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Abstract

This paper presents a comprehensive approach to predictable yield optimization of microwave
circuits exploiting an analytical statistical model. We utilize a novel small-signal bias-dependent
physics-oriented statistical GaAs MESFET model which integrates the DC Khatibzadeh and Trew
model for DC simulation with thevLadbrooke formulas for small-signal analysis (KTL). Accuracy
of the statistical KTL model is demonstrated by good agreement between Monte Carlo simulations
using the model and corresponding simulations using device measurement data. Statistical extraction
and postprocessing of device physical parameters are carried out by HarPE. Yield optimization with
the statistical KTL model is carried out by OSA90/hope. The yield of a broadband amplifier is
significantly improved after optimization. Predicted yield over a range of specifications is verified
by device data. The benefits of simultaneous circuit-device yield optimization assisted by yield

sensitivity analysis are also demonstrated.
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I. INTRODUCTION

In IC manufacturing, fabricated circuits and devices exhibit parameter values deviating
randomly from their nominal (or designed) values. These random variations result in statistical
spreads of circuit responses and directly affect production yield, as some manufactured circuits
violate design specifications. Therefore, yield optimization is now accepted as an indispensable
component of circuit design methodology (e.g., [1-4]). Needless to say, the practical usefulness of
yield-driven circuit design depends on the accuracy of the statistical models and the predictability
of the design yield.

Statistical modeling is needed to characterize device statistics to provide accurate models for
statistical analysis and yield optimization. Purviance et al. [5-7] proposed various FET statistical
modeling techniques based on equivalent circuit models (ECMs), abstract models and data bases.
Bandler et al. [1,8,9] investigated statistical modeling of GaAs MESFETs using both ECMs and
physics-based models (PBMs) and demonstrated that PBMs are capable of providing better estimates
of device statistics than ECMs.

We promote PBMs because they allow characterization of device statistics directly at the
geometrical/material parameter level where the statistics originate. Also, for a given process, the
nominal values of physical parameters as well as their probable ranges of deviations may be known,
providing useful information for numerical techniques employed in statistical modeling.

In this paper we present a novel GaAs MESFET statistical PBM for small-signal applications
which we call the KTL (Khatibzadeh/Trew/Ladbrooke) statistical model. It combines the advantages
of the Khatibzadeh and Trew model [10,11] and the small-signal Ladbrooke model [12] while
overcoming their respective shortcomings. The new model has been implemented in the statistical
environment of HarPE [13] and OSA90/hope [14].

We used HarPE to carry out statistical characterization of a GaAs MESFET from wafer
measurements provided by Plessey Research Caswell [15]. Statistical modeling requires data for
different, but supposedly identical, devices to be taken under identical measurement conditions.

Measurement data, unless specifically collected for statistical modeling, may not satisfy this



requirement. Then a meaningful preprocessing of data is needed. We call it alignment of the
measured data. Deterministic models are extracted for individual manufactured outcomes and these
models are used to generate "pseudo-measured" responses at some other "measurement conditions".
We apply the Materka and Kacprzak model [16] to this end.

Employing the new model, we present a comprehensive approach to predictable yield-driven
physics-based circuit optimization. We demonstrate for the first time that yield predicted by Monte
Carlo simulation using a PBM can be consistent with yield predicted directly from device
measurement data [17]. Yield optimization of a broadband small-signal amplifier was carried out
using OSA90/hope. Our experiments show that the statistical KTL model is the first analytical model
to provide reliable and predictable results in yield optimization.

Finally, we discuss potential benefits of including some active device parameters as design
variables. Although device adjustment in IC manufacturing may be expensive to implement, it may
be justified if it significantly increases the yield and therefore reduces the production cost. Device
optimization may also become more attractive with further advances in technology. We show that a
significantly higher yield can be achieved by simultaneous circuit and device optimization when
suitable FET parameters such as the gate length and channel thickness are included as design
variables. The selection of device parameters for yield optimization can be assisted by yield

sensitivity analyses.

II. A NEW STATISTICAL GaAs MESFET MODEL
The KTL small-signal equivalent circuit follows the Ladbrooke model [12] and is shown in
Fig. 1. Its attractive statistical properties have already been noticed in [9]. The model includes
elements whose values are derived from device physical/geometrical parameters and intrinsic voltages
at the DC operating point. These intrinsic voltages may be assumed, as is the case in traditional
design: the biasing circuit is designed to attain the desired operating point, or they must be
determined separately. If the intrinsic voltages are to be determined by simulation it is important that

the same physical parameters are used, thus leading to a consistent model.



In our investigations into statistical PBMs we have seriously considered the K hatibzadeh and
Trew model [10,11]. It is an analytical physics-based large-signal (or global) model exhibiting
reasonable efficiency for small scale yield optimization problems. However, for smail-signal
applications, in particular statistical modeling, it is not as accurate as the Ladbrooke model [1].
Details of the Khatibzadeh and Trew approach and the Ladbrooke formulas, including our
modifications, can be found in [1,9-14].

To provide for complete DC/small-signal device simulations we combine the Ladbrooke model
with the Khatibzadeh and Trew model. The latter is employed to solve for the DC operating point
needed in establishing the former. Both models share the same physical parameters, therefore the
resulting combined, or integrated, model is consistently defined. The statistical KTL model is then
obtained by extracting the statistics of the model parameters from multi-device measurement data.

The model includes the intrinsic FET parameters

{L.Z, a, Ny, Vipos Vsar Ec, Bos € Lo, Ggs Toys Toas Tos) (1)
and the linear extrinsic elements
(Lg Rg Ly Ry, Ly, Ry, Gy, Cyeo Ce C) Q)
where L is the gate length, Z the gate width, a the channel thickness, N, the doping density, Vo the
zero-bias barrier potential, vy, the saturation value of electron drift velocity, E, the critical electric
field, uy the low-field mobility of GaAs, ¢ the dielectric constant, L, the inductance from gate bond
wires and pads, a, the proportionality coefficient, and rg,, ro, and rs are fitting coefficients [9]. The
DC blocking capacitor C, in Fig. 1 is fixed at 2pF.

The bias-dependent small-signal parameters, namely, Em Cg,, Cg . R;, Lg, ro and 7, as shown
in Fig. 1, are derived using the modified Ladbrooke formulas once the DC operating point is solved
for. For instance,

&m =€V Z/d,
7= (0.5X -2d)L/(v,,(L+2X)),
R; = L/(ZpugN fa-d)), (3)

Coa = 26Z/(142X/L),



o = ro1V psdroz = Vgs) + ros
where Vg and Vg are DC intrinsic voltages from D’ to S’ and from G’ to S, respectively, as
shown in Fig. 1. The equivalent depletion depth d and the space-charge layer extension X are defined
by
d = [2e(-V g4V o)/ (@N 1%, @
X = apf2e/laNL-V o5s*V 60} *(V o HV 50).
Following our discrete/normal approach to statistical modeling [8], device statistics are
represented by a multidimensional normal distribution characterized by the means, standard
deviations and the correlation matrix, with additional one-dimensional mapping employing discrete

distribution functions (DDFs) for the marginal distributions.

IIl. MEASUREMENT DATA INTERPOLATION

We have performed statistical modeling from a sample of GaAs MESFET measurements from
Plessey Research Caswell [15]. 69 individual devices (data sets) from two wafers were used. Each
device represents a four finger 0.5um gate length GaAs MESFET with equal finger width of 75um.
Each data set contains small-signal S parameters measured at frequencies from 1GHz to 21GHz with
0.4GHz step and under three different bias conditions (Vps at SV and V zgapproximately at 0V, -0.7V
and -1.4V, respectively). DC drain bias currents are also included in the measurements.

The measurement bias conditions vary slightly from device to device, thus we align the
different data sets to provide consistent bias points for statistical modeling. It is also desirable to
interpolate measured data at some other bias points. The Materka and Kacprzak model is a suitable
interpolator for this purpose, because of its excellent single device fitting accuracy for these devices.
For each individual device we fit the Materka and Kacprzak model to its corresponding data set. The
resulting models are used to interpolate data for each device at two bias points (gate bias -0.5V and
-0.7V, drain bias 5V). In this way we generated data sets for 69 devices including DC responses and

§ parameters from 1GHz to 21GHz with 2GHz step under the two bias conditions.




IV. STATISTICAL MODELING AND VERIFICATION

Our statistical modeling technique consists of two stages: multi-device parameter extraction
and postprocessing. The two stages, leading to a concise model described by the means, standard
deviations, correlation matrix and DDFs, were carried out by HarPE [13]. After alignment of the
measurement data described in the preceding section, KTL model parameters were extracted for each
device by fitting the model responses to the corresponding S-parameter data and drain bias currents
at gate bias -0.5V and -0.7V and drain bias 5V. The 69 (deterministic) models corresponding to the
69 measured devices were then postprocessed to obtain the parameter statistics. The resulting mean
values and the standard deviations are listed in Table I. Histograms of channel thickness and doping
density are shown in Fig. 2.

For verification, 400 Monte Carlo outcomes were generated using the statistical KTL model.
The statistics of the simulated S parameters for those 400 outcomes were compared with the statistics
of the data. The mean values and standard deviations from the data and the simulated S parameters
at both bias points and at frequency 11GHz are listed in Table II. Note that the statistics of the data
and simulated S parameters are consistent. This validates the statistical properties of KTL.

It should be pointed out that statistical verification of the models is of utmost importance, and
virtually every paper on statistical modeling tries to address it. While first and second order statistical
moments are frequently considered inadequate (e.g., [7]), full verification of joint probability density

functions may not be feasible. We discuss this subject further in Section VI.

V. YIELD OPTIMIZATION
We consider the small-signal broadband amplifier shown in Fig. 3. The specifications for
yield optimization are: |S,,| = 8dB + 0.5dB, IS13] < 0.5 and [S,,| < 0.5 for the frequency range 8GHz-
12GHz. The matching network elements, namely, Ly, Ly, Ly, Ly, Lg, Lg, Cy, Cy, C3, C4 and R, are
chosen as design variables. They are also assigned random variations of uniform distribution with a
5% tolerance. Adding these to the FET parameters, we have a total of 28 statistical variables. The

optimization was carried out using OSA90/hope [14] on a Sun SPARCstation 1.



First, a nominal minimax design was obtained (after 133 iterations and about 12 minutes CPU
time). The yield of the nominal design is estimated as 17.5% by Monte Carlo simulation with 200
outcomes. Using the nominal design as the starting point, yield optimization was performed with 100
outcomes. After 30 iterations (145 minutes CPU time), the yield was increased to 67% as estimated
by Monte Carlo simulation with 200 outcomes.

The Monte Carlo sweeps of |S,,| before and after yield optimization are shown in Fig. 4.

Table III lists the values of the design variables before and after yield optimization.

VI. YIELD VERIFICATION

The significance of yield optimization will be much more convincing if the yield predicted
by statistical models can be shown to be consistent with actual device data. To demonstrate that this
indeed can be the case, we substitute the KTL model with device data and compare the Monte Carlo
yields for both cases. Because the wafer measurements contain small variations in bias conditions
between different devices, we use the Materka and Kacprzak model [16] to interpolate individual
device data at the same bias point (Vg = -0.7V and V5 = 5V), as discussed in Section III

The yield predicted by Monte Carlo simulation using the device data and 140 outcomes was
15.7% (nominal design) and 57.9% (after yield optimization). This verifies very well the yields
predicted by our model (which are 17.5% and 67%, respectively). The Monte Carlo sweeps of |S,,l
using the device data are shown in Fig. 5, which are in excellent agreement with those produced by
the statistical model (Fig. 4).

To show that the good result is not a singular exception, we varied the design specifications
over a range and applied the same procedure. As shown in Table IV, the yields predicted by the
model and the device data are in very good agreement in all cases.

We feel that the procedure outlined in this section is suitable for statistical validation of the
KTL model. Yield, similarly to mean value or standard deviation, can be considered as a statistical
parameter, whose estimate is determined from a sample. It is better qualified to validate the model

for the simple reason that yield estimation is what the model is intended for.



VII. YIELD SENSITIVITY ANALYSIS

Yield is a function of device parameters, circuit elements, parameter statistics and design
specifications. To select a proper set of variables for yield optimization can be a delicate task. We
use OSA90/hope to calculate the sensitivities of yield w.r.t. circuit and design parameters. This
analysis reveals the influence of different parameters on yield, and this information can assist us in
selecting variables for yield optimization.

To illustrate, we performed yield sensitivity analysis w.r.t. two parameters which were not
included in the optimization of the matching network, namely, one design specification and one
device parameter (the FET gate length).

Fig. 6 depicts the yield sensitivity w.r.t. the lower specification on the gain (the upper
specification was fixed). It shows, for instance, that if the lower specification is relaxed from 7.5dB
to 7.3dB, the yield would increase from 67% to 74.5%. Fig. 7 depicts the yield sensitivity w.r.t. the
FET gate length. It clearly shows that the gate length has a strong influence on yield and therefore

merits inclusion as a variable for yield optimization.

VIII. SIMULTANEOUS DEVICE-CIRCUIT DESIGN

Representing devices by statistical PBMs has a clear advantage over direct use of the measured
§ parameters: the model can interpolate device behaviour at frequency and bias points not contained
in the data, and an unlimited number of outcomes can be generated for Monte Carlo analysis. Also,
the use of PBMs presents us with the opportunity of optimizing the parameters of active devices,
which is not possible if the devices are represented by S parameters. Although device optimization
can be expensive to implement, it may be justified when stringent specifications result in very low
yield which cannot be sufficiently improved by optimizing the matching circuit alone.

Consider again the small-signal broadband amplifier. We tighten the upper specification on
|S1, from 0.5 to 0.4 in the passband, while the other specifications remain the same. Two separate
cases of optimization were constructed as follows. In Case I, only the matching circuits are optimized.

In Case II, we include the GaAs MESFET gate length and channel thickness as design variables in



addition to the matching circuits.

In both cases, we first performed a minimax nominal optimization and then a yield
optimization. In Case I, at the nominal solution the yield predicted by Monte Carlo simulation using
200 outcomes is only 7.5%. After yield optimization the yield is improved to 27.5%.

In Case II, the yield at the nominal solution is 12.5%, and is increased to 64.5% after yield
optimization. Compared with Case I, this drastic improvement in the optimized yield requires
relatively small changes in the device parameters: the gate length changed from 0.5um to 0.4pm and

the channel thickness from 0.163um to 0.14um.

IX. CONCLUSIONS

A comprehensive approach to yield-driven circuit optimization has been presented. We have
addressed various stages of yield-driven CAD: statistical modeling, nominal design optimization, yield
optimization, yield verification and device optimization.

We have presented the statistical KTL model: a novel, accurate physics-oriented model for
GaAs MESFETSs, particularly suitable for statistical device characterization. Our experiments
demonstrate its ability to accurately represent the statistical properties of MESFETs. The K TL model
is suitable for both nominal design and yield optimization of small-signal circuits. Model accuracy
is demonstrated by good agreement between Monte Carlo S-parameter simulations and the statistical
parameters of the measurement S-parameter data.

From our experience, the statistical KTL model is the first analytical model to provide reliable
and predictable results in yield optimization. Through a broadband small-signal amplifier, we have
demonstrated for the first time that yield predicted by Monte Carlo simulation using an analytical
PBM can be consistent with yield predicted directly from device mesurement data. Excellent results
have been obtained for a variety of design specifications.

Simultaneous device and circuit optimization assisted by yield sensitivity analyses further
champions the relevance and benefits of our physics-based technique for MMICs. We believe that

device optimization will become more attractive with continuing advances in technology.
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FIGURE CAPTIONS

Fig. 1. Small-signal equivalent circuit where Ifgmlf'ge‘j“”.

Fig. 2. Histograms of (a) channel thickness and (b) doping density obtained from statistical
postprocessing of extracted parameters.

Fig. 3. Small-signal broadband amplifier.

Fig. 4. Monte Carlo sweeps of |S,,| using the statistical KTL model, (a) before yield optimization and
(b) after yield optimization.

Fig. 5. Monte Carlo sweeps of |S,| using device data (140 outcomes), (a) before yield optimization
and (b) after yield optimization.

Fig. 6. Yield versus the lower specification on the gain.

Fig. 7. Yield versus the FET gate length.
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TABLE I

MESFET MODEL PARAMETERS

Parameter Mean Std. Dev. (%)
L(pm) 0.4997 4.76
a(pm) 0.1630 5.78
NAm™3) 2.475x10%3 4.21
Vio(V) 0.2661 34.6
Lgo(nH) 0.0299 9.02
ro1(Q/V?) 0.0779 0.17
roa(V) 7.7855 0.17
ros(f?) 534.44 4.86
RA0) 0.4905 1.42
R(0) 3.9345 1.29
R/Q) 7.7811 0.34
L {nH) 6.21x102 5.88
Ly(nH) 2.15x1072 7.31
G(1/0) 2.34x1073 4.19
C4(pF) 5.89x1072 2.33
Cye(DF) 4.61x1072 6.12
C(pF) 2.00x10~* 0.05
Z(um) 300 *
Vsa(m/s) 9.5x10* *
E (V/m) 1.9x10° *
po(m?/Vns) 5%x10710 *
€ 12.5 *
ag 1.0 *

* Assumed fixed (non-statistical) parameters.

The bias-dependent linear extrinsic element Lg is
computed using the Ladbrooke formula [12] with
modifications given in [9].
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TABLE II

MEAN VALUES AND STANDARD DEVIATIONS OF
DATA AND SIMULATED S PARAMETERS AT 11GHZ

Bias 1 Bias 2

Data KTL Data KTL

Mean Dev.(%) Mean Dev.(%) Mean Dev.(%) Mean Dev.(%)

| S1 | 0.771  0.67 0.765  0.74 0.775  0.65 0.776  0.72
/Su -103.5 1.53 -104.2 1.62 -100.1 1.60 -100.5 1.54
| S31 1.760  2.26 1707 2.84 1657 3.23 1.668 2.78
/S 97.21 0.72 98.26  0.84 98.10  0.70 1003 0.73
| Sz 0.091  4.10 0.092 4.32 0.097 4.7 0.097 3.85
/S1s 3559 1.74 35.04 2.13 36.20 1.63 3545 2.12
| Sy | 0.576 -1.57 0.577  1.66 0.577 178 0.579 1.66
/Sas -39.48 1.42 -39.61 1.37 -39.96 1.26 -40.18 1.24

Bias 1: VGS = -O.SV, VDS = 5V.
Bias 2: Vg = ~0.7V, Vg = 5V.
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TABLE III

MATCHING CIRCUIT OPTIMIZATION

Design Before Yield After Yield
Variable Optimization Optimization
C,(pF) 0.6161 0.4372
C,(pF) 5.2556 6.1365
C4(pF) 0.2606 0.2757
C(pF) 0.1385 0.1570
R(Q) 589.00 708.08
L,(nH) 0.5947 0.9110
L,(nH) 0.9916 0.9430
Lg(nH) 1.9203 1.6395
L ,(nH) 1.5754 1.7516
Lg(nH) 2.0039 2.3933
Lg(nH) 1.0085 0.7537

15



TABLE IV

YIELD PREDICTED BY MODEL AND VERIFIED BY DATA

Before Yield After Yield

Optimization Optimization

KTL Data KTL Data
Specification  Predicted Verified Predicted Verified

Yield (%) Yield (%) Yield (%) Yield (%)

Spec. 1 17.5 15.7 67 57.9
Spec. 2 21 20 83 75.7
Spec. 3 44 - 37.1 98 93.6

Spec. 1: 7.5dB <|S,,| < 8.5dB, |S,| < 0.5, |S,,| < O0.5.
Spec. 2: 6.5dB <|S,| < 7.5dB, |S;,| < 0.5, [S,y| < 0.5.
Spec. 3: 6.0dB <|S,,| < 8.0dB, |S,,| < 0.5, [Sqsl < 0.5.

200 outcomes are used for yield prediction by the statistical
KTL model, 140 for yield verification using the device data.
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Fig. 2. Histograms of (a) channel thickness and (b) doping density obtained from statistical
postprocessing of extracted parameters.
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Fig. 6. Yield versus the lower specification on the gain.
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Fig. 7. Yield versus the FET gate length.
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