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Abstract - This paper addresses the recent advances in
harmonic balance simulation and optimization of nonlinear
circuits operating in the steady state. The basic concepts and
formulations for single tone and multitone simulation are
reviewed. A unified theory for nonlinear adjoint sensitivity
analysis is summarized. The novel FAST technique linking
efficient simulation to gradient-based optimization is described.
The application of the harmonic balance method is expanded
from circuit analysis to modeling, nominal design and yield
optimization.

I. INTRODUCTION

Harmonic balance is an attractive method for steady-
state simulation of nonlinear circuits because of its efficiency
and flexibility [1-3]. By directly calculating the steady-state
solution, it avoids the transient analysis performed by tradi-
tional time-domain simulators. When the circuit contains
widely separated time constants, the transient analysis can be
lengthy and expensive. With multitone input signals, it can be
difficult to predict the length of the transient state. Harmonic
balance is a mixed domain method: the linear elements are
evaluated in the frequency domain and the nonlinear devices
are modeled in the time domain. Distributed elements and
time delays, which are difficult to handle by time-domain
simulators, can be easily accommodated by the harmonic
balance method.

Harmonic balance simulation has applications to a wide
range of nonlinear circuits. For some circuits, the harmonics
generated by the nonlinearity are detrimental to performance
(e.g., causing distortion in power amplifiers). Using harmonic
balance, we can analyze and even minimize such undesirable
effects.  Yet, harmonic balance simulation is particularly
valuable when nonlinearity is exploited as an essential part of
the circuit design (e.g., for mixers, oscillators, frequency
multipliers and dividers).

This paper reviews recent advances in applying the
harmonic balance concept to nonlinear circuit simulation,
sensitivity analysis and optimization. A unified theory for
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nonlinear adjoint sensitivity analysis is summarized. The novel
Feasible Adjoint Sensitivity Technique (FAST) which provides
an efficient link between harmonic balance simulation and
gradient-based optimization is described. The recent advances
have expanded the scope of circuit applications from nonlinear
analysis to modeling, nominal design and statistical yield
optimization.

II. HARMONIC BALANCE EQUATIONS

In harmonic balance simulation, the circuit is partitioned
into a linear subcircuit and a nonlinear subcircuit connected
through a number of ports. A suitable set of state variables
is chosen, such as the port voltages represented by frequency-
domain complex phasors at all the harmonic frequencies of
interest. The linear subcircuit is evaluated in the frequency
domain, given the excitations and state variables. The non-
linear subcircuit is simulated in the time-domain, and the
responses are converted into the frequency domain by the
Fourier transform.

The set of harmonic balance equations can be defined

as
F(V) = Ig(V) + I(V) = 0 (6]
where V represents the state variables, Iy and Ip are the
responses of the nonlinear and linear subcircuits, respectively.

The nonlinear harmonic balance equations can be solved
by Newton iterations or by optimization. The choice of
starting point is important or even crucial for convergence.
The continuation method is often used to overcome conver-
gence difficulties. For instance, to improve convergence at
high input power levels, we can first solve the harmonic
balance equations at a low input power level and gradually
increase the input power to the desired levels. A starting point
may also be obtained from small-signal simulation of the
linearized circuit around the dc operating point. It has been
shown [4] that at sufficiently low input power levels, dc/small-
signal simulation and harmonic balance simulation lead to
consistent results, as illustrated in Fig. 1.

A different approach suggested by Rizzoli et al. [2]
employs a quasi-Newton iteration to obtain starting points.

Harmonic balance simulation is certainly not limited to
circuits with single-frequency sinusoidal excitations. The input
signal may contain nonzero higher harmonic components. For
instance, an input of triangular waveforms may be represented
by its truncated frequency spectrum. For frequency dividers,
the input is treated as the second harmonic of the desired
output frequency.
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Fig. 1. Relative errors between the voltage gain calculated by
harmonic balance and |S,;| by small-signal analysis with
respect to different input power levels. The errors at
high input power levels are due to circuit nonlinearity.
Numerical errors become dominant at extremely low

input power levels.

Harmonic balance simulation under multitone excitations
is useful for intermodulation and mixer analyses. The number
of spectral frequencies which need to be considered grows
rapidly with the number of tones. The selection of time
samples (for the simulation of the nonlinear subcircuit) is
another challenging aspect of multitone simulation. A number
of competing approaches have been proposed: random sampling,
the APFT algorithm by Kundert and Sangiovanni-Vincentelli
(5], multidimensional FFT [6], and a recent quasi-orthogonal
matrix sampling algorithm by Ngoya et al. [7]. Mixers, as a
special case of multitone circuits, can also be analyzed by the
frequency conversion method [8].

III. HARMONIC BALANCE SENSITIVITIES

In order to incorporate harmonic balance simulation into
gradient-based optimization, we need to estimate the sensitivi-
ties of circuit responses. The simplest way is by perturbations,
but it would require that the nonlinear harmonic balance
equations be repeatedly solved after each perturbation.

Exact harmonic balance sensitivity expressions have been
derived by Bandler et al. [9]. Suppose we are interested in the
sensitivity of

ALY

out

(2)

where ¢ is a linear transfer vector linking the output voltage
with the state variables. An adjoint system is then defined as
A

TV = ¢ (3)

The adjoint system is a set of linear equations whose

coefficient matrix J is the Jacobian matrix at the solution of

the harmonic balance equations (1). Once (1) is solved by

Newton iterations, little additional effort is required to solve

the adjoint system. Detailed adjoint sensitivity expressions are
given in [9].

The exact adjoint analysis is theoretically the most
precise and efficient method for calculating sensitivities. To
implement it in practice, however, can be a very complicated
task, especially for general-purpose applications. A novel
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approach called Feasible Adjoint Sensitivity Technique (FAST)
was proposed by Bandler et al. [10,11]. The FAST technique
exploits the adjoint principles to derive high-level sensitivity
expressions in which some of the terms are calculated by
perturbations at the elementary level. It retains most of the
elegance and accuracy of exact adjoint analysis while avoiding
the implementational complexity.

For brevity, we consider ¢ as one of the designable
variables. If we perturb ¢ by A¢, the corresponding change
in V. can be approximated by

AV, ~ ATV + T AV

out (4)
To obtain the incremental change in the state variables AV, we
utilize the adjoint solution given by (3):
A
AV, ~ ATV - VT AF (5)
where AF is the residual function of the harmonic balance
equations (1) at ¢ + A¢ (F is theoretically zero at the harmonic
balance solution). The evaluation of AF at ¢ + A¢ requires
much less effort than to repeat the harmonic balance solution.
The incremental change in the linear transfer vector, namely
Ac, can be obtained by either an adjoint analysis of the linear
subcircuit or perturbation. In fact, if ¢ is a parameter in the
nonlinear subcircuit, Ac is not needed:
A
AV, ~ -VT AF (6)
The FAST technique is substantially more efficient than
the perturbation method, and it is also much easier to imple-
ment than the exact nonlinear adjoint formulas in [9]. Another
alternative is the approach of optimization with integrated
gradient approximations [12].

IV. NONLINEAR MODELING USING HARMONICS

In conventional frequency-domain linear analysis, non-
linear devices are represented by linearized equivalent circuit
models around the dc operating point. Typically, the models
are extracted from small-signal and/or dc measurements. Such
models can be inadequate or even unsuitable for large-signal
simulation. Using harmonic balance, large-signal nonlinear
models can be extracted directly from power spectrum and/or
waveform measurements [13]. Fig. 2 shows the match between
FET power spectrum measurements and the simulated responses
of a large-signal nonlinear model obtained using our modeling
system HarPE [14].

V. UNIFIED SMALL- AND LARGE-SIGNAL DESIGN

Another significant approach is to combine dc, small-
signal and large-signal performance specifications into one
unified design optimization problem. This is possible if the
same nonlinear circuit model is used in dc, small-signal and
large-signal analyses, providing analytically consistent results
[4]. The ability to optimize different types of responses
simultaneously instead of ‘separately brings important benefits
to a CAD system, especially when some of the variables affect
both the small- and large-signal performance.

This approach can be illustrated through a broad-band
amplifier [4]. The dynamic range of the amplifier is taken
into consideration in addition to the small-signal gain. The
small-signal gain of the amplifier is optimized simultaneously
for a range of input power levels. The higher harmonic
responses (undesirable) are also minimized, using our CAD
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ig. 2. Measured (circles) and simulated (solid lines) output
power spectra of a MESFET.

(b)

Fig. 3. The gain surface and selected contour projections for
the amplifier (a) by conventional small-signal design
and (b) by simultaneous small- and large-signal design.
The specification is 8 + 0.5dB.
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system OSA90/hope [15]. As shown in Fig. 3, the simultaneous
optimization of small- and large-signal responses leads to a
flatter gain surface and larger area in which the gain speci-
fication is met, as compared with a conventional small-signal
design.

VI. NONLINEAR YIELD OPTIMIZATION

Harmonic balance can also be applied to statistical
optimization of nonlinear circuits. In order to reduce the
computational effort involved in the Monte Carlo simulation of
a large number of random outcomes (i.e., circuits with statis-
tically perturbed parameter values), a recent approach applies
quadratic approximation not only for the circuit responses but
also for their derivatives [16]. Since the determination of the
quadratic model coefficients is independent of the number of
outcomes, we can improve the sampling accuracy using a large
number of outcomes without excessive computational effort.

Nonlinear yield optimization can be demonstrated
through a frequency doubler [11]. The doubler consists of a
common-source FET with a lumped input matching network
and a microstrip output matching and filter section. The
statistics of the nonlinear FET model parameters are described
by a multidimensional normal distribution, including correla-
tions. The statistics of the linear parameters are represented
by uniform distributions. The optimization variables are
parameters of the matching circuit. Responses to be optimized
include conversion gain and spectral purity. Using the one-
sided ¢, centering algorithm [17] implemented in OSA90/hope
[15], the yield of the doubler, as estimated from 500 random
outcomes, was increased from 31% to 74%. The histograms of
the spectrual purity before and after yield optimization are
shown in Fig. 4.

VII. DATAPIPE ARCHITECTURE

As optimization is applied to an expanding variety of
circuit applications, software modules of diverse origins such
as specialized simulators must be accommodated in a general
CAD system.

We developed a software architecture called Datapipe
which utilizes UNIX interprocess pipes for high speed data
communication between independent programs. Utilizing the
Datapipe architecture, an optimizer in the parent program will
be able accept response functions and gradients from external
simulators running as child programs. For example, we are
able to interface our optimizers and statistical modules with
SPICE-PAC [18].

One of the most active research areas at the present is
the development of nonlinear device models for harmonic
balance and/or time-domain simulation. The Datapipe concept
can facilitate the testing of such models without interfering
with an existing CAD system.

VIII. CONCLUSIONS

The basic formulation and advantages of harmonic
balance simulation have been described. Recent advances in
circuit applications, including device modeling, nominal design
and statistical optimization, have been reviewed and illustrated
through examples. Nonlinear adjoint sensitivity analysis and
especially the FAST technique have been discussed. The
harmonic balance concept combined with adequate nonlinear
circuit models can provide a unifying basis for consistent dc,
small-signal and large-signal simulation and optimization.
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by a vertical line.
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