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ABSTRACT

We review the concepts involved in design optimization. We formulate
design as an abstract optimization problem, regardless of the nature of the
object being designed. We show how the error functions for design goals are
typically defined and discuss ways of combining them into a single objective
function. We also present a novel and powerful approach to CAD software
architecture suitable for distributed calculations and interactions between
independent programs. This approach is particularly useful for independent
software development and for maintenance of large software systems such as
those dedicated to field calculations.

INTRODUCTION

Design optimization is a powerful computational tool enabling designers
to adjust designable parameters in order to meet design specifications (see,
for example, [1-4]). The nature of the designed object is irrelevant to the
optimizer. However, the computer simulation of the object must be available.
The computer simulator should provide the means for processing a number of
input parameters, some of which are (directly or indirectly) designable, into
the corresponding set of responses. Although not absolutely necessary [5],
it is extremely desirable that the simulator is capable of calculating partial
derivatives (gradient) of the responses w.r.t. the designable parameters. The
simulator should be efficient enough for repeated calculations. It may be
called tens, hundreds, or even thousands of times during optimization.

Efficiency of the algorithms as well as organization of software are of
utmost importance. Software modularity must be facilitated and modules of
different origin need to be accommodated. For example, advanced, state-of-
the-art optimization routines must interact with field simulators, developed
separately, possibly in a different language and without optimization as the
objective. We describe some of our new developments in the area of open
architecture software systems which facilitate these requirements and are
particularly suitable for design optimization. A new technique called IPPC
(inter-program pipe communication) allows for high speed numerical interaction
between independent programs.

SIMULATION, SPECIFICATIONS AND ERROR FUNCTIONS

The response functions that can be of interest to the designer may
involve a combination of frequency domain responses, time domain responses,
space domain responses, frequency spectra of periodic functions, and their
functions such as power, etc. "Of interest" means that design specifications
are imposed on the responses. A specification is typically imposed on a range



of domain values. This leads to an infinite number of specifications and it
becomes necessary to discretize the domain and consider only a finite subset
of representative frequency, time or space points. After discretization, the
Jjth specification can be denoted by S,; or Sy; if it is an upper or a lower
specification, respectively.

In order to formulate an objective function for design optimization the
object is simulated at the same frequency or time points at which the upper

and/or lower specifications are selected by discretization. The corresponding
responses are denoted by R;(¢) and the error vector e(¢) is defined as

e(4) = [e1(8) ex(d) . . . ey(P]’ (L)

where the individual errors e;(¢) are
e;(¢) = Ry(4) - Sy (2)
e;(¢) = Sy; - Ry(4). (3)

or

¢ is the vector of designable parameters and M is the total number of errors.
The negative error values indicate that the corresponding specifications are
satisfied. For positive error values the corresponding specifications are
violated. The acceptability region in the parameter space is defined as

A={(¢ | e;(¢) <0 j=1,2, ..., M}. (4)

Clearly, all specifications are satisfied if the designable parameters fall
into A, and at least one specification is violated if that point falls outside
the acceptability region A.

OBJECTIVE FUNCTIONS AND ALGORITHMS

For the purpose of optimization all the errors e;(¢) have to be combined
into a single objective function. The three important types of the objective
function are minimax, £; and £, (least squares). The generalized £, function
v(¢) from e(¢) [6,7] takes the form

[ T (e;(8))P1%P, if ¢ ¢ A, (5a)
V() = €I (¢)
M
- [,Zl<-ej<¢>>'P]‘1/P, if ¢ € A, (5b)
J=
where
J($) = {j | e;(¢) = 0). (6)

Some variations of this function include: (a) one-sided £p function where (5b)
is set to zero, and (b) the £p norm where only (5a) is used and the summation
is over the absolute values of e;'s for all j =1, 2, ..., M. The minimax
function corresponds to p - « and can simply be expressed as

v(¢) = max (e;(4)). (N
J



The minimax is the objective function of choice for performance driven design
optimization and leads to equi-ripple solutions. The. £, norm or one-sided £,
function are also commonly used for performance driven design optimization.
The £, function is uniquely useful in modeling and in yield optimization.
Finally, it is worth mentioning that non-negative multiplicative weighting
factors can be applied in (6) and (7) to individual errors. Specialized,
robust algorithms exist for minimization of each of the aforementioned
objective functions, e.g., [8-12].

OPEN ARCHITECTURE OPTIMIZATION SOFTWARE SYSTEMS

We will now present a recent, advanced technique for open software
architecture called IPPC (inter-program pipe communication) facilitating high
speed numerical interaction between independent programs. It allows highly
repetitive data communication between totally independent programs. It also
allows an unlimited number of non-predetermined and new software modules to
be added to existing software systems with no modification, no re-compilation
and no re-linking of the existing systems. Therefore, a software user can add
new modules to an existing IPPC-based system, allowing the existing system’s
optimizers, statistical drivers, etc., to interact iteratively with his own
modules. The user’'s modules are separate executables programs. Thus,
independent development, testing and execution of new code are facilitated.
The confidentiality of the user’s program is also totally secured.

IPPC

based > > > Pipe User'’s
Parent < < < Server Program
System

Fig. 1. Schematic diagram of IPPC between two independent programs

The communication, in its basic form, allows the user to combine two
application programs: the parent and the child. It requires only minor
modification to the child program and no modification to the IPPC-based parent
program. A small IPPC server is the vehicle for communication between the two
programs. As shown in Fig. 1, the user attaches the IPPC server to his or her
program to generate a pipe-ready version. During simulation or optimization
involving the child, the parent executes the child as a separate process. In
forking the child process, two inter-process pipes are created. The two-way
communication is established by using each pipe to transfer data one-way.
Communication between one parent and several children and grandchildren is
possible. Experiments have been conducted on our new CAD system OSA90™ [13].
The overhead CPU cost in practical situations is found to be negligible - it
typically adds only about 1% to the conventional approach of subroutine calls.
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