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Abstract The selection of time samples for multitone harmonic balance (HB) simulation is
investigated in this report. An approach proposed by Kundert, Sorkin and Sangiovanni-
Vincentelli, a gradient-based optimization selection approach and a Monte Carlo selection
approach are discussed in detail. These approaches are demonstrated in a numerical example.

The example exposes their advantages and disadvantages.
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I. INTRODUCTION

The harmonic balance (HB) technique has been widely accepted as an efficient tool for
nonlinear microwave circuit simulation [1]. Most of the HB applications so far are in single tone
situations. Multitone HB simulation is not usually an easy extension of the single tone case,
since the normal discrete Fourier transformation (DFT) used in single tone HB simulation can
not be applied directly to multitone cases.

Kundert, Sorkin and Sangiovanni-Vincentelli [2] recently proposed an approach to
selecting time-sample points for the Fourier transformation (FT) suitable in multitone HB
simulation. The KSSV approach exploits the relationship between the orthogonality and the
condition number of a matrix, and can substantially improve the condition of the FT matrix
while requiring theoretically a minimal number of the time samples. For K frequencies in the
HB equation (including 0) only 2K-1 time samples are needed for FT.

In this report, we investigate the numerical behaviour of the KSSV approach. We will
compare KSSV with two other approaches: a gradient-based optimization approach and a Monte
Carlo approach which is a modified form of KSSV. Our numerical example presents the average
condition numbers of the FT coefficient matrices, standard deviations of the condition numbers,

CPU time, etc.

II. MULTITONE FOURIER TRANSFORMATION
Following the KSSV notation [2], let X, i=1, .., d, be the fundamental frequencies of
the circuit to be simulated. The actual frequencies w,, w;, ..., wk_; included in the HB equation

can be determined either by

(w|w =k + kg + .o + Kgdg, k; = 0, £1, ., #H, for j=1, ..., d} (1)
or,
d
W|w =k + kpdy + . + kgdg, 3 | K| =0, 1, ., £H, for j=1, ..., d) ()
j=1

which correspond to the two truncation methods in [2]. We organize the frequencies such that



wg=0, and O<w;< ... <wg_;.
Denote I'! to be the IFT (inverse FT) coefficient matrix. It is shown in [2] that a

minimal number of S=2K-1 time samples are needed to form I'%, i.e.,

I coswgty sinw;ty coswyg_jt; Sinwg by
B 1 coswit, S}nwlt2 COSwy_1ty S}nwK_lt2
r~ = 1 cosw;ts sinw,; ty COSwy_yts  SINWy 4tg
1 cosw,tg sinw, tg Coswg_qtg SINWp_;tg
or
-1 T
I''! =[a; a, ... ag] (3)
where
= : : T
a; = [1 coswyt; sinwt; ... coswg_t; sinwg_;t;] 4)

with K=a}‘aj. The FT coefficient matrix T' can be uniquely determined if S time samples are
chosen such that I'"! is nonsingular.
The multitone HB simulation can be performed with FT and IFT as
I'x = X
and
r''x=x
where
X =[X, X,° xX;%... X%, xX5.,1%
x = [x(t) x(ty) ... x(tg)]T
represent frequency domain and time domain variables, respecitively, superscripts C and S denote

the real and imaginary parts, respectively, and t;, j=1, ..., S, are time samples.

Define the £, norm of a NxN matrix B to be [3]
N
1Bl oo = max( 3 |b;] )
i J=l

The condition of B can be determined by the condition number

K(B)=[B | oo B[ - )



Obviously the accuracy of FT and IFT depends mostly on the conditioning of the coefficient
matrices. But in multitone HB simulation, unfortunately, x(I'""!) varies widely with different
time sample selection strategies. The evenly spaced time sample selection common to DFT
generally results in a very ill-conditioned I''!. Numerical errors then dominate the HB
simulation. A time sample selection approach is desirable which lowers x(I'"!) as much as

possible.

III. THE KSSV APPROACH [2]
Consider I''! as an S-dimensional linear space spanned by (a,, a,, .., ag}. A set of

orthogonal base vectors {a;, a,, ..., ag) can be formed by

_ j_l a.lTik _ (6)
a. = a. - ——a
J 1K= a,;rak k

for j=1, ..., S.

It is shown in [2] that the upper bound of w(I'"') is S?/a, where a=min(|| a; | ,/vK, j=1,...,8)

and

o denotes the Euclidean norm. The KSSV approach is an algorithm which selects S
time samples from M=2S random samples uniformly distributed between (0, 6m/w,], such that

a is as large as possible.

Algorithm

for (s — 1, ..., M)

{ random () returns numbers uniformly distributed between 0 and 1.
ty « (6m/w;)random ()

Coswy_;tg sinwK_lts]T

a, — [l cosw;t, sinw,t

}

for (s «— 1, ..., M)

{ a, — a,

)

for (r < 1, ..., S)

{ argmax() returns the index of the largest member of a set.



k = argmax({]|a |: r < s < M)})
swap(a_,a,)

swap(a,,a,)

swap(t,,t,)

for (s « r+l, ..., M)

}

The KSSV algorithm for time sample selection is simple and elegant. It can drastically

reduce k(I''!) compared with evenly spaced time sample selection.

IV. GRADIENT-BASED OPTIMIZATION APPROACH
Employing the theoretical principle of KSSV, we could use gradient-based optimization
to minimize the upper bound of x(I''!). Specifically, we can formulate the time sample selection
problem as the following minimax optimization problem

min max { K - 5}‘5]- } @)
t jel
where T
t = [tl tz oo ts]
J={, .., S

Notice that in (7) we take a; as a reference vector, Ej is a function of t,, k=1, .., j, and

K=a}‘aj, j=1, ..., S. The minimum possible objective function value zero can only be obtained

if a; and a; are orthogonal, for i, j=1, ..., S and i#j.

The analytical gradient of the individual functions in (7)

K - afa,

Ta;, for j=2, .., S

can be easily derived. The analytical form of the gradient calculation is not only efficient

compared with the perturbation method, but also crucial to the success of (7) in situations when



two or more fundamental frequencies are located closely. For instance, in a two tone situation
with w; = X, - A;, the time sample t; changing on the order of w;/}; can significantly affect
a;. The optimization steps for time samples are expected to be on the order of w;/),, therefore
making the accuracy of the gradient very important when w;/}; is very small.

Compared with KSSV, this optimization approach should theoretically be better because
of its feature of continuous optimization, or "fine tuning". However, due to the nature of I''%,
the objective function in (7) suffers seriously from local minima. Besides, it requires much

more memory, especially for the implementation of the analytical gradient. The computational

effort is also far greater than what is needed for KSSV.

V. MONTE CARLO APPROACH
It is intuitive from KSSV that if we increase the number of base sample points, i.e.,
increase the size of M, a better result should be reached, provided that the physically allowed
memory size is large enough and available. When limited by memory, we can modify KSSV to

accommodate iterative the Monte Carlo approach. The algorithm is as follows.

Algorithm
loop:
{ if (first iteration)
{ for (s «— 1, ..., M)
{ random () returns numbers uniformly distributed between 0 and 1.
t, + (6m/w;) random ()
a, — [1 cosw;t, sinw;t, .. coswg_;t, sinwK_lts]T
}
select ()
Amin 2_‘sTﬁs
Amax * Amin
copy (a; — aj p,q, for j=1, ..., S)
copy (tj =t backs for j=1, ..., S)
)



else
{ for (s «— S+1, ..., M)
{ random () returns numbers uniformly distributed between O and 1.
t, + (6m/w;) random ()
a, « [l coswt, sinwt; .. coswg_;t sinwg_,t.]T
)
select ()

- - T_
Qmin ¥ a3 ag

if (émax < amin)

{ Qmax © Umi

n
copy (a; — aj pye» for j=1, ..., §)

copy (t; = t; paeo for j=1, ..., S)

}
else
{ copy (a; . — a; for j=1, ..., S)
copy (tj back — tJ, fOI‘ j=1, ceey S)
}
}
} until (a_, > goal) or (specified maximum number of iteration has been reached)
{ copy (aj back " @j» for j=1, ..., S)

copy (tj back — t,]’ fOI' j=1, ceey S)

}
where the procedure select() is defined as
select ()
{ for (s — 1, ..., M)
{ a, — a,
}
for (r — 1, ..., S)
{ argmax() returns the index of the largest member of a set.

k = argmax({||a,|: r < s < M})
swap(a,,a,)
swap(a,,a,)

swap(t,,t,)



for (s « r+l, ..., M)
T_
- - aga, _
a_ +— a_ - a
8 s =Tz r
al'al'

The foregoing Monte Carlo approach is more objective and efficient than simply
repeating the basic KSSV approach, since it employs random optimization concept and utilizes
the time samples in a wider combination. Compared with gradient-based optimization, it does

not have the local minimum problem, needs much less memory and much less CPU time.

VI. NUMERICAL EXAMPLE

In this example, we select time samples for ! as follows: equally spaced, randomly
chosen, time samples obtained by KSSV, gradient-based optimization (GBO), and a Monte Carlo
method (MC). The condition number x(I''!) and its statistics are demonstrated.

For simplicity, we consider a two-tone situation with \;=10GHz and ,=10.001GHz. The
actual frequencies taken in the HB equation are determined by (2) in Section II. Except for
evenly spaced time sampling, each approach is applied ten times to generate approximate
statistics. M=2S and 3S are used for KSSV and MC. To reduce the chance of a large local
minimum, GBO takes the solution of KSSV (with M=2S) as a starting point, and due to
excessive CPU time and memory size, GBO is not applied when H>6. The iteration limit is
fifteen for GBO and six for MC when M=2S and M=3S, respectively. All the computations are
done on a VAX 6420 machine using double precision.

Tables I to V show the results. The following observations can be made.

(1) Evenly spaced time samples used in DFT is not suitable for multitone HB simulation.

Simple random time sample selection generates much better conditioned I'"! than evenly

spaced time sampling.

(2) When M=2S, KSSV significantly improves the condition of I''! over evenly spaced or



random time sample selection.

(The foregoing observations are consistent with the results of Kundert et al. [2].)

3) Obvious improvement is achieved for KSSV when M is increase from 2S to 3S.

4) MC provides much better and, more importantly, consistent results than KSSV, though
it needs extra CPU time.

(5 GBO improves the results of KSSV when M=2S. However, due to the local minimum
problem, the overall performance is similar to KSSV when M=3S, but worse than MC.

Its CPU time requirement makes it unacceptable when H>4.

VII. CONCLUSIONS
In this report, time sample selection for multitone harmonic balance (HB) simulation
has been investigated. Besides the approach of Kundert, Sorkin and Sangiovanni-Vincentelli
(KSSV), gradient-based optimization selection (GBO) and Monte Carlo selection (MC) have been
presented. A numerical example verifies that KSSV is quite feasible, and MC can further
improve the conditioning of I''! and can provide more consistent results than KSSV at the cost

of increased CPU time.
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TABLE I

AVERAGE CONDITION NUMBER OF I'!

H EVEN RANDOM KSSV GBO MC KSSV MC

M=2S M=2S M=3S M=3S
1 6.1x10%® 34 10 7 6 8 6
2 9.6x10% 629 29 18 17 22 16
3 5.4x10%% 2.8x10% 69 43 37 46 32
4  6.6x10%2% 4.0x10° 111 96 65 96 54
5  4.5x10'! 6.8x10% 194 142 95 133 88
6 5.8x10% 1.2x10° 324 217 151 192 127
7 1.1x10%° 2.0x10° 423 N/A 203 246 181
8 7.0x10 2.0x10° 644 N/A 250 390 229

TABLE II
STANDARD DEVIATION OF
THE CONDITION NUMBER OF I'*!

H EVEN RANDOM KSSV GBO MC KSSV MC

M=28S M=2S M=3S M=3S
1 0 20 3 1 1 2 0
2 0 688 8 3 1 5 1
3 0 4.7x10% 18 13 7 14 4
4 0 5.1x10% 27 21 10 30 6
5 0 3.6x10° 38 12 12 17 10
6 0 2.7x10° 59 34 21 46 18
7 0 2.8x10° 92 N/A 38 33 25
8 0 4.3x10° 140 N/A 31 103 43
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TABLE III

CPU TIME FOR OBTAINING I!

(SECOND)
EVEN RANDOM KSSV GBO MC KSSV MC

M=2S M=2S M=3S M=3S
1 0.00 0.00 0.01 0.09 0.03 0.01 0.03
2  0.01 0.01 0.04 1.01 0.16 0.06 0.25
3  0.05 0.05 0.20 9.17 0.97 0.33 1.60
4 0.17 0.17 0.83 55.8 4.09 1.34 6.96
5 0.51 0.51 2.67 253 12.5 4.12 22.3
6 1.31 1.31 7.32 895 36.1 11.2 60.4
7 3.03 3.03 16.9 N/A 84.1 26.2 142
8 6.25 6.25 35.2 N/A 173 55.1 292

TABLE 1V
MINIMUM CONDITION NUMBER OF I'!
EVEN RANDOM KSSV GBO MC KSSV MC

M=2S M=2S M=3S M=3S
1 6.1x10%% 11 5 5 5 5 5
2 9.6x10% 72 19 15 15 17 14
3 5.4x10% 299 40 30 27 27 27
4  6.6x10'% 813 75 70 50 66 46
5  4.5x10% 1.9x10° 147 124 80 99 76
6 5.8x10% 3.6x10% 226 166 130 141 97
7 1.1x10%° 3.0x10* 318 N/A 160 195 148
8 7.0x10* 1.6x10* 500 N/A 208 265 174
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TABLE V

MAXIMUM CONDITION NUMBER OF I'!

H EVEN RANDOM KSSV GBO MC KSSV MC

M=2S M=2S M=3S M=3S
1 6.1x10%® 77 15 10 7 12 7
2 9.6x10% 2.4x10% 43 23 19 35 18
3 5.4x10%% 1.6x10* 93 75 49 68 38
4  6.6x10% 1.8x10* 146 136 83 162 65
5  4.5x10'! 1.2x10* 250 163 112 155 102
6 5.8x10 8.9x10° 417 263 192 307 147
7 1.1x10%° 9.2x10° 626 N/A 278 314 242
8 7.0x10% 1.4x10®° 913 N/A 324 576 310
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