ROBUSTIZING CIRCUIT OPTIMIZATION
USING HUBER FUNCTIONS

J.W. Bandler, S.H. Chen, R.M. Biernacki
K. Madsen, L. Gao and H. Yu

SOS-92-8-R

November 1992

© J.W. Bandler, S.H. Chen, R.M. Biernacki, K. Madsen, L. Gao and H. Yu 1992

No part of this document may be copied, translated, transcribed or entered in any form into any
machine without written permission. Address enquiries in this regard to Dr. J.W. Bandler.
Excerpts may be quoted for scholarly purposes with full acknowledgement of source. This
document may not be lent or circulated without this title page and its original cover.



ROBUSTIZING CIRCUIT OPTIMIZATION USING HUBER FUNCTIONS

J.W. Bandler’, S.H. Chen", R.M. Biernacki’, K. Madsen"", G. Li"*"* and H. Yu'

Optimization Systems Associates Inc.
P.O. Box 8083, Dundas, Ontario, Canada L9H 5E7

Tel 416 628 8228
Fax 416 628 8225

Abstract
We introduce a novel approach to "robustizing" circuit optimization using Huber functions:
both two-sided and one-sided. We compare Huber optimization with £, £, and minimax methods
in the presence of faults, large and small measurement errors, bad starting points and statistical
uncertainties. We demonstrate FET statistical modeling, multiplexer optimization, analog fault
location and data fitting. The Huber concept, with its simplicity and far-reaching applicability,
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INTRODUCTION

Engineering designers are often concerned with the robustness of numerical optimization
techniques, and rightly so, knowing that engineering data is, with few exceptions, contaminated by
model/measurement/statistical errors.

The classical least-squares method is well known for its vulnerability to gross errors: a few
wild data points can alter the least-squares solution significantly. The £, method is robust against
gross errors [1,2]. We will show, however, that when the data contains many small variations, the
¢, solution can become undesirably biased.

We introduce, to microwave circuit CAD, the Huber concept [3,4]. The Huber optimization
is more robust than £, w.r.t. large errors, and smoother, less biased than £;,. We demonstrate the
benefits of this novel approach in FET statistical modeling, analog fault location and data fitting.

We extend the Huber concept by introducing a "one-sided" Huber function for large-scale
optimization. For large-scale problems, the designer often attempts, by intuition, a "preliminary"
optimization by selecting a small number of dominant variables. We demonstrate, through
multiplexer optimization, that the one-sided Huber function can be more effective and efficient
than minimax in overcoming a bad starting point.

THEORY

The Huber optimization problem is defined as [3,4]
. . . m
minimize F(x) =Y, Pk(f} (x)) (1)
X j=1
where

12 ififi<k
plf) = ()

kIl - k%2 if 11> k

x is the set of variables, k is a positive constant and fj, j=1,2, .., m, are error functions.
The Huber function p is a hybrid of the £, (when f < k) and the £, (when f > k) functions.

By varying k, we can alter the fraction of error functions to be treated in the least-squares sense.
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The choice of k defines the threshold between "large" and "small" errors. If k is set to a sufficiently
large value, the optimization problem (1) becomes least squares. On the other hand, as k approaches
zero, p, will approach the £; function.

We extend the Huber concept for design optimization with upper and lower specifications
by introducing a "one-sided" Huber function. Negative errors are truncated, i.e., p, = 0 for f < 0,
because the corresponding design specification is satisfied.

Our exposition utilizes a dedicated and efficient Huber algorithm [4].

COMPARISON OF ¢,, £, AND HUBER METHODS IN DATA FITTING
We consider the approximation of /¢ by a rational function for 0 < ¢ < 1 [2]. Large errors

are deliberately introduced at 5 of the sample points and small variations to the remaining data.
The ¢,, £, and Huber approximations are shown in Fig. 1. Fig. 2 shows an enlarged portion for
a clearer view of the details.

As expected, the £, solution suffers significantly from the presence of gross errors. The
¢, solution, according to the optimality condition, is dictated by a subset of residual functions
which have zero values at the solution. In a sense, all the nonzero residuals are treated as large
errors. Such a biased ¢, solution, as dramatized in our example, is undesirable if we wish to model
the small variations in the data.

The Huber solution provides a flexible combination of the robustness of the ¢, and the
unbiasedness of the £,. In fact, the Huber solution is equivalent to an ¢, solution with the gross
errors reduced to the threshold value k.

HUBER ESTIMATOR FOR STATISTICAL MODELING OF DEVICES

We use the Huber function as an automated robust estimator for FET statistical modeling.
Model parameters are extracted from the measurements of 80 FETs, and then postprocessed to
estimate the parameter statistics.

Fig. 3 shows the run chart of the extracted values of the time-delay 7. Most of the values

are between 2ps - 2.5ps, but there are a few abnormal values due to faulty devices and/or gross




measurement errors. In our earlier work [5] using the £, estimator, the abnormal data sets were
manually excluded from the statistical modeling process.

To estimate the mean of a parameter, we define

fj()=¢_¢j9 j=l’2’"-3N (3)
where ¢j is the extracted parameter value for the jth device and N is the total number of devices.

The threshold value k for the Huber function is chosen according to the normal spread of the
parameter values (e.g., we chose k = 0.25 for 7).

We also define
L) =V, - (¢ - $)2, j=1,2.,N 4)
where V¢ denotes the estimated variance from which we can calculate the standard deviation Oy

Table I lists the £, and Huber estimates of the statistics of a selected number of model
parameters. We also list the results obtained using £, after the abnormal data sets are manually
excluded. In comparison, the Huber estimator does not require manual manipulation of the data
and is clearly more appropriate when there are data points which cannot be clearly classified as
normal or abnormal.

APPLICATION TO ANALOG FAULT LOCATION

Analog fault location [1,6,7] can be formulated as a Huber optimization:

n+K
minimize pi(f: (%))
x ,g ki (5)
where
fix) = Axi/xios i=12,..,n,
. (6)
fn+1'(x) = ﬁi(Vic - Vim), i=1, 2, ey K,

where x = [x; x, ... x,]T is a vector of circuit parameters, x° represents the nominal values, and
Ax = x - x° represents the deviations from the nominal. V", ..., V" are K measurements (such

as time-domain voltages and split real and imaginary parts of complex frequency-domain voltages).



Vi, ..., V¢ are the calculated circuit responses. B;, i = 1, 2, ..., K, are appropriate multipliers.

Consider the resistive mesh network shown in Fig. 4 [1,6]. The nominal parameter values
are G; = 1.0 with tolerances ¢; = +0.05, i = 1, 2, ..., 20. Nodes 4, 5, 8 and 9 are assumed to be
internal and inaccessible for measurement.

Two faults are assumed, namely G, and G,g. Table II compares the results from the ¢, and
Huber optimizations utilizing voltage measurements under a single excitation applied to node 1.

We tested this example for 4 other different starting points. The Huber method correctly
located the faults in all the cases. The £, method was successful in 3 of the cases, but failed in one
of the cases (trapped in a different local minimum).

ONE-SIDED HUBER OPTIMIZATION FOR CIRCUIT DESIGN

In a large-scale design problem, we often wish to optimize a small number of dominant
variables in order to obtain a good starting point for the full-scale optimization.

Consider a 5-channel 12 GHz waveguide manifold multiplexer [8]. The responses before
optimization are shown in Fig. 5. From a total of 75 optimizable variables, we first select 10
dominant variables including spacings and the channel input transformer ratios. The minimax
solution with these variables is shown in Fig. 6 and the one-sided Huber solution is shown in Fig.
7. The worst-case errors in these two figures are similar. Since the worst-case errors cannot be
further reduced with only 10 variables, the minimax optimizer sees no point in spending effort
elsewhere. Using the one-sided Huber function, however, we were able to obtain a good starting
point for the subsequent full-scale minimax optimization which results in the multiplexer responses
shown in Fig. 8.

CONCLUSIONS

We have introduced the concept and some applications of the Huber method to microwave
circuit CAD. This novel concept is consistent with practical engineering intuition and will have
a far-reaching and profound impact on modeling, design, fault diagnosis and statistical processing
of circuits and devices. We have presented strong evidence in a number of application areas, and

without doubt we will find the Huber optimization of significant benefit in other areas as well.
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TABLE 1
ESTIMATED STATISTICS OF SELECTED FET PARAMETERS

Parameter b (&) ¢ (Huber) ¢ (&) A o4(Huber) 0,
L(nH) 0.04387 0.03464 0.03429 94.6% 21.8% 17.4%
Gps(1/KQ) 1.840 1.820 1.839 28.6% 6.3% 4.9%
Ipg(mA) 47.36 47.53 47.85 14.0% 12.7% 11.3%
7(ps) 2.018 2.154 2.187 26.3% 5.8% 3.4%
C4(PF) 0.3618 0.3658 0.3696 8.2% 4.6% 3.5%
K, 1.2328 1.231 1.233 15.5% 10.8% 8.7%

E denotes the mean and o4 the standard deviation.
tz* denotes £, estimates after 11 abnormal data sets are manually excluded [5].

TABLE 11
FAULT LOCATION OF THE RESISTIVE MESH CIRCUIT

Percentage Deviation

Element Nominal Actual
Value Value Actual ¢ Huber
G, 1.0 0.98 -2.0 0.00 -0.11
G, 1.0 0.50 -50.0* -48.89 -47.28
Gs 1.0 1.04 4.0 0.00 -2.46
G, 1.0 0.97 -3.0 0.00 -1.18
Gg 1.0 0.95 -5.0 -2.70 -3.16
Gs 1.0 0.99 -1.0 0.00 -0.06
G, 1.0 1.02 2.0 0.00 -0.19
Gy 1.0 1.05 5.0 0.00 -0.41
G, 1.0 1.02 2.0 2.41 3.75
Gio 1.0 0.98 -2.0 0.00 0.39
Gy, 1.0 1.04 4.0 0.00 -0.37
Gia 1.0 1.01 1.0 2.73 1.32
Gis 1.0 0.99 -1.0 0.00 -0.26
G4 1.0 0.98 -2.0 0.00 -0.50
Gis 1.0 1.02 2.0 0.00 -0.05
Gis 1.0 0.96 -4.0 -3.36 -2.67
Gy 1.0 1.02 2.0 0.00 -0.61
Gis 1.0 0.50 -50.0* -50.09 -47.33
1o 1.0 0.98 -2.0 -1.41 -3.81
20 1.0 0.96 -4.0 -4.40 -4.72
* Faults




Function

Fig. 1 ¢, £, and Huber solutions for data fitting in the presence of errors.
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Fig. 2 An enlarged portion of Fig. 1.
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Fig. 3 Run chart of the extracted model parameter r.

Fig. 4 The resistive mesh circuit.
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Multiplexer responses after minimax optimization with 10 variables: spacings and

channel input transformer ratios.

point shown in Fig. 5.

Fig. 6

This result hardly improved upon the starting
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Fig. 7
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