I. INTRODUCTION

The physics based model for GaAs MESFETs has been described in our previous report
[1]. The model accepts physical/geometrical/process parameters of the device as input data.
Simulation and optimization can be directly applied to the physical characteristics of the devices
with this model, representing a breakthrough over the conventional equivalent circuit approach.
The model is very useful for both device and circuit design optimization and is quite suitable
for statistical modeling and yield optimization.

This document gives a description of the program for the physics based model for the
MESFET. The program is written in C. It includes three main files: (1) trew.c for the physical
model, (2) spline.c for cubic spline interpolation and (3) integral.c for the calculation of
integrations used by routines in trew.c, and three include files: "trew.h", "spline.h" and

"integral.h". The three principal files are described in detail in the following sections.

II. DESCRIPTION OF FILE trew.c

This file contains two main functions: initrew and ctrew. initrew is devoted to all pre-
calculations such as initialization of the parameters, evaluation of constants and creation of cubic
spline interpolation parameters for F,(d) w.r.t. d, etc. See (21) in [1]. ctrew calculates the drain
and source conduction currents I; and I, and accumulation charges in the gate, drain and source
electrodes, i.e., Qg, Q4 and Q,. The equations for calculating I, I, Qg, Qg and Q, are described
in detail in [1].

In this section, the arguments of the subprograms are listed. They are also classified as
input arguments and output arguments. The notation used in this section is consistent with

our previous report [1].

A. initrew

initrew(PA)

PA is a float array of dimension 20. It contains the input parameters of the model. The

values for the elements of PA must be supplied by the user. The elements of PA are defined

as follows.
PA[0]
PA[1]
PA[2]
PA[3]
PA[4]
PA[5]
PA[6]
PA[7]
PA[8]
PA[9]
PA[10]

PA[11]

PA[12]
PA[13]
PA[14]
PA[15]

PA[16]

gate length L (um).
gate width W (um).
channel thickness a (um).
relative dielectric constant €.
critical electric field E, (V/um).
saturation electronic velocity v, (um/ns).
built-in potential V, (V).
low-field mobility pu, (pm?2/Vns).
high-field diffusion coefficient D (um?/ns).
doping density (for uniform doping) N (um3).
model parameter A for calculating transition function (see (12) in [1]) (um).
model parameter a for evaluating the weight factor w, for calculating the average
mobility (see (33) in [1]).
time delay 7 (ns).
model parameter Ny, for calculating doping profile (pm™3).
model parameter Y, for calculating doping profile (um).
model parameter Y , for calculating doping profile (um).
model parameter Y, ; for calculating doping profile (um).
The representations for three typical doping profiles are
Uniform doping

N(y) = Ny ,
exponential doping |

N(y) = Ngexp[- 0.5(y - Yg)/Yp]

PA[17]
PA[18]
PA[19]

PA[20]

B. ctrew

Vif

Vgsf

Vdsf

Id

Is

Qg

Qd

and piecewise doping

Ny + Ny, y < Y
N(y) =

NdeXp[" (v - YD)/YnO]

+ Ng;expl- (y - Yo)/Y,4] y > Y,

model parameter A for calculating the velocity-electrical (v-E) curve (V/um).
model parameter B for calculating the v-E curve.
model parameter C for calculating the v-E curve.
model parameter H for calculating the v-E curve.

See (9) and (10) in [1] for details of A, B, C and H.

ctrew(V1f, Vgsf, Vdsf, Id, Is, Qg, Qd, Qs)
is a pointer to a float argument. *VIf represents the model variable Vv,
(INPUT).
is a pointer to a float argument. *Vgsf represents intrinsic gate voltage Ve
(INPUT).
is a pointer to a float argument. *Vdsf is the value of intrinsic drain voltage

V4. (INPUT).

o
is a pointer to a float argument. *Id represents the conduction drain current I
(OUTPUT).

is a pointer to a float argument. *Is represents the conduction source current L.
(OUTPUT).

is a pointer to a float argument. *Qg is the value of accumulation charge in the
gate electrode. (OUTPUT).

is a pointer to a float argument. *Qd represents the accumulation charge in the

drain electrode. (OUTPUT).

Qs is a pointer to a float argument. *Qs represents the accumulation charge in the

source electrode. (OUTPUT).

III. DESCRIPTION OF FILE spline.c
This file is used for cubic spline interpolation to a set of data. Given a set of data
(%, ¥;), 1 =1, 2, «s, N, which satisfy
X1<X2<"'< XN.
A cubic spline s(x) interpolates the above partition in the interval [x;, xy]- It is a function

for which s(x;) =y,

;- The function consists of N-1 cubic polynomials f; defined in the range
[x;, X;,1], respectively. In addition the cubic polynomials f; are joined at x; (i = 2, 3, e, N-
1) in such a way that s(x) is twice differentiable. In our program the cubic polynomials are
chosen to be of the form
fi(x) = Afx - x)* + Bi(x - x)® + C(x - x)) + D; X < X< X
where A;, B;, C, and D, are the coefficients to be determined. Given the values of the first or
second derivatives at the left-end and right-end points: y'(x;) and y’(xy) or y“(x,) and Y (xn)s
the coefficients A;, B;, C; and D, can be uniquely determined [2].
In this file there is one key module, CubicSplineWithDeriv(), and two functions,
CubicSplineValue() and CubicSplineDeriv. Module CubicSplineWithDeriv() is used to calculate
the coefficients A;, B;, C; and D,. Function CubicSplineValue() is applied to evaluate the value

of y at any given point x. Function CubicSplineDeriv() is used to calculate the derivatives of

y w.r.t. X at any given point X.

A. CubicSplineWithDeriv

CubicSplineWithDeriv(Ndata, Xdata, Fdata, Ideriv, Lderiv, Rderiv, Coef)
Ndata is an integer argument denoting the number of data points N. (INPUT).

Xdata is a pointer to a float array of dimension Ndata which contains all the data of

Fdata

Ideriv

Lderiv
Rderiv

Coef

x;. (INPUT).
is a pointer to a float array of dimension Ndata which contains all the data of
y;. (INPUT).

is an integer argument which indicates the order of derivatives in the left-end

(minimum of x;) and right-end (maximum of x;) points. It must be in the range

0 < Ideriv < 3. (INPUT).

Ideriv = 0 yi(x;) =0 y(xy) = 0

Ideriv = 1 y'(x,) = Lderiv y'(xy) = Rderiv

Ideriv = 2 y“(x;) = Lderiv y“(xy) = Rderiv

Ideriv = 3 y"(x;) = Lderivey”(x,) y"(xy) = Rderivey”(xy_;)

is a float argument containing the derivative at the left-end point. (INPUT).
is a float argument containing the derivative at the right-end point. (INPUT).

is a matrix containing all the coefficients A;, B;, C; and D;. (OUTPUT).

B. Function CubicSplineValue

Ndata

Xdata

Coef

CubicSplineValue(x, Ndata, Xdata, Coef)
is a float argument indicating the x point at which the value of y is to be found.
(INPUT).
is an integer argument containing the number of data points N. (INPUT). The
same argument is also used in CubicSplineWithDeriv().
is a pointer to a float array of dimension Ndata containing all the data of X;.
(INPUT). The same argument is used in CubicSplineWithDeriv().

is the coefficient matrix set up by CubicSplineWithDeriv(). (INPUT).

The return value of CubicSplineValue() is y corresponding to the point x.

C. Function CubicSplineDeriv

CubicSplineDeriv(x, Ndata, Xdata, Coef, Order)
We can use this function to evaluate the derivatives of y w.r.t. x at any given point x
by cubic spline interpolation. The arguments are the same as in CubicSplineValue() except that
"Order" is an integer argument (INPUT) containing the order of derivatives to be computed.

The return value is the derivative of y w.r.t. x at the given point.

IV. DESCRIPTION OF FILE integral.c
This file contains the modules used to calculate a single or double integration. Simpson’s
rule is used in this file to calculate the integrations. There are three functions in this file: (1)
Double_Integral(), which is used to evaluating the double integration, (2) Single Integral(),
which is applied to calculate the single integration using variable step, and (3)

Single Integral_Fix(), which is used to compute the single integration using a fixed step.

A. Double__Integral
Double_Integral(Lower, Upper, Eps, Fun, FunY, K, Sum)

This function is used to calculate the double integration of the type

b Ya(x)
I=[dx [f(x, y)dy
a y1(x)
The arguments follow.
Lower is a float argument containing the lower boundary of the first integration, i.e.,
a. (INPUT).
Ubpper is a float argument containing the upper boundary of the first integration, i.e.,
b. (INPUT).
Eps is a float argument indicating the permit error of the integration used to check

the convergence of the integral. (INPUT).

Fun is a pointer to the function to be integrated (i.e. f(x, y)). Given the value of x

FunY

Sum

and y, the function returns the value of f(x, y). The user must supply the
routine for this function. (INPUT).

is a pointer to the function for calculating y1(x) and y,(x) supplied by the user.
The function must be of the type

FunY(x, y;, ¥,)

where x is a input float argument, y, and y, are the pointers to the output float
arguments which contain the values for y,(x) and y,(x), respectively. (INPUT).
is an integer argument used to determine the step at which the convergence is
tested for the first time. (INPUT).

is a pointer to a float argument containing the result of the integration I.

(OUTPUT).

B. Single__Integral

Single Integral(Lower, Upper, Eps, Fun, K, Sum)

This function is applied to calculate the single integration of the type

b
I = f(x)dx
a

The arguments follow.

Lower

Upper

Eps

Fun

is a float argument containing the lower boundary of the integration, i.e., a.
(INPUT).

is a float argument containing the upper boundary of the integration, ie., b.
(INPUT).

is a float argument denoting the allowable error of the integration. It is used to
check the convergence of the integral. (INPUT).

is a pointer to the function to be integrated (i.e. f(x)). Given the value of x, the

function returns the value of f(x). The user must supply this function. (INPUT).

