INTEGRATING THE SPICE-PAC SIMULATOR WITH THE

0OSA90/hope™ DESIGN ENVIRONMENT

R.M. Biernacki, J.W. Bandler, S.H. Chen and P.A. Grobelny
SOS-92-5-R

July 1992

© R.M. Biernacki, J.W. Bandler, S.H. Chen and P.A. Grobelny

No part of this document may be copied, translated, transcribed or entered in any form into any
machine without written permission. Address enquiries in this regard to Dr. J.W. Bandler.
Excerpts may be quoted for scholarly purposes with full acknowledgement of source. This
document may not be lent or circulated without this title page and its original cover.

INTEGRATING THE SPICE-PAC SIMULATOR WITH THE OSA90/hope™

DESIGN ENVIRONMENT

R.M Biernacki,* J.W. Bandler,* S.H. Chen” and P.A. Grobelny
Abstract This report presents Spicepipee™, a pipe-ready version of SPICE-PAC. Spicepipe
comprises SPICE-PAC and the means to communicate between OSA90/hope™ and SPICE-PAC.
OSA90/hope is a circuit design environment which features powerful design optimization and
statistical capabilities, including Monte Carlo analysis and yield-driven design. It also has built-in
frequency-domain circuit simulation including harmonic balance. SPICE-PAC is an
optimization-structured version of the popular circuit simulator SPICE. It contributes excellent
time-domain simulation and noise analysis. Spicepipe utilizes the high-speed Datapipe™ technology
available in OSA90/hope as the vehicle for the interconnection. The Datapipe technology, based
on UNIX pipes, creates and maintains fast communication channels between OSA90/hope, (the
parent) and processes created by OSA90/hope (children). Spicepipe is OSA90/hope’s child designed
to explore the SPICE-PAC simulators from within the OSA90/hope. Combining tools working in
different domains results in a mixed frequency-time-domain circuit design environment. Spicepipe
augments OSA90/hope with the capabilities of SPICE-PAC time-domain simulation, noise analysis
and SPICE device models. OSA90/hope extends SPICE-PAC’s simulation-only capabilities by
advanced pre- and post-processing of data, flexible input and output as well as by optimization.
The utilization of Spicepipe in solving circuit design problems is illustrated by three circuit
examples involving simulation, optimization, Monte Carlo analysis and yield-driven design in both

the frequency and time domains.

The authors are with the Simulation Optimization Systems Research Laboratory and the
Department of Electrical and Computer Engineering, McMaster University, Hamilton, Canada
L8S 4L7.

"RM. Biernacki, J.W. Bandler and S.H. Chen are also with Optimization Systems Associates Inc.,
Dundas, Ontario, Canada L9H 6L1.

This work was supported in part by the Optimization Systems Associates Inc. and by the Natural
Sciences and Engineering Research Council of Canada under Grants OGP0042444 and OGP0007239.

CONVENTIONS

In this report we use different fonts to distinguish different concepts. Here are the general

conventions:

We use the Times Roman font for regular text.

We use the italic font to indicate the names of programs, C and Fortran functions
and subroutines (Fortran subroutines names are usually capitalized.)

We use the Prestige Elite font to show keywords and examples.

We use the prestige Elite Small font for file listings (to save space).

I. INTRODUCTION

Complex engineering problems may require us to combine circuit simulation with other
software tools supporting optimization, statistical analysis, higher or lower level simulations. This
report describes Spicepipe, a pipe-ready version of SPICE-PAC. Spicepipe allows the user to
explore SPICE-PAC simulation capabilities from within the OSA90/hope circuit design
environment.

We introduce OSA90/hope [1] and SPICE-PAC [2], an optimization-structured version of
the popular circuit simulator SPICE [3]. We also introduce the library for inter-program pipe
communication (IPPC) [4], the basis of the high speed Datapipe technology [1, 4] featured in
OSA90/hope. We describe how we have used the Datapipe technology to interconnect SPICE-PAC
with OSA90/hope. We provide illustrative examples of the utilization of Spicepipe. We assume that
the reader is familiar with OSA90/hope and that he or she understands the SPICE-PAC input file
language. Detailed understanding of the Datapipe technology is not necessary.

Spicepipe, connecting SPICE-PAC to the OSA90/hope design environment augments
OSA90/hope’s circuit design capabilities of simulation and modelling with those available in
SPICE-PAC, most importantly, time-domain simulation, noise analysis and additional device models.
OSA90/hope, as a circuit design environment, provides the user with harmonic-balance
frequency-domain simulation, statistical analysis and, most importantly, very flexible and versatile
optimization. As a result, Spicepipe creates a mixed frequency-time-domain design environment.
This environment features versatile simulation and optimization, statistical analysis and yield-driven
design in both domains.

To interconnect SPICE-PAC with OSA90/hope we have used the OSA90/hope Datapipe
technology and Datapipe Server implemented with the help of the IPPC library for inter-program
pipe communication [4]. The IPPC library employs the concept of UNIX pipes [5] which are fast
interprocess communication channels. The channels interconnect OSA90/hope, called the parent

process, with processes created by OSA90/hope, called its children. Spicepipe is simply an

OSA90/hope child designed to organize and control the exchange of information between
OSA90/hope and SPICE-PAC. The Datapipe Server and the IPPC library are integral parts of
OSA90/hope.

In Sections II and III we provide a short introduction to OSA90/hope and SPICE-PAC,
respectively. Section IV describes the IPPC library, the engine of the Datapipe technology. Section
V explains the general structure of the interconnection between OSA90/hope and SPICE-PAC.
Sections VI, VII and VIII discuss the interfacing driver, SPICE-PAC driver and the create_file
program, respectively. The interfacing driver, SPICE-PAC driver and the create_ file program are
the interfacing components of Spicepipe. The interfacing driver provides the interface between
OSA90/hope and SPICE-PAC. The SPICE-PAC driver organizes the tasks performed by
SPICE-PAC. The create_file program is used to create a disk input file for SPICE-PAC. In
Section IX we explain the details of the OSA90/hope input file for Spicepipe. Section X includes
three circuit design problems. We optimize an LC transformer to illustrate the communication
between OSA90/hope and SPICE-PAC. For an NMOS inverter we explore production yield
estimation with time-domain specifications. The last example uses a second-order RLC circuit to
demonstrate mixed frequency-time-domain optimization. We first perform optimization of the
nominal circuit and then continue with yield optimization. We used a Sun SPARCstation 1 as the
platform to perform these experiments. Our conclusions and acknowledgment are in Sections XI

and XII, respectively.

II. OSA90/hope [1]

OSA90/hope - Optimization Shell Assembly/harmonic optimization personal environment
is a general purpose Computer-Aided Design (CAD) system developed by Optimization System
Associates Inc. OSA90/hope contains three simulators for DC, AC and large-signal
harmonic-balance analyses and several state-of-the-art optimizers. It features statistical Monte

Carlo analysis, yield optimization and expression processing capability operating on scalars, vectors

and matrices. OSA90/hope is also equipped with several ready-to-use Datapipe protocols [1, 4, 5].
Datapipe can connect external programs with the OSA90/hope internal simulators and/or optimizers
(see Fig. 1). The external programs are then called child programs.

The user communicates with OSA90/hope by means of an input file [1]. The input file
describes the circuit under consideration as well as the operations requested by the user. The
Datapipe connections are also defined in the input file. In order to connect external programs
through OSA90/hope the user does not need to access the OSA90/hope source code. Furthermore,
the internal organization of the Datapipe transfer mechanism is transparent to the user.

To have a better feeling of what Datapipe protocols are, let us consider the COM Datapipe
protocol in more detail. This will not only acquaint us with the protocols in general but will also
serve as an introduction to utilizing Spicepipe which uses the COM protocol. The COM protocol is
capable of transferring character strings such as data file names, messages, keywords, or even the
entire contents of a file.

The COM Datapipe, like any other Datapipe, is defined in the OSA90/hope input file within

the Expression and/or the Model block. The syntax for the COM protocol is as follows.

Datapipe:
COM FILE="filename"
N_INPUT=n INPUT=(x1, ..., xn)
N _OUTPUT=m OUTPUT=(yl, ..., ym);

where COM is the keyword identifying the protocol, filename represents the name of the binary
(executable) child program, n is the total number of inputs to be passed from OSA90/hope to the
child, and m is the total number of outputs to be passed from the child back to OSA90/hope. The
inputs x1, ..., xn can be specified by constant values, optimization variables and labels
previously defined in the input file. Labels defining character strings are also allowed. The
outputs y1, ..., ym must be specified by unique label names which have not been used as other

identifiers. The outputs can also include character string labels.

As the syntax of the COM protocol shows the only thing the user has to do in order to define

a COM Datapipe is to define the input and output for the Datapipe.

III. SPICE-PAC [2]

SPICE-PAC was developed by W.M. Zuberek of the Department of Computer Science,
Memorial University, Newfoundland. It is a simulation package that is upwardly compatible with
the popular SPICE circuit simulator [4]. SPICE-PAC accepts the same circuit description language
as SPICE (with a few minor exceptions) and provides the same circuit analyses. It also supports
a number of extensions and refinements which are not available in the original SPICE program.

One of the extensions, particularly interesting for our application, is the notion of, so called,
circuit variables. Circuit variables are those attributes of circuit elements that can be modified
during subsequent simulations and in optimization. Circuit variables are defined within the
extended circuit description which is a part of the input file. In SPICE-PAC, likewise in
OSA90/hope, the input file is the main means of communication between the user and the system.
The extended circuit description is separated from the "basic", or SPICE like, part of the input file
by the .END/EXT keyword and terminated by the .END keyword. Circuit variables are defined by

the .VAR lines,

.VAR variable name

where variable_name is either a simple element name for those elements which have one attribute
only, e.g., the resistance of a resistor or the capacitance of a linear capacitor, or a composite name
which is used for multi-attribute circuit elements, e.g., parameters of semiconductor devices. In
fact, the idea of introducing circuit variables as an extension of SPICE evolved directly from
optimization related applications of SPICE.

The main difference between SPICE and SPICE-PAC lies, however, in the internal

organization of the programs. While SPICE is a program with a fixed flow of operations,

SPICE-PAC is a collection of loosely coupled simulation primitives. The simulation primitives can
be composed in many different ways, according to a particular application. Typical examples of
simulation primitives include reading the circuit description, performing a specific circuit analysis,
changing values of circuit elements, or redefining analysis parameters. In SPICE-PAC each
simulation primitive constitutes a subroutine. The names of the subroutines are: SPICEA, SPICEB,
..., SPICEY, where, e.g., SPICEA reads and processes the circuit description, SPICEB defines
circuit variables, SPICER performs circuit analysis. Each of the subroutines invokes a number of
SPICE-PAC’s internal subroutines and functions which appear "invisible" to the user. To utilize
SPICE-PAC the user has to write a program called SPICE-PAC driver in which the simulation
primitives are used as functional blocks. The SPICE-PAC driver organizes the flow of operation
among the primitives so that the behaviour of the system meets the specifications. A detailed
description of the primitives and their functions is given by Zuberek in [6].

The modular structure of SPICE-PAC makes the package very attractive, especially for
specific applications. SPICE-PAC is particularly useful in optimization-oriented applications, where
its modular structure may significantly increase the efficiency of the system. While creating a
driver for SPICE-PAC, the user can program or include any additional tasks such as statistical
post-processing or graphical output facilities.

Our version of the SPICE-PAC driver is discussed in Section VII. The availability of

SPICE-PAC is described in Appendix A.

IV. FUNDAMENTALS OF THE OSA90/hope DATAPIPE™ TECHNOLOGY
This section of the report is to outline basics of UNIX pipes, the IPPC library, and the
OSA90/hope Datapipe mechanism.
A pipe is an I/O channel intended for use between two cooperating processes. One process
writes into the pipe, while the other process reads from the pipe. UNIX, as the operating system,

controls buffering of the data and synchronization of the two processes. The system call pipe()

creates a pipe and returns two file descriptors, one for the read side and the other one for the write
side of the pipe. These descriptors, being file identifiers, may be used in read(), write() and
close() calls just like any other file descriptor. If a process reads from a pipe which is empty, it
waits until data arrives; if a process writes into a pipe which is full, it waits until the pipe is
emptied somehow. Once the pipes have been created by the call to pipe() the process uses the
fork() system call to create a copy of itself. The new, so called child copy of the process, then
calls the system shell to execute the desired child program. See the SPARCstation user’s manual
[5] for more details.

The IPPC library [4] was created to facilitate the process of establishing high speed data
connections between OSA90/hope and one or more external programs. IPPC employs the concept

of UNIX pipes and includes subroutines that open, initialize, close, read from and write to a pipe.

The OSA90/hope Datapipe mechanism is built on the basis of the IPPC library. The basic
form of inter-program pipe communication is between two programs: a parent program and a child
program, and the communication is not repetitive (i.e., the child is not called iteratively). This

corresponds to the following sequence of calls to the IPPC subroutines in the parent program.

cid = pipe_open("child program"); /* open pipe and activate the
child program */

pipe_initialize(cid); /* initialization */

pipe_write(buffer, size, n_item, cid); /* send data to child. Upon

receiving all necessary
data, the child program will
start processing */
pipe_read(buffer, size, n_item, cid); /* get data from child after
the child program is
finished */
pipe_close(cid); /* close the pipe */

where cid is the child identifier and "child program" is the name of the child to be activated.
The buffer, size and n_item, refer to the buffer for the data in the parent program, size of the

data item and the number of the data items to be sent, respectively.

More general and useful is the iterative case, where instead of loading and activating the
child program in each iteration (the pipe_open() function) we do it only once outside a loop in the

parent program.

cid = pipe_open("child program"); /* open pipe and activate the
child program */
for (1 = 0; 1 < 100; i++) | /* 100 iter. in the parent
program */
pipe_initialize(cid); /* initialization %/
pipe_write(buffer, size, n_item, cid); /* send data to child; upon

receiving all necessary
data, the child program will
start processing */
pipe_read(buffer, size, n_item, cid); /* get data from child after
data processing in the child
program is finished */
/* data processing in parent program here */

}
pipe_close(cid); /* exit child and close the

pipe */

The use of pipe communication by the child program is the same regardless whether the
parent calls the child iteratively or non-iteratively. This is due to an infinite loop which should
be set up by the user in the child program. The loop will perform the desired data processing as
long as it is requested to do so by the parent program which sends an initializing signal to the child
in each iteration. Eventually, by sending a closing signal to the child the parent will terminate data

processing and close the pipe. General use of pipe communication in the child program is as

follows.
for (5;) { /* set up an infinite loop */
pipe_initialize2(); /* initialize (synchronize with
the parent) */
pipe_read2(buffer, size, n item); /* get data from parent */

/* data processing in the child program */

pipe_write2(buffer, size, n item); /* send data to parent */

It should be emphasized that the infinite loop must be present in the child program even
if the child is going to be called only once. The main reason for this is that the pipe initialize2()
function is used to receive not only the synchronization signals but also the termination signal.

The IPPC library also allows one parent program to communicate with several child and
grandchild programs. Up to 127 concurrently running children created by any parent are allowed.

For further details and examples of utilization of the IPPC library see [4, 5].

V. THE STRUCTURE OF THE INTERCONNECTION

While approaching the problem of coupling OSA90/hope and SPICE-PAC we had to solve
a number of problems. Some of them were purely implementation related problems while the
others were more conceptual ones. An example from the first group could be the problem of how
to pass the optimization variables from OSA90/hope to SPICE-PAC and then the SPICE-PAC
responses back to OSA90/hope. Another problem was how to initialize SPICE-PAC to perform
specific circuit analyses and avoid such an initialization in subsequent calls. An example of a more
conceptual problem was how to deal with two input files, one for OSA90/hope and another one for
SPICE-PAC. Dealing with two independent input files would be quite inconvenient for the user.
Ideally, it is preferable to work with only one input file.

We concentrated our effort on designing Spicepipe in such a way that the user would not
be required to do any programming. Furthermore, we assumed that the user should be able to
invoke SPICE-PAC from OSA90/hope in a completely "invisible" manner. To this end we created
a version of the SPICE-PAC driver which is linked, together with SPICE-PAC, to a short
interfacing driver forming altogether Spicepipe: a pipe-ready version of SPICE-PAC. The structure
of the connection between OSA90/hope and SPICE-PAC is shown in Fig. 2. The interfacing
driver, see Fig. 2, was created on the basis of the general child template described in [1]. The
SPICE-PAC driver organizes SPICE-PAC’s simulation primitives. The create__file child, called

through the separate Datapipe channel is employed to help the user in dealing with two input files,

10

one for SPICE-PAC and another one for OSA90/hope.
The interfacing driver, SPICE-PAC driver and the create file child are discussed in detail

in the following sections.

VI. INTERFACING DRIVER

The IPPC library, described in Section IV, likewise the template for an OSA90/hope child
[1], are written in C. SPICE-PAC, on the other hand, is written in FORTRAN. The most
straightforward approach to combine SPICE-PAC and OSA90/hope is to call SPICE-PAC from
inside a small C program whose primary task is to maintain communication between the two
systems. We called this C program an interfacing driver. It is the main() function of Spicepipe.

The interfacing driver was created on the basis of the general child template but we
extended that template by adding some error checking and dynamic memory allocation. The
program is able to report a number of the most common errors, e.g., syntax errors in the
SPICE-PAC input file, unknown analysis types passed to SPICE-PAC, etc. The interfacing driver
also performs data type conversion. The conversion is necessary because SPICE-PAC works in
double precision and OSA90/hope in single precision arithmetic. Therefore all the output from
SPICE-PAC has to be cast from double to single precision floating point numbers.

The listing of the interfacing driver source code can be found in Appendix B. Appendix

C contains a short discussion on how to pass data from C to FORTRAN routines.

VII. SPICE-PAC DRIVER
Here we discuss the structure of our version of the SPICE-PAC driver and the analysis types
available through this driver.
The structure of the driver is shown in Fig. 3. The two paths of operation flow in Fig. 3.
correspond to the first and subsequent calls to SPICE-PAC. If the user requests a single simulation

of a circuit using SPICE-PAC, there will be only one call to SPICE-PAC and the operation flow

11

will follow the path for the first entry to SPICE-PAC. If the user wants to perform optimization
or multiple simulations of the same circuit, the second and all subsequent calls will skip the
initialization operations of SPICE-PAC. Such organization significantly saves CPU time.

During initialization, SPICE-PAC first tries to open its input and output files. If the files
have been successfully opened, SPICE-PAC will call the SPICEA subroutine to read the input file.
Next, the program checks if the input data from OSA90/hope is consistent with definitions in the
SPICE-PAC input file. The input data, if it exists, consists mainly of sweep or optimization
variables. If the information is consistent SPICEB is called to define the corresponding
SPICE-PAC circuit variables (see Section III). A call to SPICEM, defining the temperature for
subsequent analysis, completes the initialization process.

The successive SPICE-PAC tasks are performed in every call. First, the values of sweep
or optimization variables are updated by a call to SPICEU and then SPICER is called to perform
the requested analysis. Before returning control to the interfacing driver and then to OSA90/hope,
SPICE-PAC saves the results of the analysis in its output file. This takes place, however, only if
the user requested SPICE-PAC to do so by setting an additional flag in the OSA90/hope input file.
We will describe this flag in detail in the section on the OSA90/hope input file for Spicepipe.

If an error is detected upon a call to any of the invoked subroutines, SPICE-PAC sets the
error flag and returns control to the interfacing driver immediately. The described SPICE-PAC
driver, based on the standard SPICE-PAC driver created by W.M. Zuberek [6], is intended to
support general usage of SPICE-PAC. The user, however, can extend this driver or adjust it to a
particular application.

Our implementation of the SPICE-PAC driver allows the user to request one type of analysis
at a time, out of the following: DC transfer curve analysis, transient analysis, AC analysis, noise
analysis, distortion analysis or Fourier analysis. If two or more analyses are required the user has
to create a separate Datapipe communication channel for each of the analysis types.

The source code of our SPICE-PAC driver is listed in Appendix D.

12

VIII. THE create_file CHILD

Both OSA90/hope and SPICE-PAC require their own input files. Having two input files
is thus necessary. However, they are interdependent and to synchronise the activities of both
systems the files have to be consistent. To allow the user to work with one input file only we have
created a separate pipe-ready executable child program for OSA90/hope named create file.
create_ file, if called from OSA90/hope through the Datapipe mechanism, will create a disk file,
specifically an input file for SPICE-PAC. The name of the file as well as its contents are both
character string type arguments for the second Datapipe in Fig. 2. In other words the user can
define his or her SPICE-PAC input file inside the OSA90/hope input file as a character string.

The following example illustrates the usage of the create file child.

Expression

char file name[] = "testfile.txt";
char file contents[] = "This is the text which will constitute the
contents of the 'testfile.txt’ file.";
Datapipe:
CcoM FILE = "create_ file"
N_INPUT = 2 INPUT = (file_name, file_contents)
N_OUTPUT =1 OUTPUT = (in name[13]);
End

We use the COM Datapipe protocol with two inputs: file name and file contents. file name
contains the name of the file to be created and file contents contains its contents. Both are
defined as character string variables in the lines preceding the Datapipe definition. The Datapipe
returns as its output in_name, which is equal to the Datapipe’s input file name. Having the
created file name returned as the output from the create file Datapipe is very convenient. For
example, instead of organizing the OSA90/hope input file in such a way so that the create file is
executed whenever necessary it is enough to specify the create file output in_name as input to the
Datapipe that relies on the existence of the in_name file. Then, whenever OSA90/hope evaluates

the other Datapipe it will first determine its inputs or in other words it will automatically execute

13

the create__file child. We use this mechanism to relate the create_file Datapipe with the Spicepipe
Datapipe.

It should be stressed that create_ file is not actually a part of Spicepipe nor is it absolutely
necessary to use Spicepipe. create_ file was designed to facilitate the process of creating and editing
the input file for SPICE-PAC from OSA90/hope design environment. Nevertheless, if the
SPICE-PAC file already exists and editing is not necessary, create_ file is redundant. Of course,
create__file can be used in other applications, not only with Spicepipe.

The source code of the create file program is listed in Appendix E.

IX. OSA90/hope INPUT FILE FOR Spicepipe

As we know, both OSA90/hope and SPICE-PAC communicate with the user by means of
input files. In each system the input file describes the circuit under consideration as well as the
operations requested by the user. In the preceding section we learned how to use create_file to
combine two input files, one for OSA90/hope and the other one for SPICE-PAC. The resulting
file is an OSA90/hope input file which contains information required by both systems. In this
section we examine this file in detail. After reading this section the user should be able to create
his or her own OSA90/hope input files utilizing Spicepipe.

The OSA90/hope input file for Spicepipe is in fact an ordinary OSA90/hope input file
except for two, specific to Spicepipe, aspects. First, the OSA90/hope input file for Spicepipe must
define the Spicepipe Datapipe and second it must be consistent with the corresponding input file
for SPICE-PAC. We will analyze these aspects first, and then we will support the analysis with a
complete circuit example.

A. The Spicepipe Datapipe

Once the SPICE-PAC input file for a given problem has been created, either externally or

through the create_file child program, the user has to organize the transfer of data between

SPICE-PAC and OSA90/hope. In order to do so a COM datapipe channel between the two packages

14

has to be opened and input and output to this Datapipe have to be specified. The syntax of the
COM datapipe protocol was described in Section II. The Datapipe invoking Spicepipe is defined as
follows.
Datapipe:
COM FILE = "Spicepipe"
N_INPUT = n INPUT = (in_name, dump, out name, ana_name, input)
N_OUTPUT= m OUTPUT = (output);
where Spicepipe is the name of the executable child program, (see Fig. 2.), n is the number of

inputs to the pipe and m is the number of outputs from the pipe. n and m are determined by the

contents of INPUT and OUTPUT. In INPUT there are five fields of data:

I. in_name is a required character string which specifies the name of the SPICE-PAC input file.
2. dump is a required float flag which tells SPICE-PAC whether the SPICE-PAC output file should
include results of circuit analysis or not (if dump=0 the results will not be stored, otherwise
SPICE-PAC will save results of each circuit analysis in its output file).
3. out_name is a required character string which specifies the name of the SPICE-PAC output
file.
4. ana_name is a required character string which specifies the type of analysis to be performed
by SPICE-PAC.

5. input is an optional float vector specifying input variables.

The vector input may contain an arbitrary number of float type variables. The length of the
input vector together with in_name, dump, out_name and ana_name (each counted as 1) determine
n. Therefore n is 4 if the input field is absent, or n is 4 plus the number of float variables in the
input vector if it is present.

Two last fields require some more explanation. ana name informs SPICE-PAC which

analysis should be performed. The valid values of ana name are: ".dc", ".tr", ".ac", ".no",

15

".di" and ".fo", also: ".DC", ".TR", ".AC", ".NO", ".DI" and ".FO". These correspond to the
DC, transient, AC, noise, distortion and Fourier analyses respectively. An attempt to set ana_name
to a different value would cause the child program to terminate and return an error message.

The input field defines which variables from the OSA90/hope input file should be passed
to SPICE-PAC. The primary usage of input is to transfer optimization variables, though some
other sweep or even fixed parameters may be passed as well. In the case of optimization the
transfer of variables takes places not once but as many times as required by the optimizer (see
Section VII).

Finally, N OUTPUT and OUTPUT of the Datapipe definition are used to describe data which
is sent back from SPICE-PAC to OSA90/hope. N_OUTPUT is equal to the number of floating point
variables to be received by OSA90/hope and OUTPUT is a set of placeholders defining space for
these floating point variables.

B. Consistency of the input files

As already mentioned in Section VIII, the input files for OSA90/hope and SPICE-PAC have
to be consistent. It is not surprising if the systems are to cooperate. There are basically three
things that have to match in both input files. They are the circuit variables, the type of the
analysis and the output from the Spicepipe Datapipe.

The input vector in the OSA90/hope Spicepipe Datapipe definition (described in the
previous subsection) and SPICE-PAC circuit variables (described in Section III) must correspond
to each other. If there are no SPICE-PAC circuit variables the input vector in the OSA90/hope
Spicepipe Datapipe definition must not be defined. If there are a number of SPICE-PAC circuit
variables defined in the SPICE-PAC input file the input vector must contain exactly the same
number of OSA90/hope variables. Furthermore, the order of the variables in the input vector
must correspond to the order in which the corresponding SPICE-PAC circuit variables are defined.

If, for example, the following circuit variables were defined in the SPICE-PAC input file

16

RE 3 0 150
RB 2 5 950K
RC 4 5 5K
CB 1 2 100UF

.END/EXT
.VAR RE
.VAR RB
.VAR RC
.VAR CB
.END
then, in the corresponding OSA90/hope input file the user should define a four element input

vector of variables, e.g.,

re = ?150?; rb = ?950e3?; rc = 5e3; cb = 100e-6;
input[l:4] = [re, rb, rc, cb];

The names of variables in the SPICE-PAC and OSA90/hope input files do not have to be the same.
Notice, that re and rb are OSA90/hope optimization variables (they are defined with a pair of
question marks) and rc and cb are not. The consequence of the specific ordering of the variables

in input[1:4] is that re, rb, rc and cb correspond to SPICE-PAC’s RE, RB, RC and CB,

respectively.

To match the analysis types for OSA90/hope and SPICE-PAC is simple. The ana_name
character string variable in the Spicepipe Datapipe input determines the analysis to be performed
by SPICE-PAC. The selection is restricted to what has been declared in the SPICE-PAC input file.
If the following two lines, defining AC and DC analysis respectively, were included in the

SPICE-PAC input file and there were no other analysis type declarations

17

.AC LIN 20 5M 100M
.DC VCC 5 12 1

the available values for ana_name would be ".ac" and ".dc" (or ".AC" and ".DC"). An attempt
to set ana_name to a different value would cause Spicepipe to return an error message and
terminate.

The output from the Spicepipe Datapipe is the third and last place where the two input files
must be consistent. The Spicepipe Datapipe output is strongly related to the SPICE-PAC .PRINT
statement(s). The .PRINT statement in the SPICE-PAC input file defines the output for a given
analysis. Different .PRINT statements can be defined for different analyses. For example, the

following lines

.AC LIN 20 5M 100M

.DC VIN 0 5 0.1

.PRINT AC VR(4) VI(4) VM(4)
.PRINT DC V(3)

define outputs for the AC and DC analyses. In this example, the AC analysis returns the real,
imaginary and the magnitude values of the voltage at node 4 for 20 equally spaced f requency points
in the range from 5MHz to 100MHZ. To maintain consistency, the output of the Spicepipe
Datapipe should allocate space for 60 (3x20) floating point numbers. Consequently, N_OUTPUT in

the Spicepipe Datapipe should be set to 60. It may look as follows.

. N_OUTPUT = 60 OUTPUT = (VR4[1:20], VI4[1:20], VM4[1:20])

In the case of the DC analysis the output contains 51 values of the voltage at node 3, which may

18

be declared as

... N OUTPUT = 51 OUTPUT = (V3DC[l:51]) ...

C. An illustrative example of the OSA90/hope input file for Spicepipe
Consider an OSA90/hope input file for optimization of the modulus of the input reflection

coefficient of an LC transformer circuit. The input file for the problem could be as follows.

#define DUMPON 1
#define DUMPOFF 0
Expression

char cir contents[]=
" Fede dedledlede e e e o e db e ab b e e ke e e e e e ok

* TRANSFORMER SIMULATION *
Fededededededededededeedede e dededededededede e
ve 1
RIN 1
c6 2
s 2
c4 3
3

4

4

5

B
-

L3
c2
L1
ROUT
.PRINT AC VR(2) VI(2)

.AC LIN 21 0.079578H 0.187644H
.END/EXT

.VAR L1

.VAR L3

.VAR L5

.VAR C2

.VAR C4

. VAR C6

.END

’

oumossrOoOowWwWONO
N N S)

char cir_name([]="1lc6.cir";
char out_name[]="1lc6.out";
char ac[]=".ac";

Datapipe:
coM FILE = "create_file"
N_INPUT = 2 INPUT = (cir_name, cir_contents)
N_OUTPUT = 1 OUTPUT = (char in _name([8]);
input([1:6]=[?1?, ?1?, ?1?, , 71?7, ?7171;
DataPipe:
coM FILE = "Spicepipe"
N_INPUT = 10 INPUT = (in_name, DUMPOFF, out_name, ac, input)

N_OUTPUT = 42

! Calculate the reflection coefficient |Ref

Refr[1:21]=Vinr+Vinr-1;
Refi[1:21]=Vini+Vini;

OUTPUT, = (Vinr[1:21], Vini[1:21]);
using Ref=2*Vin/Vg-1 where Vg=1

Refm[1:21]=sqrt(Refr*RefrtRefi*Refi);

i=0;
End
Sweep
Title = "Reflection Coefficient" i:
End
Specification
Refm=0;
End

from 1 to 21 step 1 Refm[i];

19

There are two Datapipes in the file, create file and Spicepipe (with Spicepipe as the
executable program). We use the create_file Datapipe to create the SPICE-PAC input file, see
Section VIII. There are two character string inputs to this Datapipe: cir contents and
cir_name. cir_contents defines the contents of the SPICE-PAC input file and cir name defines
its name, Ic6.cir in this case. The output of the create file Datapipe is a character string variable
containing the name of the created file, just like cir name. This output is then used as a part of
the input to the Spicepipe Datapipe which chains in a way the two Datapipes. This makes the
create__file Datapipe be executed before the Spicepipe Datapipe is invoked. There are six
SPICE-PAC circuit variables defined in the input file, describing all L and C elements in the
circuit. The .AC and .PRINT statements call for the real and imaginary parts of the AC voltage
at node 2 at 21 frequencies as the output from SPICE-PAC.

The Spicepipe Datapipe, in order to be consistent with the SPICE-PAC input file, asks for
the AC analysis (char ac[]=".ac") and provides a six element vector input containing the values
for SPICE-PAC L and C elements. It is worth noticing that the values assigned to the L and C
elements in the "basic" part of the SPICE-PAC input file will first be read by SPICE-PAC and then
they will be overwritten by the updating procedure with the values from input sent from
OSA90/hope (see Fig. 3). The N_OUTPUT is equal to 42 (2x21) and OUTPUT provides space for 42
floating point numbers. DUMPOFF, predefined as 0, forces SPICE-PAC not to save the results in
its output disk file. To evaluate the modulus of the reflection coefficient we use the expression
processing capability of OSA90/hope. The modulus of the reflection coefficient is finally given
as the Refm vector. The Sweep block defines the display, and the Specification block defines

the error functions for optimization.

20

X. APPLICATIONS
A. Optimization of an LC transformer

An LC transformer optimization, referred to already in Section IX, is chosen to demonstrate
communication between OSA90/hope and SPICE-PAC. We want to optimize the modulus of the
input reflection coefficient |p| for the transformer of Fig. 4. We use 21 equally spaced points in
the frequency range from 0.079578Hz to 0.187644Hz. All L and C elements in the circuit are
optimizable. The input resistance is R;,=3(1 and the output resistance is R, ~10.

We use the create_file child to create the input file for SPICE-PAC. We use the expression
processing capability of OSA90/hope to calculate the reflection coefficient, providing relevant
formulas in the input file. The maximum value of |p| before optimization was 0.66. After 62
iterations, using the minimax optimizer, it is decreased to 0.076. The values of the L and C
elements before and after optimization are listed in Table I. The diagrams of |p| as a function
of frequency before and after optimization are shown in Fig. 5.

We also solved the problem entirely by OSA90/hope. The results are practically the same.
Small differences are most likely due to different numerical algorithms used in both simulators.
The CPU times used running OSA90/hope with the Spicepipe connection to SPICE-PAC and
OSA90/hope alone were approximately the same.

B. Time-domain response and Monte Carlo analysis of an NMOS inverter

An NMOS inverter with depletion load [7], shown in Fig. 6, is used to illustrate the
utilization of Spicepipe to perform Monte Carlo analysis with time-domain specifications. Monte
Carlo analysis is organized within the OSA90/hope design environment but the actual circuit
simulations are performed by the SPICE-PAC time-domain simulator. We used the level 1 option
of the SPICE-PAC MOS transistor model [3, 7] to model the transistors. We selected channel
length, channel width, threshold voltage and transconductance of both load and inverting transistors
as the statistical parameters. In reality, production variations of the threshold voltage and

transconductance are the most notable ones. We assumed normal distributions of the parameters

21

with no correlations for simplicity. See Table II for transistor model parameters and statistical
distributions assumed for statistical variables. We selected the inverter’s propagation time tp < 2.5ns
as the acceptability criterion. The propagation time ¢p was computed by an additional child
program. The inverter was excited by a trapezoidal signal and its output was connected to another
inverter of the same type to simulate a more realistic load. We did not include statistical variations
in the load inverter. We also did not include the interconnection capacitances. The production
yield, estimated using 200 outcomes, was 79.5%. The time-domain response of the nominal circuit
as well as the Monte Carlo results are presented in Fig. 7.
C. Mixed frequency-time-domain optimization of an RLC circuit

This example demonstrates the mixed domain optimization capability available through
Spicepipe. We want to find a second-order model, with the schematic of Fig. 8, of a fourth-order
system when the input to the system is an impulse. We consider the time interval from 0 to 10

seconds. The fourth-order system time-domain response is given analytically by

Vo () = 2i0e oy %e b . %e 2! (35in2¢ + 11 cos2t). (1

The diagram of this response is shown in Fig. 9. In addition, we impose a frequency-domain
specification on the insertion loss INSL of the modelling circuit. We want INSL to be less than
20dB in the frequency range from 0.1Hz to 0.4Hz. Cj, R, and R, are optimizable variables; R;,,
R, and L, are fixed.

We used the OSA90/hope ¢, optimizer to perform optimization of the nominal circuit. The
time-domain response of the second-order circuit was matched to (1). The maximum difference
between the desired response (1) and the model response was reduced from 0.15 to 0.01, which
satisfied our specifications. INSL satisfied the 20dB specification in the whole frequency range of
interest.

Having found the optimum ¢; solution to the problem we performed statistical analysis of

the circuit. The Monte Carlo estimate of the production yield at the solution of the nominal

22

problem was 50%. After 30 yield optimization iterations the yield was increased to 90.5%. We used
the OSA90/hope yield optimizer with\SO outcomes to optimize yield. To estimate yield, before and
after optimization, we used 200 outcomes. Table III lists the values of the optimization variables
and assumed standard deviations for statistical variables. Fig. 10 shows the results of Monte Carlo
analysis performed before yield optimization. The error between the time-domain response of the
second-order circuit and the desired response (1) as well as INSL are plotted. The corresponding
curves generated after yield optimization are plotted in Fig. 11.

The listings of the OSA90/hope input files for all three problems are provided in

Appendices F through H.

XI. CONCLUSIONS

We have described Spicepipe, a new child for OSA90/hope. Spicepipe, integrating
OSA90/hope with SPICE-PAC, provides the user with all the features of OSA90/hope extended by
the time-domain and noise analyses contributed by SPICE-PAC. Spicepipe augments the
OSA90/hope modelling capabilities by the device models featured in SPICE-PAC. On the other
hand, exploiting SPICE-PAC simulators through the OSA90/hope design environment is more
flexible and efficient. The responses evaluated by SPICE-PAC and returned to OSA90/hope can
be post-processed using expressions giving the user the flexibility of utilizing other than predefined
responses. Expression processing makes it also possible to impose algebraic relations among
SPICE-PAC circuit parameters. Probably the most important feature of Spicepipe, however, is that
by combining tools working in different domains it provides the user with the unique capability
of simulating and optimizing a circuit in the frequency and time domains simultaneously.

We have used the Datapipe technology and the Datapipe Server to interconnect SPICE-PAC
with OSA90/hope. We introduced OSA90/hope and SPICE-PAC. We discussed the capability of
OSA90/hope circuit design environment. The modular structure and the simulation primitives of

SPICE-PAC were also discussed. We pointed out the superiority of SPICE-PAC over SPICE for

23

specialised or optimization-related applications. The OSA90/hope input file for Spicepipe was
described in detail. We emphasized the Spicepipe Datapipe definition and the consistency of the
OSA90/hope and SPICE-PAC input files. We illustrated the utilization of Spicepipe with three
design problems involving simulation, optimization, Monte Carlo analysis and yield-driven design
in both the frequency and time domains.

To combine OSA90/hope with SPICE-PAC no additional reprogramming of OSA90/hope
was required. For SPICE-PAC we had to create the driver organizing SPICE-PAC simulation
primitives, but a driver has to be written for SPICE-PAC anyway. Having to write such a driver
requires that the user possess some programming knowledge as well as a good understanding of

SPICE-PAC simulation primitives.

XII. ACKNOWLEDGMENT
The authors wish to express their appreciation to Dr. W.M. Zuberek of Memorial University
of Newfoundland, St. John’s, Newfoundland, Canada, the author of SPICE-PAC, for his assistance,

helpful discussions, technical suggestions and comments.

REFERENCES

[1] OSA90/hope™ Version 2.0 User’s Manual, Optimization Systems Associates, Inc., P.O. Box
8083, Dundas, Ontario, Canada L9H 5E7, 1992.

[2] W.M. Zuberek, "SPICE-PAC version 2G6¢ an overview," Department of Computer Science,
Memorial University of Newfoundland, St. John’s, Newfoundland, Canada A1C 5S7,
Technical Report 8903, 1989.

[3] A. Vladimirescu, K. Zhang, A.R. Newton, D.O. Pederson and A L. Sangiovanni-Vincentelli,
"SPICE Version 2G - User’s guide," Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley CA 94720, 1981.

[4] J.W Bandler, Q.J. Zhang, G. Simpson and S.H. Chen, "IPPC: a library for inter-program
pipe communication," Department of Electrical and Computer Engineering, McMaster
University, Hamilton, Canada, Report SOS-90-10-U, 1990.

[5] Programming Utilities and Libraries, SPARCstation 1 Users Manual, Sun Microsystems,
Inc., 2550 Garcia Ave., Mountain View, CA 94043, pp. 21-26, 1988.

24

[6] W.M. Zuberek, "SPICE-PAC version 2G6c user’s guide", Department of Computer Science,
Memorial University of Newfoundland, St. John’s, Newfoundland, Canada A1C 5S7,
Technical Report 8902, 1989.

[71 D.A. Hodges and H.G. Jackson, Analysis and Design of Digital Integrated Circuits. New
York: McGraw-Hill, Inc., 1988.

[8] 1.2 Sun FORTRAN Manual Set, SPARCstation 1 Users Manual, Sun Microsystems, Inc.,
2550 Garcia Ave., Mountain View, CA 94043, 1988.

25

TABLE I
LC TRANSFORMER CIRCUIT:
L AND C ELEMENT VALUES BEFORE AND AFTER OPTIMIZATION

Element L, (H) C, (F) Ly (H) C, (F) Ly (H) Cs (F)
Value Before

Optimization 1 1 1 1 1 1
Value After 1.041 0.979 2.340 0.780 2.937 0.347
Optimization

26

TABLE II

NMOS INVERTER:

MODEL PARAMETERS AND DISTRIBUTIONS ASSUMED

Name SPICE-PAC Mean Standard
Variable Value Deviation (%)

Both transistors:
Transconductance KP (A/V?) 20.0 6.0
Body factor GAMMA (V1/2) 0.37 -
Body doping NSUB (cm™3) 5.0x1014 -
Gate oxide thickness TOX (m) 0.1x107® -
Junction depth XJ (m) 1.0x10°® -
Lateral diffusion LD (m) 1.0x10° -
Zero-bias bulk capacitance CJ (F/m?) 70.0x1078 -
Zero-bias perimeter capacitance CJSW (F/m) 220.0x10712 -
Gate-drain overlap capacitance CGDO (F/m) 345.0x10712 -
Gate-source overlap capacitance ~ CGSO (F/m) 345.0x10712 -
The load transistor:
Threshold voltage VTO (V) -3.0 12.0
Gate width W (m) 5.0x107°8 2.0
Gate length L (m) 12.0x107® 2.0
Drain diffusion area AD (m?) 100.0x10712 -
Source diffusion area AS (m?) 25.0x10712 -
Drain area perimeter PD (m) 40.0x107® -
Source area perimeter PS (m) 15.0x107°6 -
The inverting transistor:
Threshold voltage VYTO (V) 1.0 12.0
Gate width W (m) 10.0x1078 2.0
Gate length L (m) 7.0x1076 2.0
Drain diffusion area AD (m?) 100.0x10712 -
Source diffusion area AS (m?) 100.0x10712 -
Drain area perimeter PD (m) 35.0x107 -
Source area perimeter PS (m) 40.0x1078 -

- indicates elements assumed fixed and non-statistical.

27

- TABLE III
YIELD OPTIMIZATION OF THE RLC CIRCUIT

Element Before After £, After Yield Standard
Optimization Optimization Optimization Deviation (%)
R;, () 1.00 1.00 1.00 -
R, () 0.50 0.92 1.00 5
C, (F) 0.50 0.43 0.44 5
L, (H) 1.00 1.00 1.00 5
R, () 2.00 0.28 0.26 5
R, (@) 1.00 1.00 1.00 -

- indicates elements assumed fixed and non-statistical.

28

0SA90 /hope

Datapipe Protocol o Datapipe Protocol
Y A | A
Datapipe Server Datapipe Server
child program - child program

Fig. 1. OSA90/hope Datapipe schematic. Several child programs can be connected to OSA90/hope
using Datapipe technology.

29

0SA90 /hope

Datapipe Protocol Datapipe Protocol

Y A

[R D

Datapipe Server

Datapipe Server

Interfacing Driver create_file child

A

input disk file

SPICE-PAC

Y

output disk file

|
|
|
|
|
|
|
|

|

|

|

|

SPICE—PAC Driver |

|

|
Spicepipe

|

Fig. 2. Integrating SPICE-PAC with OSA90/hope. Spicepipe consists of the interfacing driver,
SPICE-PAC driver and the SPICE-PAC library. The create file child creates the
SPICE-PAC input disk file.

30

from OSA90/hope

yes

-

initialize

no

Y

update
vari

circuit
ables

Y

perform

analysis

l

to OSA90/hope

Fig. 3. Block diagram of the SPICE-PAC driver.

31

Rin Ls Ls Ly
/\/\/ YY) YY) Yo
Ce = Cy = Cs :E § R s

Fig. 4. LC transformer circuit.

32

|Rho |

0 . § N X .
0.0796 0.1012 0.1228 0.1444 0.166 0.1876

frequency (Hz)

(a)

|Rho |

0 . . § § .
0.0796 0.1012 0.1228 0.1444 0.166 0.1876

frequency (Hz)

(b)

Fig. 5. Input reflection coefficient of the LC transformer (a) before and (b) after optimization.

33

o

L

‘i VLn‘{>%

out

el

||{[
|

Fig. 6. NMOS inverter, depletion load [7].

34

v

ou

t

I T T N
. . : : <[—= vout

— Vin

Vout, Vin (V)

....................................

time (ns)

Yout (V)

0 2.5 5.0 7.5 10.0

time (ns)

(b)

Fig. 7. Time-domain responses of an NMOS inverter. (a) input and output waveforms and (b) Monte
Carlo output waveform sweep.

35

V‘Ln R2 § ?Rout

o

Fig. 8. RLC second-order circuit.

36

0.064

0.048

Yout (V)

0.032

0.016

0 2.5 5 7.5 10

time (s)

Fig. 9. Impulse response of the fourth-order system, given analytically by (1).

37

0.0124

0.0074

0.0024

-0.0028

error

-0.0076

-0.0126

-0.0176
0

time (s)

(a)

INSL (dB)

"0 0.175 0.25 0.325 0.4

frequency (Hz)

(b)

Fig. 10. Monte Carlo sweep results for the RLC circuit before yield optimization: (a) time-domain
match error, and (b) insertion loss.

38

L e :

0. 01 P e e o e e e e e e e e e e e e A e e e e Mo
0.007

0.004

0.001 |- - - /i

error

-0.002

-0.00S

-0.008

-0.011 |

-0.014
0

time (s)

(a)

INSL (dB)

0.1 0.175 0.25 0.325 0.4

frequency (Hz)

(b)

Fig. 11. Monte Carlo sweep results for the RLC circuit after yield optimization: (a) time-domain
match error, and (b) insertion loss.

39

APPENDIX A
HOW TO OBTAIN SPICE-PAC
SPICE-PAC is a version of the public domain software circuit simulator SPICE. Anyone
interested can obtain SPICE-PAC free of charge.
To obtain SPICE-PAC you can use the ftp utility and connect to the garfield computer at

the Memorial University of Newfoundland, Canada. The command to invoke ftp is

ftp garfield.cs.mun.ca

or

ftp 134.153.1.1

When the connection is established type login at the FTP> prompt. Log into the anonymous
account providing your e-mail address as the password:

Foreign username: anonymous

Password:
SPICE-PAC can be found in the pub/sppac subdirectory. The pub/sppac subdirectory contains the
following files: Makefile, Readme, sppac.tar.Z, tr-8902.tex.Z and tr-8903.tex.Z. Makefile installs
SPICE-PAC, Readme provides brief information about SPICE-PAC and sppac.tar.Z is a compressed
and "tared" version of SPICE-PAC. r-8902.tex.Z and tr-8903.tex.Z are compressed versions of the
reports [6] and [2], respectively, written in LaTEX.

Transfer the files to your local machine using the following commands:

get Readme

get Makefile

binary

get sppac.tar.Z

get tr-8902.tex.Z
get tr-8903.tex.Z

40

If you do not need the reports [2] and [6], or you do not have an access to LaTEX you do not have
to transfer the last two files. This completes the process of obtaining SPICE-PAC.

Directions on how to install SPICE-PAC can be found in the Readme file. The package
includes an exemplary SPICE-PAC driver. The driver provides an interactive interface between
the user and SPICE-PAC simulators. It is also an excellent reference on how to write more
specialized SPICE-PAC drivers.

To create Spicepipe change the last line in Makefile from

£77 -o sppac sppac-drv.f sppac.a

into the following sequence of commands:

cc -c -o Sppipe_c.o Sppipe_c.c

£77 -c -o Sppipe_f.o Sppipe f.f

cc -o Spicepipe Sppipe_c.o Sppipe f.o ippcv2.o sppac.a -1F77 -lc -1m

rm Sppipe_c.o Sppipe f.o
Sppipe_c.c and Sppipe_ f.f are the interfacing driver and SPICE-PAC driver, respectively. ippcv2.0
contains Datapipe functions used by Sppipe_c.c. The source codes of Sppipe c.c and Sppipe f.f

are listed in Appendices B and D, respectively.

41

#include <stdio.h>
#include <math.h>
#include <string.h>
#include "ippcv2.h"

#define LR 1001
fidefine LC 12

void* mymalloc();

char error_str([128];

char

FILE* tmpp;

void main()

{

int input_no,
output_no,
group_no,
i, 3, k, 1,
error=0,
errorlen,
data_type,
data_size,
row_no,
col no,

APPENDIX B

SOURCE CODE OF THE INTERFACING DRIVER

error_strs[12][128];

bad_group_no=-1,

exp_data_type,
firstentry=1;
void** input_data;

float outputdataf[LR*LC];
double outputdatad[LR*LC];

double* inputdatad;

strcpy(error_strs[0],
strcpy(error_strs(1],
strepy(error_strs([2],
strepy(error_strs([3],
strcpy(error_strs[4],
strcpy(error_strs([5],
strcpy(error_strs(6],
strcpy(error_strs(7],
strcpy(error_strs[8],
strcpy(error_strs([9],

for (;;)
{
pipe_initialize2();

ey,
’

"Spicepipe:
"Spicepipe:
"Spicepipe:
"Spiecpipe:
"Spicepipe:
"Spicepipe:
"Spicepipe:
"Spicepipe:
"Spicepipe:
strepy(error_strs[10], "Spicepipe:

/* used to allocate memory for input data */

/* number of input variables (=2) */

/* number of output variables (=1, dummy) */
/* number of groups (=2) */

/* loop counters */

/* stores the error message */

/* stores the length of an error message ¥/
/* stores the type of a group */

/* stores the size of a group */

/* number of output rows */

/* number of output columns ¥/

/* indicates wrong data group */

/* indicates expected data type */

/* just in case of subsequent entries */

/* contains addresses to the data groups */

/* error messages */

Cannot open the input file for SPICE-PAC.");

Cannot open the output file for SPICE-PAC.");

An error occurred during initialization.");

An error occurred while defining variables .");

An error occurred during initialization.");

An error occurred while setting the temperature.");
Unknown analysis type passed to SPICE-PAC.");

An error occurred while updating variables.");

An error occurred while performing the analysis.");
The number of circuit variables not consistent.");

/* read data header */

pipe_read2(&input_no, sizeof(int), 1);
pipe_read2(&output_no, sizeof(int), 1);
pipe_read2(&group_no, sizeof(int), 1);

if(firstentry)

/* allocate memory for data group pointers */

input_data=mymalloc(group_no*sizeof(void*));

42

for(i=0;i<group_no;i++)

{ /* read data group header */
pipe_read2(&data_type, sizeof(int), 1);
pipe_read2(&data_size, sizeof(int), 1);
if(data_type==IPPC_DATA CHAR)

{ /* read char string data */
if(firstentry)
{ /* groups 0, 2 and 3 must be strings ¥/
if((i!=0)&&(i!=2)&&(i!=3)&&(bad_group_no==-1))
{

bad_group_no=i;
exp_data_type=IPPC_DATA FLOAT;

} /* allocate memory for the data */
input_datal[i]=mymalloc(data_size);
} /* read data */
pipe_read2(input_datal[i], 1, data_size);
}
else /* data type must be float */
{
if(firstentry)
{ /* groups 1 and 4 must be float (0 - 4) */
if((i!=1)&&(i!=4)&&(bad_group no==-1))
{
bad_group_no=i;
exp_data_type=IPPC_DATA CHAR;
} /* allocate memory for the data */
input_data[il=mymalloc(data_size*sizeof(float));
} /* read data */
pipe_read2(input_data[i], sizeof(float), data_size);
}
}
if(firstentry)
{ /* check if right number of groups (4 or 5) */
if((group_no!=4)&&(group_no!=5))
{ /* if not report error and terminate (pipe_initialize2()) */

error=strlen(sprintf(error_str,
"Spicepipe: wrong # of input data groups - should be 4 or 5.", group_no))+1;
pipe_write2(&error, sizeof(int), 1);
pipe_write2(error_str, 1, error);
pipe_initialize2();
}
if(bad_group no!=-1)
if(exp_data_type==IPPC_DATA CHAR)
error=strlen(sprintf(error_str,
"Spicepipe: wrong input data type - ’char*’ type expected in data group: 2Zd.", bad_group_no+1))+1;
else
error=strlen(sprintf(error_str,
"Spicepipe: wrong data type - ’'float’ type expected in data group: 2Zd.", bad_group_no+1))+1;
if(error)
{
pipe write2(&error, sizeof(int), 1);
pipe_write2(error_str, 1, error);
pipe_initialize2();
}
if(group_no==5)
inputdatad=mymalloc(data_size*sizeof(double));
firstentry--;/* no mem alloc. and error check from now, should be 0.K. */

}
if(group_no==5) /* data conversion from float to double */
for(i=0;i<data_size;i++)
inputdatad[i]=*((float*)input_data[4]+i);
else

data_size=0;
spicepac_(&error, &row no, &col_no, (float*)input_data[l], inputdatad,
outputdatad, &data_size, (char*)input_data[0], (char*)input_datal[2],
(char*)input_data[3], strlen(input_data[0]), strlen(input_data[2]),
strlen(input_data[3]));

43

for(i=0,k=0;k<col_no;k++)
{
for(j=0;j<row_no; j++,i++)
{
outputdataf[i]=outputdatad[LR*k+j];
}
} errorlen=strlen(error_strs[error]);
pipe_write2(&errorlen, sizeof(int), 1);
if(error)
pipe_write2(error_strs[error], 1, errorlen);
else
{
data_type=IPPC_DATA_ FLOAT;
pipe_write2(&data_type, sizeof(int), 1);
pipe_write2(&output_no, sizeof(int), 1);
pipe_write2(outputdataf, sizeof(float), output_no);

void* mymalloc(malloc_size)
int malloc_size;
{

void* pointer=NULL;

int error=0;

if((pointer=(void*)malloc(malloc_size))==NULL)
{ /* if error, report it and terminate */
error=strlen(strcpy(
error_str, "Spicepipe: memory allocation error in ’msppacc’"))+1;
pipe_write2(&error, sizeof(int), 1);
pipe_write2(error_str, 1, error);
pipe_initialize2();
}

return(pointer);

44

APPENDIX C
C - FORTRAN INTERFACE RULES

The interfacing driver, described in Chapter VI, supports data transfer between OSA90/hope
and SPICE-PAC. Because the interfacing driver is written in C and SPICE-PAC in FORTRAN
the C - FORTRAN interface rules for a SPARCstation 1 had to be applied to maintain the
communication. Here we will limit ourselves to a short explanation and simple examples of how
to pass float, integer and string variables from C to FORTRAN. A more complete description can
be found in [8].

Because FORTRAN refers to a variable through its address a call from C to FORTRAN
must provide the addresses of all the parameters in the calling statement. An address in C can be
obtained by using the "&" operation. This is sufficient for float and integer variables whose
formats are the same in C and FORTRAN. Unfortunately internal formats for character strings
are different in C and FORTRAN. Therefore, special rules have to be obeyed to make FORTRAN
understand C character strings. The basic reason for this is that C does not need to know a
character string’s length (due to the NULL terminating character), while FORTRAN does. To let
FORTRAN know a character string’s length we have to find out the string’s length and pass it to
FORTRAN as an additional parameter. In the parameter list of a FORTRAN function called from
C this additional parameter has to be listed as the last parameter in the list. For example, if we
want to pass the stringl character string from a C program to a FORTRAN routine named

WRITEIT the line calling WRITEIT in the C program should be:
writeit_ (stringl, strlen(stringl));

where the "_" underline character is required by the Sun linker, stringl is the address to the string

and strlen(stringl) is the string length. The corresponding FORTRAN routine may look like

45

SUBROUTINE WRITEIT(STRING1)
CHARACTER STRING1* (%)

WRITE(%*,*)STRING1

RETURN

END

3 strings and an integer could be passed as follows

C program line:

writeit (stringl, strign2, &integer, string3, strlen(stringl), strlen(string2),
strlen(string3));

FORTRAN program:
SUBROUTINE WRITEIT(STRINGl, STRING2, INTEG, STRING3)
CHARACTER STRING1* (%), STRING2*(*), STRING3*(%*)
WRITE(*,*)STRING1
WRITE(*,*)STRING2
WRITE(*,*)STRING3
WRITE(*,*)INTEG
RETURN
END
According to [8] the C and FORTRAN programs should be compiled and linked using the

following options:

cc c_program.c f program.f -1F77 -1177 -1U77 -lc -1m

46

APPENDIX D

SOURCE CODE LISTING OF THE SPICE-PAC DRIVER

In this appendix we include a complete listing of the SPICE-PAC driver. It has been

adapted from the standard SPICE-PAC driver written by W.M. Zuberek and included in the

SPICE-PAC package. Subroutines: EXTIME, ERROR, OUTRES and SETHDR were taken directly

from the standard SPICE-PAC driver.

SUBROUTINE SPICEPAC(RETERROR, IR, IC, DUMP, INPUTDATA,
YTAB, NRVAR, INPUTFILE, OUTPUTFILE, ANALYSIS)
IMPLICIT DOUBLE PRECISION (A-H,0-2)

PARAMETER (LTAB=9,LVAR=200,LR=1001,LC=12,LZ2=12012,LX=5)

+

(o}
o] LV - max number of (static) circuit variables (SPICEB)
C LR - max number of results from a single analysis
C LC - max number of output variables for some analyses
C LZ - max number of numerical results from a single analysis
C LX - max number of parameters for a single analysis
Cc

CHARACTER OUTPUTFILE*(*), INPUTFILE*(*), ANALYSIS*(*)

CHARACTER*20 ATAB(10)

CHARACTER*3 TAA(LTAB), TAB(LTAB)

DOUBLE PRECISION INPUTDATA(Y)

INTEGER RETERROR,FIRSTENTRY,NRVAR, NRV

LOGICAL CHECK

REAL DUMP

DIMENSION IDVAR(LVAR)

DIMENSION XTAB(LR),YTAB(LR,LC),IVTAB(LX)

DATA FIRSTENTRY /1/

DATA ATAB /’DC TRANSFER CURVE ’, ’TRANSIENT ANALYSIS 7,

1 ’AC ANALYSIS ', ’NOISE ANALYSIS ’,

2 ’DISTORTION ANALYSIS ’,’FOURIER ANALYSIS ',

3 ’DC TRANSFER FUNCTION’,’AC SENSITIVITIES ’

4 TR SENSITIVITIES ’,’DC SENSITIVITIES i

DATA TAA /’.dc’, ’'.tr’, ’.ac’, ’.no’, ’'.di’, ’'.fo’, ’'.tf’,

1 ’.ds’, ’.as’/

DATA TAB /’.DC’, ’'.TR’, ’'.AC’, ’.NO’, ’.DI’, '.FO’, ’'.TF’,

2 ’.Ds’, ’.AS’/
[of
C set default values
Cc

LENFPT=2

LENPRL=75
c
C check if first entry
c

IF (FIRSTENTRY.EQ.1) THEN

FIRSTENTRY=0
(o}
C open I/O files
c
INQUIRE(FILE=INPUTFILE, EXIST=CHECK)

IF (.NOT.CHECK) THEN
RETERROR=1
RETURN

ENDIF

NRINPF=8

OPEN (UNIT=NRINPF,FILE=INPUTFILE, STATUS='OLD’)
INQUIRE(FILE=OUTPUTFILE, EXIST=CHECK)

47

aaa

aQa

aQa

aaa

aaoaoaaa

NROUTF=8
IF (CHECK) THEN

OPEN (UNIT=NROUTF,FILE=OUTPUTFILE, STATUS='OLD’ ,ERR=12)

ELSE

OPEN (UNIT=NROUTF,FILE=OUTPUTFILE, STATUS=’NEW’ ,ERR=12)

ENDIF
ENDFILE NROUTF
GO TO 15
12 RETERROR=2
GO TO 99

initialize

15 CALL SPICEA(NRINEF,NROUTF,NRV)
IF (NRV.LT.0) THEN
RETERROR=3
CALL ERROR(NROUTF,’A’,NRV,*99)
ENDIF
IF (NRVAR.NE.NRV) THEN
RETERROR=11
GO TO 99
ENDIF

retrieve circuit variables

IF (NRV.NE.O) THEN
CALL SPICEB(’*RETRIEVE’, IDVAR,LVAR, IEX)
IF (IEX.NE.NRV) THEN
RETERROR=4
CALL ERROR(NROUTF,’B/*RETRIEVE’,IEX,*99)
ENDIF
ENDIF

continue

20 CALL SPICEC(IEX)
IF (IEX.NE.O) THEN
RETERROR=5
CALL ERROR(NROUTF,'C’,IEX,*99)
ENDIF

retrieve the temperature

TEMP=-300D0
CALL SPICEM(TEMP, IEX)
IF (IEX.NE.O0) THEN
RETERROR=6
CALL ERROR(NROUTF, ’'M’, IEX,*99)
ENDIF
ENDIF
25 DO 30 I=1, LTAB
IF (ANALYSIS.EQ.TAA(I)) GO TO 35
IF (ANALYSIS.EQ.TAB(I)) GO TO 35
30 CONTINUE
RETERROR=7
RETURN

.bCc, .TR, .AC, .NO, .DI, .FO, .TF, .AS
update circuit variables

35 IF(NRVAR.NE.O) THEN
CALL SPICEU(IDVAR, INPUTDATA,NRVAR, IEX)
IF(IEX.NE.NRVAR) THEN
RETERROR=8
CALL ERROR(NROUTF,’U’,IEX,*99)
ENDIF
ENDIF

48

CALL SPICER(I,XTAB,YTAB,LR,-LZ,IR,IC,IEX)
IF (IEX.LT.O0) THEN
RETERROR=9
CALL ERROR(NROUTF,’R’,IEX,*99)
ENDIF
IF (DUMP.NE. 0) THEN
JR=MINO(LR,LZ/IC)
CALL OUTRES (NROUTF,I,ATAB(I),TEMP,IVTAB,0,XTAB,YTAB,JR,
1 IC,IR,IC,2, LENPRL,LENFPT)
ENDIF

print *SPICE-PAC* execution time

aaa

90 CALL EXTIME(NROUTF,XTAB,LR)
RETERROR=0

99 RETURN
END

C --- extime ------ 89.03.12 (W.M.Zuberek) -------=-=--------——-o——oo *
SUBROUTINE EXTIME (NRF,XT,LX)
DOUBLE PRECISION XT(1)
CHARACTER*3 Y
CALL SPICEW(XT,LX, IEX)
. IF (IEX.NE.8) CALL ERROR(NRF,'W’,IEX,*99)
Y="sec’
IF (XT(1).GE.600.0) THEN
XT(1)=XT(1)/60D0
Y="min’
IF (XT(1).GE.600.0) THEN
XT(1)=XT(1)/60D0
Y="hrs’
ENDIF
ENDIF
WRITE(NRF,900) XT(1),Y
800 FORMAT(/’ *SPICE-PAC* execution time :’,F6.1,1X,A)
99 RETURN
END
C --- error ------- 88.06.12 (W.M.Zuberek) ------—=-—=-——=-————————————o *
SUBROUTINE ERROR (NRF,E,IND,*)
(o}
C This subroutine prints error messages stored in a file "sppac.err".
(o}
CHARACTER*1 E,X,Y,Q,R
CHARACTER*9 Z
CHARACTER*60 S
LOGICAL CHECK
DATA Z / ’sppac.err’ /
INQUIRE(FILE=Z,EXIST=CHECK)
IF (.NOT.CHECK) GO TO 90
OPEN(UNIT=10,FILE=Z,STATUS=’OLD’)
10 READ(10,100,END=80,ERR=10) X,N,Y,Q,S
100 FORMAT(1X,A,I3,A,A,A)
IF (E.NE.X) GO TO 10
IF (Y.EQ.’ ’ .AND. N.NE.IND) GO TO 10 ,
IF (Y.EQ.’+’ .AND. IND.LE.N) GO TO 10 ‘
IF (Y.EQ.’-’ .AND. IND.GE.N) GO TO 10
WRITE(NRF,200) E,IND,S
200 FORMAT(’ *SPICE’,A,’*’,I4,’ : ’,A)
20 IF (Q.NE.’ ') THEN
READ(10,100,END=80,ERR=10) X,N,R,Q,S
IF (E.EQ.X .AND. (IND.EQ.N .OR. Y.EQ.R)) THEN
WRITE(NRF,300) S
300 FORMAT (13X,’ : ’,A)
GO TO 20
ENDIF
ENDIF

49

CLOSE(UNIT=10)
RETURN 1
80 CLOSE(UNIT=10)
90 WRITE(NRF,900) E,IND
900 FORMAT(’ *SPICE’,A,’* return code :’,I4)

RETURN 1
END
C --- outres ------ 90.04.11 (W.M.Zuberek) ----------------------oooooo *
SUBROUTINE OUTRES (NRF,IT,TT,TEM,KV,NV,KXTAB,YTAB,KR,KC,IR,IC,LB,
& LLG,LFP)

This subroutine prints results of different analyses.
NRF - INTEGER, the unit number of the output file,
IT - INTEGER, the type of analysis results,
TT - CHARACTER (*), the header,
TEM - DOUBLE PRECISION, the temperature,
KV - INTEGER (NV), array of circuit variable identifiers,
NV - INTEGER, the number of declared circuit variables,
XTAB - DOUBLE PRECISION, the vector of arguments,
YTAB - DOUBLE PRECISION, the matrix of results,
KR - INTEGER, the original number of rows,
KC - INTEGER, the original number of columms,
IR - INTEGER, the actual number of rows,
IC - INTEGER, the actual number of columms,
LB - INTEGER, the margin,
LLG - INTEGER, the line length,
LFP - INTEGER, the length of fractional part.
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION KV(1),XTAB(KR),YTAB(KR,6KC)
CHARACTER*(*) TT
CHARACTER*40 VAN
CHARACTER*27 F1,F2
CHARACTER*16 HEAD(0:12),B
CHARACTER*8 X
EQUIVALENCE (X,Z)
DATA F1 / ’(1X,A,1PD10.2,2X,1P12D10.2)’ / :
DATA F2 / '(1X,1A,2X,1A8,2X,1P12D10.2)°’ / |
LF=LFP ’
IF (LF.GT.8) LF=8
LN=LF+8
I2=ICHAR(’0’)+MOD(LN,10)
I1=ICHAR(’0’)+LN/10
Cmips:F1(10:13)=CHAR(I1)//CHAR(I2)//’.’//CHAR(ICHAR('0’)+LF)]
F1(10:10)=CHAR(I1) *
F1(11:11)=CHAR(I2) ‘
F1(12:12)=’.’
F1(13:13)=CHAR(ICHAR(’0’)+LF)
F1(23:26)=F1(10:13)
F2(23:26)=F1(10:13)
IF (IT.NE.10) THEN
NC=(LLG-LN-LB-2)/LN
ELSE |
NC=(LLG-LB-12)/LN |
ENDIF |
CALL SETHDR(HEAD(0),0,IT,LN,LH,*90)
WRITE(NRF,110) TT,TEM
110 FORMAT(/’ *¥¥%%*% * A 10X,’TEMPERATURE :’,F7.2,’ DEG C’)
IF (NV.GT.0) THEN
WRITE(NRF,113)
113 FORMAT(1X)
DO 15 I=1,NV
CALL SPICEY(VAN,0,KV(I),JEX)
IF (JEX.LE.O0) CALL ERROR(NRF,'’Y’,JEX,*90)
CALL SPICEV(KV(I),VAL,1,IEX)
IF (IEX.NE.1) CALL ERROR(NRF,’V’, 6 IEX,*90)
WRITE(NRF,115) VAN(JEX:40),VAL

aaoaoaoaoaoaoaoaoaoaoaao0aoaaaq

115 FORMAT(’ parameter : ’,A,’ =’,1PD11.3)
15 CONTINUE
ENDIF

DO 30 K=1,IC,NC

50

M=MINO(IC,K+NC-1) DO 20 J=K,M
IF (NV.GE.O) THEN
CALL SETHDR(HEAD(J+1-K),J,IT,LN,LH,%*90)
ELSE
CALL SETHDR(HEAD(J+1-K),-J,IT,LN,LH,*90)
ENDIF
20 CONTINUE
B=l ’
WRITE(NRF,120) B(1:LB),HEAD(O0)(1:LH), (HEAD(I)(1:LN),I=1,M+1-K)
120 FORMAT(/1X,A,A,2X,12A)
WRITE(NRF,130)
130 FORMAT(1X)
DO 25 I=1,IR
IF (LB.EQ.10) THEN
Z=YTAB(I,KC)
B(3:10)=X
ENDIF
IF (IT.GE.O0) THEN
WRITE(NRF,F1) B(1:LB),XTAB(I),(YTAB(I,J),J=K,M)
ELSE
WRITE(NRF,F2) B(1:LB),XTAB(I), (YTAB(I,J),J=K,M)
ENDIF
25 CONTINUE
30 CONTINUE
90 RETURN
END
C --- sethdr ------ 88.08.22 (W.M.Zuberek) ---------------------—-ooooo
SUBROUTINE SETHDR (H,J,IT,LN,LH,*)
CHARACTER*(*) H
IF (J.EQ.0) THEN
IF (IT.LE.O) THEN
=’ OP-POINT’
LH=10
IEX=1
ELSE
CALL SPICEY(H(1:LN),IT,J,IEX)
LL=LN
LH=LN
ENDIF
ELSE IF (J.GT.0) THEN
CALL SPICEY(H(1:LN),IT,J,IEX)
LL=LN
ELSE
I=-J
IEX=LN
H=l i
10 H(IEX:IEX)=CHAR(48+MOD(I,10))
IEX=IEX-1
IF (I.GT.9) THEN
I=I/10
GO TO 10
ENDIF
H(IEX:IEX)="4#’'
ENDIF
IF (IEX.LT.0) CALL ERROR(NRF,'’'Y’,IEX,*90)
IF (IEX.GT.12) THEN
H=H(6:LL)//’ !
ELSE IF (IEX.GT.10) THEN
H=H(5:LL)//’ !
ELSE IF (IEX.GT.8) THEN
H=H(4:LL)//’ !
ELSE IF (IEX.GT.6) THEN
H=H(3:LL)//’
ELSE
IF (IEX.GT.4) H=H(2:LL)//’' °’
ENDIF
RETURN
90 RETURN
1 END

51

APPENDIX E
SOURCE CODE LISTING OF THE create_file CHILD
Appendix E contains a listing of the create file program which if called through

OSA90/hope’s COM datapipe will create an external disk file.

#include <stdio.h>
#include <string.h>
#include <math.h>

#include "ippcv2.h"

void* mymalloc(); /* used to allocate memory for input data */
char error_str[128]; /* used to store the error string */

void main()
{
int input_no, /* number of input variables (=2) */
output_no, /* number of output variables (=1, dummy) */
group_no, /* number of groups (=2) */
i, /* loop counter */
error=0, /¥ stores the length of an error message (or -1) */
data_type,/* stores the type of a group */
data_size;/* stores the size of a group */
void** input_data;/* contains addresses to the data groups */
float output=0; /* at least one output must be present */
FILE* sppac_cir;/* sppac circuit file pointer */

for (;;)
{
pipe_initialize2();
pipe_read2(&input_no, sizeof(int), 1);
pipe_read2(&output_no, sizeof(int), 1);
pipe_read2(&group_no, sizeof(int), 1);
input_data=mymalloc(group_no*sizeof(void¥));
for(i=0;i<group_no;i++)
{
pipe_read2(&data_type, sizeof(int), 1);
pipe_read2(&data_size, sizeof(int), 1);
if(data_type==IPPC_DATA CHAR)
{
input_data[i]l=mymalloc(data_size);
pipe_read2(input_datal[i], 1, data_size);
}
else /* dat_type must be IPPC_DATA FLOAT */
{
input_data[i]l=mymalloc(data_size*sizeof(float));
pipe_read2(input_datal[i], sizeof(float), data_size);
}
}
if((sppac_cir=fopen((char*)input_data[0], "w"))!=NULL)
{

fprintf(sppac_cir, "Zs", (char¥*)input_datalll);
fclose(sppac_cir);

}
else /* opening error occurred ¥/
{
strcpy(error_str, "create_file: Cannot open '");
error=strlen(strcat(strcat(error_str, (char*)input_data[0]), "’."))+1;
}

52

for(i=0;i<group_no;i++)
free(input_datal[il);

free(input_data);

pipe_write2(&error, sizeof(int), 1);

if(error)
pipe_write2(error_str, 1, error);

else

{
data_type=IPPC_DATA CHAR;
pipe_write2(&data_type, sizeof(int), 1);
data_size=strlen((char*)input_data[0])+1;
pipe_write2(&data_size, sizeof(int), 1);
pipe_write2((char*)input_data[0], 1, data _size);

}

}
}

void* mymalloc(malloc_size)
int malloc_size;
{

void* pointer=NULL;

int error=0;

if((pointer=(void*)malloc(malloc_size))==NULL)
{ /* memory alloc. error occurred, return the error and terminate the child */
error=strlen(strcpy(
error_str, "create_file: Memory allocation error in ’create_cir’."))+1;
pipe_write2(&error, sizeof(int), 1);
pipe_write2(error_str, 1, error);
pipe_initialize2();
}

return(pointer);

53

APPENDIX F

OSA90/hope INPUT FILE FOR THE LC TRANSFORMER EXAMPLE

#define DUMPON 1
#define DUMPOFF 0
Expression

char cir_contents[]=
" dedededededede e dede ek

* TRANSFORMER SIMULATION *
Fedededededdededede R ARk hh kR R AR R AR

VIN 10AC1
RIN 123
Cé 201
L5 231
C4 301
L3 341
c2 401
L1 4 51
ROUT 501

.PRINT AC VR(2) VI(2)

.AC LIN 21 0.079578H 0.187644H
.END/EXT

.VAR L1

.VAR L3

.VAR L5

.VAR C2

.VAR C4

.VAR C6

.END

’

char cir_name[]="1lc6.cir";
char out_name[]="1lc6.out";
char ac[]=".ac";

Datapipe: CcoM FILE = "create_file"
TIMEOUT=0
N_INPUT = 2 INPUT = (cir_name, cir_ contents)
N_OUTPUT = 1 OUTPUT = (char in_name([8]);

input[1:6]=[?1?, ?1?, ?1?, ?1?, ?1?, ?717];

DataPipe: CoM FILE = "Spicepipe"
TIMEOUT=0
N_INPUT = 10 INPUT = (in_name, DUMPOFF, out_name, ac, input)
N_OUTPUT = 42 OUTPUT = (Vinr([1:21], Vini[1:21]);

! Now we will calculate the reflection coefficient IRefI.
! from Ref=2*Vin/Vg-1 we have
Refr[1:21]=Vinr+Vinr-1;
Refi[1:21]=Vini+Vini;
Refm[1:21]=sqrt(Refr*Refr+Refi*Refi);
i=0;
st=(0.187644-0.079578)/20;
fr=0.079578+(i-1)*st;
End

54

Sweep
Title = "Refm" i: from 1 to 21 step 1 fr Refm[i]
{PARAMETRIC TITLE=""
X TITLE="frequency (Hz)"
Y_TITLE="|S11|" Ymin=0 Ymax=0.7

X=fr
Y=Refm[i]
NXTICKS=5 NYTICKS=7};
End
Specification |
Refm=0; '
End

55

APPENDIX G

OSA90/hope INPUT FILE FOR THE MOS INVERTER EXAMPLE

#define DUMPON
#define DUMPOFF
#define UP
#fdefine DOWN
#define Vmin
#define Vmax
#define TIMESTEP
Expression

char cir_contents[] =
1 e dede e e Ve v o o e e e e e e e e o

* MOS inverter ¥

e e e e e v v e b e ke e e ke e e ok
* SUBCIRCUIT DEFINITION, Nodes: Input, Output, VCC

.SUBCKT NOTGATE 1 2 3

M INVER 2 1 0 0 NE W=10U L=7U AD=100P PD=35U AS=100P PS=40U

M LOAD 3 2 2 0 ND W=5U L=12U AD=100P PD=40U AS=25P PS=15U
.MODEL NE NMOS (VTO=1.0 KP=20U GAMMA=0.37 NSUB=5E14 TOX=0.1U XJ=1.0U

oOuULWOoORr oo
w

N

+ LD=1.0U CJ=70U CJSW=220P CGSO=345P CGDO=345P)
.MODEL ND NMOS (VTO=-3.0 KP=20U GAMMA=0.37 NSUB=5E14 TOX=0.1lU XJ=1.0U
+ LD=1.0U CJ=70U CJSW=220P CGSO=345P CGDO=345P)

.ENDS NOTGATE
* NOMINAL CIRCUIT DEFINITION
VDD 4 0 5

VIN 1 0 PULSE(0.3 5 1N 3N 3N 8N 22N)
XNOT1 1 2 4 NOTGATE

XNOT2 2 3 4 NOTGATE

.PRINT TRAN V(2) V(1)
.OPTIONS LIMPTS=5001

.TRAN 0.2NS 20NS ON
.END/EXT
* INVER transistor variables of inverter I
.VAR XNOT1.M_ INVER'W

.VAR XNOT1.M INVER'L

.VAR XNOT1.M_INVER’AD

.VAR XNOT1.M_INVER'’PD

.VAR XNOT1.M INVER’AS

.VAR XNOT1.M INVER’PS

.VAR XNOT1.NE’VTO

.VAR XNOT1.NE’KP

.VAR XNOT1.NE’GAMMA

.VAR XNOT1.NE’NSUB

.VAR XNOT1.NE’TOX

.VAR XNOT1.NE’XJ

.VAR XNOT1.NE’LD

.VAR XNOT1.NE’CJ

.VAR XNOT1.NE’CJSW

. VAR XNOT1.NE’CGSO |
. VAR XNOT1.NE’CGDO
* LOAD transistor variables of inverter I
.VAR XNOT1.M LOAD’W

.VAR XNOT1.M LOAD’L

. VAR XNOT1.M_LOAD’AS

.VAR XNOT1.M_LOAD’PS

.VAR XNOT1.ND’VTO

.VAR XNOT1.ND’KP

.VAR XNOT1.ND’GAMMA

.VAR XNOT1.ND’NSUB

. VAR XNOT1.ND’TOX

.VAR XNOT1.ND’XJ

.VAR XNOT1.ND’LD

.VAR XNOT1.ND’CJ

.VAR XNOT1.ND’CJSW

56

. VAR XNOT1.ND’CGSO
. VAR XNOT1.ND’CGDO
.END

’

char cir_name[]="mos_inv.cir";
Datapipe: coM FILE = "create_file"
N_INPUT = 2 INPUT = (cir_name, cir_contents)
N_OUTPUT = 1 OUTPUT = (char in_name[12]);
XNOT1_M INVER W = 10e-6 {Normal Sigma=2%};
XNOT1_M INVER L = 7e-6 {Normal Sigma=2%};
XNOT1_NE_VTO = 1.0 {Normal Sigma=12%Z};
XNOT1_NE_KP = 20e-6 {Normal Sigma=6%};
XNOT1_NE NSUB = Sel4;
XNOT1_NE_TOX = 0.1le-6;
XNOT1_NE XJ = le-6;
XNOT1_NE_LD = le-6;
XNOT1 M LOAD W = ?5e-67 {Normal Sigma=2%Z};
XNOT1 M LOAD L = 12e-6 {Normal Sigma=2%7};
XNOT1_ND_VTO =-3.0 {Normal Sigma=12%Z};
XNOT1_ND_KP = 20e-6 {Normal Sigma=6%};
XNOT1_ND_NSUB = Sel4;
XNOT1_ND_TOX = 0.le-6;
XNOT1_ND_XJ = le-6;
XNOT1_ND_LD = le-6;
XNOT1_NE PB = 0.0259*log(XNOT1_NE_NSUB/2.1);
XNOT1_ND_PB = 0.0259*log(XNOT1_ND_NSUB/2.1);
XNOT1_NE_CJ = sqrt(1l.6e-19%11.7%8.85e-6*XNOT1_NE NSUB/2/XNOT1 NE_FB);
XNOT1_ND_CJ = sqrt(l.6e-19%11.7%8.85e-6*XNOT1_ND_NSUB/2/XNOT1_ND_PB);

XNOT1_NE_CJSW = XNOT1_NE_XJ*sqrt(10)*XNOT1 _NE_CJ;

XNOT1_ND_CJSW = XNOT1_ND_XJ*sqrt(10)*XNOT1 _ND_CJ;

XNOT1_NE_Cox = 3.97*8.85e-12/XNOT1_NE TOX;

XNOT1_ND_Cox = 3.97*8.85e-12/XNOT1_ND_TOX;

XNOT1_NE_CGSO = XNOT1_NE Cox*XNOT1_NE_LD;

XNOT1_NE_CGDO = XNOT1 NE_CGSO;

XNOT1_ND_CGSO = XNOT1_ND_Cox*XNOT1_ND_LD;

XNOT1_ND_CGDO = XNOT1_ND_CGSO;

XNOT1_NE_GAMMA= sqrt(2%11.7*8.85e-6%1.6e-19*XNOT1_NE_NSUB)/XNOT1_NE_Cox;
XNOT1_ND_GAMMA= sqrt(2%11.7+%8.85e-6%1.6e-19*XNOT1_ND_NSUB)/XNOT1_ND_Cox;

XNOT1_M_INVER_AD=10e-6+XNOT1 M INVER W;
XNOT1_M_INVER_PD=20e-6+2*XNOT1_M_INVER_W-XNOT1 M LOAD W;
XNOT1_M_INVER_AS=XNOT1 M INVER_AD;
XNOT1_M_INVER_PS=20e-6+2*XNOT1_M_INVER W;
XNOT1_M_LOAD_AS =5e-6*XNOT1 M LOAD W;

XNOT1_M LOAD_PS =10e-6+2*XNOT1_M LOAD W;

char tr[l=".tr";

char spp_out[]="mos_inv.out";

input[1:32]=[XNOT1_M_INVER W XNOT1 M INVER L XNOT1 M INVER_AD XNOT1_M INVER_PD
XNOT1_M INVER AS XNOT1 M INVER PS
XNOT1_NE_VTO XNOT1_NE_KP XNOT1 NE_GAMMA XNOT1 NE_NSUB XNOT1 NE TOX

XNOT1_NE_XJ XNOT1_NE LD XNOT1_NE_CJ XNOT1_NE_CJSW XNOT1_NE_CGSO XNOT1 NE_CGDO

XNOT1_M LOAD_W XNOT1_M LOAD_L XNOT1 M LOAD_AS XNOT1 M LOAD_PS
XNOT1_ND_VTO XNOT1_ND_KP XNOT1 ND_GAMMA XNOT1_ND_NSUB XNOT1 _ND_TOX

XNOT1_ND_XJ XNOT1_ND_LD XNOT1_ND_CJ XNOT1_ND_CJSW XNOT1_ND_CGSO XNOT1_ND_CGDO];

DataPipe: coM FILE = "Spicepipe"
TIMEOUT=0
N_INPUT = 36 INPUT = (in_name, DUMPOFF, spp_out, tr, input)
N_OUTPUT = 202 OUTPUT = (VOUT[1:101], VIN[1:101]);

! calculate the propagation time tp

DataPipe: SIM FILE = "tp"
TIMEOUT=0
N_INPUT = 104 INPUT = (Vmin, Vmax, DOWN, VOUT)
N_OUTPUT = 2 OUTPUT = (t21, t22);

57

Vmed=(Vmax-Vmin)/2+Vmin;! 2.65, for Vmax=5 and Vmin=0.3;
t201=t21+1; t202=if(t22>0)(t22+1) else (101); t221=t202-1;
tp21h=TIMESTEP* (Vmed-VOUT[t21])/(VOUT[t21]-VOUT[t201])+t21*TIMESTEP - 2.5;
tp2hl1=TIMESTEP* (Vmed-VOUT[t221])/(VOUT[t221]-VOUT[t202])+t221*TIMESTEP - 13.5;
tp=(tp2hl+tp21lh)/2;
i=0;
time=0.2%(i-1);
End

Sweep
i: from 1 to 101 step 1 time VOUT[i] VIN[i]
{PARAMETRIC TITLE=""
X TITLE="time (ns)" Xmin=0 Xmax=20
Y_TITLE="VOUT, VIN" ¥min=0 Ymax=5.5
=time
Y=VOUT[i].red & VIN[i].green
NXTICKS=5 NYTICKS=11};
End

MonteCarlo
TITLE="Monte Carlo Sweep of the VOUT Output Waveform"

N_outcomes=200 i: from 1 to 101 step 1 time tp<2.5 VOUT[i];
End

58

APPENDIX H

OSA90/hope INPUT FILE FOR THE RLC CIRCUIT EXAMPLE

#define DUMPON
#define DUMPOFF
Expression
char cir_contents[]=
1 Je v v vie o v o o de v v e e v e de ke vk ke s e ol

* RLC serial circuit *
e de e de de e de Fe Fe v de e e e e e Fede dede oo

VIN 1 0 PULSE(0 1 0 0 0 19S5 20S
RIN 121

Rl 231

Cl 340.5

Ll 451

R2 501

ROUT 501

PRINT TRAN V(5)

.TRAN 0.2S 10S 0S
.OPTIONS CPTIME=6000
.END/EXT

.VAR L1

.VAR C1

.VAR R1

.VAR R2

.END

L1=1 {Normal Sigma=5%Z};
C1=70.57?
R1=70.5?
R2=72? {Normal Sigma=57};
char cir_name[]l="rlc.cir";
char spp_out[]="rlc.out";
char tr[]=".tr";
Datapipe: CoM
TIMEOUT=0
N_INPUT = 2
N_OUTPUT = 1
input[1:4]=[L1 C1 R1 R2];
DataPipe: coM
TIMEOUT=0
N_INPUT = 8
N_OUTPUT=51
t=1;
time[1:51]=[0.0 O.
3
6.
9
S[1:51]1=3/20%exp(
E[1:51])=S-F;
Error=E[t];
End

Model
RES 1 2 R=R1;
CAP 2 3 C=C1;
IND 3 4 L=L1;
RES 4 0 R=R2;
PORT 1 0 NAME=Vinput V=1 R=1;
PORT 4 0 NAME=Voutput R=1;
CIRCUIT;
End

)

{Normal Sigma=5%};
{Normal Sigma=5%7};

FILE = "create_file"

INPUT = (cir_name, cir_contents)
OUTPUT = (char in name[8]);

FILE = "Spicepipe"

INPUT = (in_name, DUMPOFF, spp_out, tr, input)
OUTPUT = (F[1:51]);

ocoo
N NN
N
S
N
o oo
NS
®® o
o ;N
coo
® U N
®uN
PSS
® U N
o oo
®wuN
® o ®
© o w
ocoo

™ o o
BN SR

1.
4,
7.
1;

0.0

xp(-5*%time)-1/65%exp(-2*time)* (3*sin(2*time)+11*cos(2*%time));

59

Sweep
Title="Function, Specification, Error"
t: from 1 to 51 step 1 time[t] S[t] F[t] E[t];
AC: Title="Gain" freq: from 0.1 to 0.4 n=10 INSL;
End

Specification
E< 0.01 E>-0.01;
AC: freq: from 0.1 to 0.4 n=10 INSL<20 w=10;

End
MonteCarlo
N_outcomes=200 t: from 1 to 51 step 1 Error<0.01 Error>-0.01 F[t];
AC: freq: from 0.1 to 0.4 n=10 INSL<20;
End

60

