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objective functions. The gradients and Hessians of the Huber objective functions are formulated. 

We contribute a dedicated, efficient algorithm for Huber optimization and show, by comparison, 

that generic optimization methods are not adequate for Huber optimization. A wide range of 
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I. INTRODUCTION 

Engineering designers are often concerned with the robustness of numerical optimization 

techniques, and rightly so, knowing that engineering data is, with few exceptions, contaminated by 

model/measurement/statistical errors. 

The classical least-squares (~) method is well known for its vulnerability to gross errors: 

a few wild data points can alter the least squares solution significantly. The l 1 method is robust 

against gross errors [1,2]. We will show, however, that when the data contains many small errors 

(such as statistical variations), the l 1 solution can be undesirably biased toward a subset of the data 

points. This indicates that l 1 is not suitable, in general, as a statistical estimator. 

Neither the ~ nor the l 1 method has flexible discriminatory power to recognize and treat 

differently large (catastrophic) errors and small (soft) errors. We introduce the Huber function [3-

5], which appears to be a hybrid of the t 1 and ~ measures. Compared with ~. the Huber solution 

is more robust w.r.t. large errors. Compared with l 1, the Huber solution can provide a smoother, 

less biased estimate from data which contains many small deterministic or statistical variations. We 

demonstrate the benefits of this novel approach in FET statistical modeling, analog fault location 

and data fitting. 

We extend the Huber concept by introducing a "one-sided" Huber function for large-scale 

optimization. For large-scale problems, systematic decomposition techniques have been proposed 

(e.g., [6, 7]) to reduce computational time and prevent potential convergence problems. In practice, 

the designer often attempts, by intuition, a "preliminary" optimization with a small number of 

dominant variables. The full-scale optimization is performed if and when a reasonably good point 

is obtained. 

With a reduced number of variables, the optimizer may not be able to reduce all the error 

functions at the same time. For instance, the specification may be violated more severely at some 

sample points (such as frequencies) than at the others. In such situations, the minimax method is 

preoccupied with the worst-case errors and therefore becomes ineffective or inefficient. We 

demonstrate, through microwave multiplexer optimization, that the one-sided Huber function can 
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be more effective and efficient than minimax in overcoming a bad starting point. 

We present a dedicated, efficient, gradient-based algorithm for Huber optimization and 

show, by comparison, that generic optimization methods, such as quasi-Newton, conjugate gradient 

and simplex algorithms, are not adequate when directly applied to minimizing the Huber objective 

functions. The gradients and Hessians of the Huber objective functions are derived and their 

significance is discussed. 

II. THEORETICAL FORMULATION OF HUBER FUNCTIONS 

The Huber optimization problem is defined as [3,4] 

m 

minimize F(x) ~ E Pi.I; (x)) 
X j=l 

where x = [x1 x2 ••• xnf is the set of variables and Pk is the Huber function defined as 

if 1/l s k 

if 1/l > k 

where k is a positive constant and fi• j = l, 2, ...• m, are error functions. 

(I) 

(2) 

The Huber function Pk is a hybrid of the least-squares (~) (when 1/l s k) and the t1 (when 

1/l > k) functions. As illustrated in Figs. l and 2, the definition of Pk ensures a smooth transition 

between ~ and l 1 at 1/l = k. This means that the first derivative of Pk w.r.t. f is continuous. 

The l 1 is robust against gross errors in the data [1,2]. Since the Huber function treats errors 

above the threshold (i.e., 1/l > k) in the l 1 sense, it is robust against those errors, i.e., the solution 

is not sensitive to those errors. The choice of k defines the threshold between "large" and "small" 

errors. By varying k, we can alter the proportion of error functions to be treated in the t1 or ~ 

sense. Huber gave a look-up table [3] from which k can be determined according to the percentage 

of gross errors in the data. If k is set to a sufficiently large value, the optimization problem (1) 

becomes least squares. On the other hand, as k approaches zero, Pk will approach the t1 function. 
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Gradient and Hessian 

To further our insight into the properties of the Huber formulation, we derive the gradients 

and Hessians of the Huber objective function as follows. 

where 

The gradient vector of the Huber objective function F w.r.t. xis given by 

m 

VF= :£v•ft • J J 
J=l 

if lfi{x)I s k 

if 1/j{x)I > k 

The structure of (3) is very similar to the gradient of ~ (least squares), which is 

m 

VF,~= EJ.· f! 
-i . J J 

J=l 

(3) 

(4) 

(5) 

(6) 

By comparing (3) with (6), we can see that vj, namely the first derivative of Pk w.r.t. fj, 

serves as a weighting factor in the Huber gradient. For lf11 s k, vj is defined in (4) as fj, which is 

the same as in the ~ gradient given by (6). For lf11 > k, vj is held constant at the value of fj at the 

threshold. In other words, the Huber gradient can be thought of as a modified ~ gradient where 

the gross errors are reduced to the threshold value. 

where 

The Hessian matrix of the Huber objective function F w.r.t. x can be expressed as 

m 

H = r:,c~ If lfT + vj /j'] 
J=l 

if lfi{x)I s k 

if lfi{x)I > k 
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Comparing (7) to the ~ Hessian matrix given by 

m 

Ht = 'r'[ // //T + /; F'] 
2 !,JJJ }} 

J=l 
(10) 

we can see that vi serves as a weighting factor to reduce the contribution of gross errors in the data 

to the Hessian matrix. 

One-sided Huber Function 

We present an extension of the Huber concept by introducing the "one-sided" Huber 

optimization defined as 

m 

minimize F(x) ~ E p;(lj (x)) 
X j=l 

(11) 

where 

0 if f ~ o 

if O < f ~ k (12) 

kf - k 2/2 if f > k 

This one-sided Huber function is tailored for design optimization with upper and/or lower specifi­

cations. f is truncated when negative because the corresponding design specification is satisfied. 

The gradient vector of the one-sided Huber objective function F w.r.t. xis given by 

m 

VF= Ev-+ ft 
. J J 
J=l 

(13) 

where 

0 if /j ~ 0 

+ l:;. ap; 
lj if O < lj ~ k (14) V· =- = 

J 8/j 

k if /j > k 
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The Hessian matrix of the one-sided Huber objective function is given by 

H "' 'r' [d·+ // //T + V.·+ P']
f::f.' }} J J 

(15) 

where 

0 if lj :S 0 

+ a2p; 
I if O < lj s k d, "'- "' 

' 
at,.2 

J 

(16) 

0 if lj > k 

III. A DEDICATED ALGORITHM FOR HUBER OPTIMIZATION

We present a dedicated, efficient algorithm for minimizing the Huber objective functions, 

both one- and two-sided. We have implemented this algorithm in the CAD system OSA90/hope111 

[8] as a new standard feature and used it to generate the numerical results presented in this paper.

The numerical algorithms proposed for solving (1) are of the trust region type. We calculate 

a sequence of points {xp} intended to converge to a local minimum of F. At each iterate xp
, a

linear function Ii is used to approximate the nonlinear function /j, j = 1, 2, ... , m, and thus a

linearized model LP of F is constructed. This model is a good approximation to F within a 

specified neighbourhood NP of the pth iterate xp- This neighbourhood NP is intended to reflect the

domain in which the Ii approximations of the /j are valid. 

Assume a tentative step h is being searched at the pth iterate xp- If the search is successful,

we go on to the next iteration, i.e., x
p+l = x

p 
+ h. The problem is formulated as 

minimize L
p
(h) � L(h, x

p
) = � Pi�(h, x

p
)) 

h J� 
(17) 

where 

(18) 

subject to the constraint h e Np, where 
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(19) 

and where II· II denotes the Euclidean (least-squares) norm. 

The difference between the Hessians of the true Huber objective function (7) and this 

linearized model is the term 

m 

Ev•P' • J J 
J=l 

This error in approximating the true Hessian (7) is smaller than in the ~ case, namely, 

m 

}:/; P' . J J 
1-1 

We solve the foregoing problem (17) using an algorithm similar to that of Madsen and 

Nielsen for the linear Huber problem [9]. This method is based on the fact that LP is a combination 

of quadratic functions which are linked together in a smooth manner. Therefore, a Newton 

iteration is very efficient, and can be proved to find the solution after a finite number of steps. 

The solution to this linear problem is denoted by hr 

The trust region radius SP is updated in each iteration. We propose the usual updating 

scheme for trust region methods (e.g., see More [10]). This is based on the ratio 

r = F(xp) - F(xp + hp) 
P Lp(O) - Lp(hp) 

(20) 

i.e., the ratio between the decrease in the nonlinear function and the decrease in the local 

approximation. If 'P is close to 1 then we can afford a larger trust region in the next iteration. 

On the other hand, if 'P is too small then the trust region must be decreased. 

The new point Xp + hp is only accepted if the objective function F decreases. Otherwise, 

another tentative step is calculated from xp using a decreased trust region. 

A more precise step-by-step description of the algorithm follows. 

Step I Given x0 and S0 > 0. Let O < s2 < 1 < s3• (These constants are chosen according to our 

experience. The algorithm is not sensitive to small changes in these constants.) Set the 

iteration count p = 1. 
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Step 2 Solve the trust region linearized sub-problem to find the minimizer hp of (17) subject to 

(19). 

Step 3 If F(xp +hp)< F(xp), let Xp+l = xp + hp otherwise let Xp+l = xP" 

Step 4 If rp s 0.25, reduce the size of the trust region by letting Sp+l = Sps2; or if rp ~ 0.15, 

increase the size of the trust region by letting Sp+l = Sps8; otherwise keep the trust region 

size unchanged by letting Sp+1 = SP" 

Step 5 If the convergence criteria are satisfied, stop; otherwise update the iteration count by letting 

p = p + 1 and repeat from Step 2. 

It has been proved in [4] that this algorithm obeys the usual convergence theory for trust 

region methods. 

IV. COMPARISON OF t1, ~ AND HUBER METHODS IN DATA FITTING 

To illustrate the characteristics of the t1, ~ and Huber solutions for data fitting problems 

in the presence of large and small errors, we consider the approximation of {i by the rational 

function 

(21) 

for O s t s 1 [2]. {i is uniformly sampled at 0.02, 0.04, ... , 1. We deliberately introduced large 

errors at 5 of the sample points and small variations to the remaining data. The t1, ~ and Huber 

solutions are obtained by optimizing the coefficients x1, x2, x3 and x4 in (21) to match the sampled 

data using the respective objective functions. The results are shown in Fig. 3. A portion of Fig. 

3 is enlarged in Fig. 4 for a clearer view of the details. 

As expected, the least-squares solution suffers significantly from the presence of the 5 

erroneous points. On the other hand, the t1 solution, according to the optimality condition, is 

dictated by a subset of residual functions which have zero values at the solution. In a sense, all 

the nonzero residuals are viewed as large errors. This tendency towards a biased t1 solution, as 
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TABLE IV 
NUMBER OF FUNCTION EVALUATIONS 

REQUIRED BY DIFFERENT ALGORITHMS 

Algorithm 
1.5 

Dedicated Huber 4 
Quasi-Newton 8 
Conjugate-Gradient 13 
Simplex 26 

Starting Point 

2 

4 
5 
13 
16 

2.25 3 

4 
5 
11 
16 

4 
7 
14 
24 

The optimization problem is to estimate the mean 
of FET parameter T using the Huber objective 
function. 
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Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

Fig. 9. 

Fig. 10. 

Fig. 11. 

Fig. 12. 

Fig. 13. 

Figure Captions 

The l
1 

and la objective functions in the one-dimensional case. The l
1 

function is 
rescaled and shifted in accordance with the corresponding part in the Huber 
function. It has the form F = lklf - k2/2. The la function has the form F = /2/2. 

The Huber, l
1 

and� objective functions in the one-dimensional case. The strikes 
and dots represent the discrete points on the l

1 
and la curves, respectively, in Fig 

1. The continuous curve indicates the Huber objective function.

l
1
, la and Huber solutions for data fitting in the presence of errors. 

An enlarged portion of Fig. 3. 

Run chart of the extracted FET time-delay r.

Percentage of "small errors" for the FET time-delay r versus the threshold k.

Percentage of "small errors" for the FET gate lead inductance La versus the 
threshold k.

Percentage of "small errors" for the FET model parameter C 
10 

versus the threshold 
k. 

The resistive mesh circuit. 

Multiplexer responses at the starting point, showing the common port return loss 
(---) and the individual channel insertion losses (------). 

Multiplexer responses after the minimax optimization with 10 variables: spacings and 
channel input transformer ratios; the common port return loss (---) and the 
individual channel insertion losses (------). This result hardly improved upon the 
starting point shown in Fig. 10. 

Multiplexer responses after the one-sided Huber optimization with 10 variables: 
spacings and channel input transformer ratios; the common port return loss (---) 
and the individual channel insertion losses (------). This result is significantly 
better than the minimax solution of Fig. 11. 

Multiplexer responses after the minimax optimization with the full set of 75 
variables, showing the common port return loss (---) and the individual channel 
insertion losses (------). 
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