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Abstract This paper meets the challenge of yield optimization of nonlinear microwave circuits
operating in the steady-state under large-signal periodic excitations. Yield-driven design is
formulated as a one-sided £, optimization problem. We introduce two novel, high-speed methods
of gradient calculation, the Integrated Gradient Approximation Technique (IGAT) and the
Feasible Adjoint Sensitivity Technique (FAST). IGAT utilizes the Broyden formula with special
iterations of Powell to update the approximate gradients. FAST combines the efficiency and
accuracy of the adjoint sensitivity technique with the simplicity of the perturbation technique.
IGAT and FAST are compared with the simple Perturbation Approximate Sensitivity Technique
(PAST) on the one extreme and the theoretical Exact Adjoint Sensitivity Technique (EAST) on
the other. FAST, linking state-of-the-art optimization and efficient HB simulation, is the key
to making our approach to nonlinear microwave circuit design the most powerful available. A
FET frequency doubler example treats statistics of both linear elements and nonlinear device
parameters. This design has 6 optimizable variables including input power and bias conditions,
and 34 statistical parameters. Using either IGAT or FAST vyield is driven from 25% to 67%.

FAST exhibits superior efficiency.
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I. INTRODUCTION

Statistical circuit design has been recognized as an indispensable tool for modern CAD
of integrated circuits [1-3]. A number of algorithms for yield optimization have been developed
within the past fifteen years, e.g., Director and Hachtel [4] (simplicial approximation), Soin and
Spence [5] (the center of gravity method), Bandler and Abdel-Malek [6,7] (updated
approximations and cuts), Styblinski and Ruszczynski [8] (stochastic approximation), Polak and
Sangiovanni-Vincentelli [9] (outer approximation), Singhal and Pinel [10] (parametric sampling),
Bandler and Chen [3] (generalized £ centering), and Biernacki et al. [11] (efficient quadratic
approximation). This paper deals with yield optimization of nonlinear microwave circuits within
the harmonic balance (HB) simulation environment.

Statistical design of practical nonlinear microwave circuits is a challenge. One serious
inherent difficulty is the potentially prohibitively high computational cost: many circuits have
to be simulated repeatedly and each circuit simulation involves CPU intensive iterations to solve
the HB equations. Furthermore, gradient-based optimization requires effort to estimate the
gradients of the error functions. Therefore, an effective and efficient approach to gradient
calculation is of utmost importance.

The conventional Perturbation Approximate Sensitivity Technique (PAST) is conceptually
simple. Since PAST needs to perturb all variables one at a time, the computational effort
involved grows in proportion to the number of variables. Rizzoli et al. [12] used this method
in their single-loop approach for nominal circuit design. In yield optimization, however, PAST
becomes extremely inefficient because of the large number of circuit outcomes to be dealt with.

The Exact Adjoint Sensitivity Technique (EAST) has been recently developed by Bandler,
Zhang and Biernacki [13,14] for the HB technique. In contrast to PAST, EAST involves solving
a set of linear equations whose coefficient matrix is available after circuit simulation. The
solution of a single adjoint system is sufficient for the calculation of sensitivities with respect

to all variables. No perturbation or iterative simulations are required. EAST enjoys high



computational efficiency, but is very difficult to implement.

In this paper, we formulate the yield-driven design of nonlinear circuits as a one-sided
¢, optimization problem [15] allowing the powerful, robust one-sided ¢, algorithm proposed by
Bandler et al. [16] to be employed. We introduce two powerful approaches to gradient
calculation. One is an Integrated Gradient Approximation Technique (/GAT) presented by
Bandler et al. [17], which is adapted here to the needs of yield optimization. The other is the
Feasible Adjoint Sensitivity Technique (FAST), first reported by Bandler et al. [18]. Motivated
by the potential impact of the adjoint sensitivity approach on general purpose CAD programs
we have studied its implementational aspects. FAST is demonstrated to be an implementable,
high-speed gradient calculation technique. FAST retains most of the efficiency and accuracy
of EAST while accommodating the simplicity of PAST.

IGAT and FAST are applied to yield optimization of a microwave frequency doubler.
In this example, normal and uniform distributions describing large-signal FET model parameters
and passive elements are fully accommodated. The performance yield is increased from 25% to
67%.

In Section II we formulate the yield optimization problem for nonlinear circuits as a one-
sided £, optimization problem. Sections III and IV are devoted to /GAT and FAST, respectively.
Comparisons between the various approaches are made in Section V. Section VI presents the

details of the FET frequency doubler example.

II. THE YIELD PROBLEM FOR NONLINEAR CIRCUITS
A. Specifications and Errors for Nonlinear Circuit Yield Optimization
Consider a nonlinear microwave circuit operating under large-signal steady-state periodic
conditions. Response functions for such a circuit may involve DC and harmonic components
of the output signal. Therefore, design specifications can be imposed at DC and several

harmonics. The jth specification can be denoted by



Sui(h) (1a)
if it is an upper specification, or
y5(h) (1b)
in the case of lower specifications, where
h=[012...H]F ()
is the harmonic index vector, 0 and H represent DC and the highest harmonic, respectively.
A specific circuit response may involve all or some of the (H + 1) spectral components.
Manufactured outcomes are spread over a region which can be described by the nominal
design, ¢°, along with a statistical distribution of parameters. Parameters in ¢° can be lumped
element values, device model parameters, dimensions of a physical realization, etc. For statistical
design, many circuits are needed to represent the distribution of manufactured outcomes. Such
circuit outcomes, denoted by ¢', can be written as
$=¢"+ Ad, i=1,2,..,N, (3)
where A¢' is the deviation of the ith outcome from the nominal circuit and N is the number
of outcomes considered. In yield optimization, each ¢' is determined by statistically perturbing
¢° according to a known or assumed statistical distribution of the manufactured outcomes.
The response of each outcome, denoted by
Ry(#', h), ()
is calculated after solving the HB equations [19]

F¢, V) =0, ©)
where V comprises the split real and imaginary parts of the state variables in the HB equation.
The corresponding error function is defined as

Ri(#, h) - S,;(h) (62)
or as
Sy;(h) - R(#', h). (6b)

We assemble all errors for the outcome ¢' into one vector e.. If all entries of this vector are



nonpositive, the outcome ¢' represents an acceptable circuit.
For N statistical outcomes generated, the production yield can be estimated by
number of acceptable circuits

Y ~ . @)
N

B. Formulation of One-Sided £, Objective Function
The problem of yield optimization can be properly converted to a mathematical
programming problem so that modern mathematical optimization techniques can be applied. In
the following the design variables are nominal values ¢°. Although only the outcomes ¢i appear
in the error functions, they depend on ¢° because the ¢i are related to ¢°.
After the error vector e' for the outcome ¢i has been assembled as
el = [e;(¢) (@) . . . en(@)”, ®)
where M is the total number of errors considered, the formulation of the objective function
for optimization can follow the procedure described in [3]. First, we create the generalized ¢

function v' from el [3],

[ ¥ (e8P 1P, if J(¢") + 2, (9a)
j€ X¢)
V=
M . .
- X o) e, if J¢') =2,  (9b)
J =
where
J) = G |ed) > 0). (10)
Then we define the one-sided ¢, objective function for yield optimization [3] as
U(¢°) =X aivi, (11)
iel
where
I=( |v>0) (12)

and o are positive multipliers. If the o; were chosen as [3]



o = , (13)

then function U(¢°) would become the exact number of unacceptable circuits and the yield
would be

U¢")
N

Y4 =1 - (14)

The mechanism of the one-sided ¢£; function naturally imitates the relation between the
vield and unacceptable or acceptable outcomes. Now, the task of maximizing yield Y is
converted to one of minimizing U(¢%). That is

minimize U(¢°). (15)
¢0

We use (13) to assign multipliers o; at the starting point and fix them during the
optimization process. Then U(¢°) is no longer the count of unacceptable outcomes during
optimization, but a continuous approximate function to it.

Suppose the value of p is chosen as 1. The objective function for the one-sided A

optimization becomes

U$) =Y % o ed), (16)
ielje I

where o;, I and J(¢") are defined as before. In general, the functions ej(¢i) are differentiable,
but the functions v' of (9) may not be. The problem implied by (16) is better posed than that
of (11). Therefore, we use (16) in our yield optimization.

Several reoptimizations with updated o; may be applied to further increase yield. Each
can use a different number of statistical outcomes or a different set of outcomes.
C. The One-Sided £, Optimization Algorithm

We use a highly efficient one-sided ¢, optimization algorithm [16] to solve (15). The
algorithm is based on a two-stage method combining a first-order method, the trust region

Gauss-Newton method, with a second-order method, the quasi-Newton method. Switching



between the two methods is automatically made to ensure global convergence of the combined
algorithm.
To summarize the discussion in this section, all steps involved in our yield optimization

are shown in the Fig. 1.

III. INTEGRATED GRADIENT APPROXIMATION TECHNIQUES (IGAT)

We review the perturbation approximate sensitivity technique (PAST). Then IGAT is
discussed for the case of a single function. The application of IGAT in yield optimization
follows.

Because the application of IGAT is not restricted to circuit response functions, let us use
f(¢) to denote a generic function.

A. Approximating Derivatives by PAST

The first-order derivative of f(¢) with respective to the kth variable can be estimated

by

of(¢)  f(¢ + Adeuy) - £(9)
~ , a7
¢y Ady

where ¢ + Ag,u, denotes the perturbation of the kth variable and where A¢, is the perturbation
length and u, is a column vector which has 1 in the kth position and zeros elsewhere. An
approximation to the gradient, Vf(¢), can be obtained by perturbing all variables one at a time.
B. IGAT for General Functions [17]
To start the process, PAST is used as in (17) to calculate the approximate gradient.
The Broyden update generates the new approximate gradient from the previous gradient,
f(Bpew) = f(Bo1a) - (VE($10)) T AS

Vi(dpew) = VEi(d,q) + Ad (18)
APTAS

where ¢4 and ¢, ., are two different points and A¢ = ¢, - $oa- If 9,4 and @, are iterates

of optimization, f(4,4) and f(4,.,) need to be evaluated anyway. Thus the updated gradient can



be obtained without additional function evaluations (circuit simulations).

To overcome a particular deficiency of the Broyden update, after a few updates, a special
iteration of Powell generates a special step A¢ to guarantee strictly linearly independent
directions. After a number of optimization iterations, we may also apply PAST (17) to maintain
the accuracy of the approximate gradients at a desirable level.

C. Application of IGAT in Yield Optimization

In circuit simulation, there are usually several response levels involved. Suppose the
response of interest, on which the design specification is imposed, is the power gain. In the
circuit simulation, the power gain is calculated from the output power which, in turn, is
calculated from the output voltage. This implies 3 different response levels. IGAT can be
applied at any response level. We still use f to denote a particular response function whose
gradient is to be approximated.

Because the nominal values, ¢°, are design variables, all perturbations are made to ¢°
in the initialization and reinitialization steps using PAST (17). When ¢° is perturbed to PO+
Adﬁuk, denoted by ¢(1’('pert for short, outcomes should be regenerated from ﬁ)mrt in order to get
perturbed circuit responses. These outcomes are denoted by #(’pert. Then from (17), the
approximate derivative of the response f(¢!) is defined as

Bf(4') £(8} pert) - £($)
3% ~ A¢Y

(19)

When the Broyden update or the special iteration of Powell are used, A¢° is computed
from ¢°°ld and ¢°new generated either by the optimizer or by the special iteration. Outcomes

¢i°ld and ¢inew are outcomes generated from ¢°°ld and ¢’ respectively. The gradient of the

new?

response f(¢i) w.r.t. ¢° can be updated as

£(F pew) - £ q) - (VE(F ) TAG°
(A¢")TAg°

VE(H o) = VIS, + A, (20)



IV. FEASIBLE ADJOINT SENSITIVITY TECHNIQUE (FAST)
In the HB simulation environment, the sensitivity of a response with respect to one

variable, ¢,,

dR(4, h)
— Y (1)
3¢,
should be computed subject to the constraints of the HB equation, e.g., [19],
F(¢, V) = 0. (22)

Bandler, Zhang and Biernacki [13,14] have proposed the Exact Adjoint Sensitivity Technique
(EAST). The sensitivity expressions for various elements have been derived and listed [14].

Here, we propose the Feasible Adjoint Sensitivity Technique (FAST) which is also based
on adjoint sensitivity principles. Suppose that the circuit is divided into linear and nonlinear
subnetworks and that the response of interest is the voltage at the output port. Normally, the
response is taken from the linear subnetwork.

The response can be calculated by

Vou = [T m[g ]=c [g I (23)

where Vs denotes the split real and imaginary parts in the spectra of excitation voltages, V
denotes the solution to the HB equations (22), and
c =[aT bTT (24)

is a linear transfer vector linking the output voltage with Vs and V. V and c are functions of
é. Vs can also be a function of ¢ if we want to change Vs to improve the circuit performance.
A. FAST for the Nominal Circuit Case

To make the derivation procedure concise, we concentrate on a single circuit design with
variables ¢. From (23) the approximate derivative of Vout w.r.t. ¢, can be calculated as

X7 T
AV, Ac [

T 8
S + b
Ady Ady

Ady Agy’

AV AV
] +al (25)
8

<| <|



A
by perturbing ¢ to ¢ + Ad.u,. Let V be the adjoint voltages obtained by solving the set of
linear equations
A
JTV = a, (26)

where J is the Jacobian of F w.r.t. V at the HB solution. We can express

A-V—oul: ~ [cT(¢ + A¢kuk) - cT] [g ] + bT[Vs(¢ + A¢k“k) - vs] - %TAF. (27)

The incremental term AF can be approximated by
AF =~ F(¢$ + Adu,, V) (28)
for a small Ag,.

Considering the different elements, (27) can be further expressed as

(1T + Agauy) - cT] [% ] - VTF($ + Adu,, V), ¢, € linear subnetwork

8
AV . ~ 3 bIV (P + Adu) - V.1 - VIF($ + Adu,, V), $, € sources (29)
| - _VTF(dS + Ay, V). ¢, € nonlinear subnetwork

This formula is much easier to implement than the corresponding formula for EAST [13,
14]. The function —F—(¢ + Aduy, V) is evaluated by perturbation. The effort for solving the
linear equations (26) is small since the LU factors of the Jacobian matrix are already available
from the final HB iteration. The terms V and V, are also available from the HB simulation.
The perturbed vectors a(¢ + Ad,u,) and b(¢ + Ag,u,) can be easily calculated since they involve
the linear subnetwork only. Finally, the perturbed excitations Vs(:ﬁ + A¢u,) can be effortlessly
obtained. It is clear that the calculation of all the terms in (27) or (29) can be readily
implemented.

Finally, the approximate sensitivity of output voltage \_’out w.r.t. ¢, can be computed as

10



~ . (30)

B. FAST for Yield Optimization

Similar to IGAT perturbations in yield optimization, perturbations used in FAST are also
made to the nominal values ¢°. ¢i and ﬁ,pert are outcomes generated from the unperturbed
and perturbed nominal values ¢° and cﬂ,pert, respectively. The increment of the output voltage

of the ith outcome due to the perturbation is calculated by

AV o) = [T perd) = DN [ 715y | + DT - Va1 - VIAF (1)
where

AF ~ F(4) ports V), (32)

— 2
V is the solution to the HB equation (5) and V is the solution to (26).

V. COMPARISONS OF VARIOUS APPROACHES

A. Comparisons of PAST, IGAT, EAST and FAST

PAST and IGAT do not need any modification of the circuit simulator.

PAST is a widely used approach, because it is very easy to implement. However, the
cost may be prohibitive. Suppose there are 10 design variables in the nonlinear circuit. Using
PAST to calculate the gradient, one needs to perturb all design variables and to solve the entire
nonlinear circuit for each perturbation, i.e., 10 times. The best possible situation for this
approach is that all 10 simulations use the same Jacobian and all converge in one iteration.
This applies to nominal circuit design. For yield optimization, a large number of statistically
generated circuit outcomes may make PAST prohibitive.

The distinct advantage of IGAT over PAST is that IGAT only requires the circuit
response function once to update the previously calculated gradient for most optimization

iterations. IGAT enjoys the simplicity of the perturbation method so that yield optimization can
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be carried out without modifying the circuit simulator to calculate exact derivatives. IGAT is
very desirable when the circuit simulator cannot be modified.

Both EAST and FAST require modification to the circuit simulator.

The generic exact adjoint sensitivity technique [13, 14] is accepted by all circuit
theoreticians as the most powerful tool. However, to implement it, we have to keep track of
all arbitrary locations of variables and to compute branch voltages at all these locations.
Microwave software engineers have, to date, found these obstacles insurmountable.

Using FAST, we also need to perturb all variables. For a circuit with 10 design
variables, instead of completely solving 10 nonlinear circuits, we only evaluate 10 residuals in
the form of (28) and calculate the perturbed linear subnetwork. The solution of adjoint equation
(26) can be accomplished by using forward and backward substitutions. In FAST, we completely
eliminate the need to track variable locations. We only need to identify the output port, which
is the simplest step in adjoint sensitivity theory.

B. Numerical Comparison of FAST, EAST and PAST

We use a MESFET mixer [13, 14] to investigate the accuracy and actual time efficiency
of FAST [18]. Sensitivities of the mixer conversion gain w.r.t. 26 variables were calculated by
the FAST, EAST and PAST approaches, respectively. The variables included all parameters in
the linear as well as in the nonlinear part, DC bias, LO power, IF, LO and RF terminations.
The results show that the FAST sensitivities are almost identical to the exact sensitivities,
whereas the sensitivities computed by PAST are typically 1 to 2 percent different from their
exact values. This fact reveals that FAST promises to be much more reliable than PAST. The
CPU time comparison shows that FAST is 3 times slower than EAST but 23 time faster than

PAST for one complete sensitivity analysis of the mixer circuit.
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VI. YIELD OPTIMIZATION OF A FREQUENCY DOUBLER
Consider the FET frequency doubler shown in Fig. 2 [20]. It consists of a common-
source FET with a lumped input matching network and a microstrip output matching and filter
section. The optimization variables include the input inductance L, and the microstrip lengths
[, and l,. Two bias voltages Vg and Vg and the driving power level Py are also considered
as optimization variables. The fundamental frequency is 5GHz. Responses of interest are the

conversion gain and spectral purity, which are defined by

power of the second harmonic at the output port

conversion gain = 10fog
power of the fundamental frequency at the input port

and

power of the second harmonic at the output port

spectral purity = 10fog

k]

total power of all other harmonics at the output port
respectively. The specifications for the conversion gain and spectral purity are 2.5 dB and 19
dB, respectively. They are both lower specifications.

Our large-signal FET statistical model includes an intrinsic large-signal FET model
modified from the Materka and Kacprzak model [21], statistical distributions and correlations
of parameters. The multidimensional normal distribution is assumed for all FET intrinsic and
extrinsic parameters. The means and standard deviations are listed in Table I. The correlations
between parameters are assumed according to the results published by Purviance et al. [22].
Certain modifications have been made to make the correlations for the large-signal FET model
to be consistent with those for the small-signal FET model dealt with in [22]. The correlation
coefficients are given in Table II. Uniform distributions with fixed tolerances of 3% are
assumed for Pyy, Vgg, Vpp, Ly, /; and [,. Finally, uniform distributions with fixed tolerances
of 5% are assumed for L,, Lg, C;, C,, w; and w,. The random number generator used is

capable of generating outcomes from the independent and multidimensional correlated normal

13



distributions and from uniform distributions.

In our program, the formulation (16) is used. In more detail, the error functions
resulting from the simulated conversion gain and spectral purity are calculated, then these error
functions with their multipliers defined in (13) are fed into the one-sided ¢, optimizer. IGAT
and FAST are implemented to provide gradients. IGAT calculates approximate sensitivities of
the output powers, which are later converted to the gradients of the conversion gain and spectral
purity.

The starting point for yield optimization is the solution of the conventional nominal
design w.r.t. the same specifications, using L,, /; and I, as optimization variables. The initial
yield based on 500 outcomes is 24.8%.

We conduct two designs using IGAT and FAST gradient calculation in the same
environment. Computational details are given in Tables III and IV. Each design has two
consecutive phases, that is, the starting point for the second phase is the solution of the first
phase. For the first and second phases, two different sets of 50 statistically generated outcomes
are used.

Using IGAT, the first and second phases reach 55.8% and 67.6% yields, respectively. The
two phases use 20 optimization iterations and 62 function evaluations, equivalent to 3100 circuit
simulations. For FAST, the first phase uses only 8 function evaluations and gradient calculations
to give 67.2% yield. The second phase slightly increases the estimated yield to 67.4%, verifying
the solution of the first phase. The efficiency of FAST is well demonstrated. To reach the
same yield level, the CPU time used by the first phase of the FAST approach is much less than
the total CPU time used by the IGAT approach. Although IGAT is slower than FAST, it is very
robust in terms of the final yield reached.

Figs. 3, 4 and 5 show histograms of the conversion gain before and after yield
optimization.  Fig. 3 is the conversion gain distribution of 500 outcomes before yield

optimization. The histograms in Figs. 4 and 5 are based on solutions using IGAT and FAST,
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respectively. The improvement of circuit performance is very clearly illustrated by the
histograms. Before yield optimization, the center of the distribution is on the left-hand side
of the design specification of 2.5 dB, indicating that most outcomes are unacceptable. After
yield optimization, the center of the distribution is shifted to the right-hand side of the 2.5 dB
specification. Most outcomes then satisfy the specification.

Design with PAST has also been carried out. To reach the same yield level, it uses a
total of 20 optimization iterations in two phases, equivalent to 140 function evaluations or 7000
circuit simulations. The total CPU time is 31 minutes, which is 2.5 and 4 times the CPU times

required by IGAT and FAST, respectively.

VII. CONCLUSIONS

This paper presents a comprehensive formulation for yield optimization of nonlinear
circuits operating within the harmonic balance simulation environment. We have conducted a
convincing demonstration of yield optimization of statistically characterized nonlinear microwave
circuits using our two best approaches to gradient calculation, namely, IGAT and FAST. These
two approaches are expedient tools for gradient calculation in the HB ‘environment. The
significant advantages of IGAT and FAST over PAST are their unmatched speeds, and over
EAST are their implementational simplicity. IGAT is a desirable choice when the circuit
simulator cannot be modified. FAST is particularly suitable for implementation in general
purpose microwave CAD software.

Numerical experiments directed at yield-driven optimization of a FET frequency doubler
verify our two gradient calculation approaches. Large-signal FET parameter statistics are fully
facilitated. The substantial computational advantage of IGAT and FAST have been observed.
Our approaches provide powerful tools to meet the very pressing need for efficient microwave
nonlinear circuit design. Our success should strongly motivate the development of statistical

modeling of microwave devices for large-signal applications.
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TABLE 1

ASSUMED STATISTICAL DISTRIBUTIONS
FOR THE FET PARAMETERS

FET Nominal Standard FET Nominal Standard
Parameter Value Deviation Parameter Value Deviation
(%) (%)
Lg(nH)  0.16 5 S 0.676x107*  0.65
Rp(@)  2.153 3 IéG 1.1 0.65
Lg(nH)  0.07 5 7(pS) 7.0 6
R4(0) 1.144 5 Ss 1.666x10~%  0.65
Rpg(0) 440 14 Igo(A)  0.713x107° 3
Cpg(PF) 115 3 ag 38.46 3
Cpg(PF)  0.12 4.5 Igo(A)  -0.713x107° 3
Ipss(A)  6.0x1072 5 ap -38.46 3
Voo(V)  -1.906 0.65 R,,(0) 3.5 8
v -15x1072  0.65 C,o(PF) 042  4.16
E 1.8 0.65 Cro(PF) 0.02  6.64

The following parameters are considered as deterministic:
Kg = 0.0, Kg = 1.111, K; = 1.282, C;g = 0.0, and K = 1.282.
For definitions of the FET parameters, see [20].
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TABLE II

FET MODEL PARAMETER CORRELATIONS [22]

L¢ Rg Lg Rpg Cps g, T Rin  Cas Cop

Lg 1.00 -0.16 0.11 -0.22 -0.20 0.15 0.06 0.15 0.25 0.04
Rg -0.16 1.00 -0.28 0.02 0.06 -0.09 -0.16 0.12 -0.24 0.26
Lg 0.11 -0.28 1.00 0.11 -026 0.53 0.41 -0.52 0.78 -0.12
Rpg -0.22 0.02 0.11 1.00 -044 0.03 0.04 -0.54 0.02 -0.14
Cps -020 0.06 -0.26 -0.44 1.00 -0.13 -0.14 0.23 -0.24 -0.04
g8, 0.15 -0.09 053 0.03 -0.13 1.00 -0.08 -0.26 0.78 0.38
T 0.06 -0.16 0.41 0.04 -0.14 -0.08 1.00 -0.19 0.27 -0.46
Ry 0.15 0.12 -052 -0.54 0.23 -0.26 -0.19 1.00 -0.35 0.05
Cgs 025 -0.24 0.78 0.02 -0.24 0.78 0.27 -0.35 1.00 0.15
Cep 004 026 -0.12 -0.14 -0.04 0.38 -046 0.05 0.15 1.00

Certain modifications have been made to adjust these small-signal parameter
correlations to be consistent with the large-signal FET model.
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TABLE III

YIELD OPTIMIZATION OF THE FREQUENCY DOUBLER USING IGAT

Variable Starting Nominal Solution I Solution II
Point Design
Pin(W) 2.0000x107%"  2.0000x107%  2.1442x10"*  1.7507x1073
Ves(V) -1.9060_ -1.9060 -1.9062 -1.7890
Vpe(V) 5.0000 5.0000 5.0004 5.4504
L,(nH) 1.0000 5.4620 5.4623 5.4665
I,(m) 1.0000x107%  1.4828x10%  1.7027x107®  1.7039x1073
I,(m) 5.0000x107%  5.7705x10"3  5.7573x107®  5.7629x1073
Yield 24.8% 55.8% 67.6%
No. of Optimization Iterations 9 11
No. of Function Evaluations 27 35
CPU Time (Multiflow Trace 14/300) 5.2min 7.2min

* . . . . .
Not considered as variables in the nominal design.

The yield is estimated from 500 outcomes.
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TABLE IV

YIELD OPTIMIZATION OF THE FREQUENCY DOUBLER USING FAST

Variable Starting Nominal Solution I Solution II
Point Design

Pn(W) 2.0000x10%*  2.0000x107%  1.7581x10"  1.9107x1073
Vap(V) -1.9060_ -1.9060 -1.8578 -1.8576
Vpp(V) 5.0000 5.0000 5.5000 5.5000
L,(nH) 1.0000 5.4620 5.4635 5.4637
1,(m) 1.0000x1073  1.4828x107®  1.6707x107%  1.7623x1073
I,(m) 5.0000x107%  5.7705x1073  5.7642x107®  5.7751x1073
Yield 24.8% 67.2% 67.4%
No. of Optimization Iterations 8 10
No. of Function Evaluations 8 10
and Sensitivity Analyses

CPU Time (Multiflow Trace 14/300) 3.4min 4.4min

* . . . . .
Not considered as variables in the nominal design.

The yield is estimated from 500 outcomes.
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determine design specifications,
design variables, statistics of parameters
and the starting nominal circuit ¢°

Y
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> generate statistical outcomes ¢i
Y
solve f*‘_(d»i, V) =0
I
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|
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next iteration \L
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Fig. 1 Flowchart for yield optimization.
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Fig. 3 Histogram of conversion gains of the frequency doubler based on
500 statistical outcomes at the starting point for yield optimization.
The specification is shown by a vertical line.
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Fig. 4 Histogram of conversion gains of the frequency doubler based on
500 statistical outcomes at the second phase solution using IGAT.
The specification is shown by a vertical line.
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