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Abstract

We present the foundation of a sophisticated hierarchical multidimensional response surface
modeling system for efficient yield-driven design. Our scheme dynamically integrates models and
data base updating in real optimization time. The method facilitates a seamless, smart optimization-
ready interface. It has been specially designed to handle circuits containing complex subcircuits
or components whose simulation requires significant computational effort. This approacfx makes
it possible, for the first time, to perform direct gradient-based yield optimization of circuits with
components or subcircuits simulated by an electromagnetic simulator. The efficiency and accuracy
of our technique are demonstrated by yield optimization of a three-stage microstrip transformer
and a small-signal microwave amplifier. We also perform yield sensitivity analysis for the three-

stage microstrip transformer.
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I. INTRODUCTION

A new multilevel multidimensional response surface modeling technique is presented for
effective and efficient yield-driven design. This approach makes it possible, for the first time, to
perform yield optimization as well as yield sensitivity analysis of circuits with microstrip structures
simulated by an electromagnetic (EM) simulator.

Yield-driven design is now recognized as effective, not only for massively manufactured
circuits but also to ensure first-pass success in any design where the prototype development is
lengthy and expensive. The complexity of calculations involved in yield optimization requires
special numerical techniques, e.g., [1-4]. In this paper we extend our previously published [2,4],
highly efficient quadratic interpolation technique to dynamic multilevel response surface modeling.
It has been specially designed to handle circuits containing complex subcircuits or components
whose simulation requires significant computational effort.

With the increasing availability of EM simulators [5-7] it is very tempting to include them
into performance-driven and even yield-driven circuit optimization. However, direct utilization
of EM simulation for yield optimization or sensitivity analysis might seem to be computationally
prohibitive. By constructing what we call local Q-models for each component simulated by an EM
simulator we effectively overcome the computational burden of repeated EM simulations, which
would otherwise be invoked for many statistical circuit outcomes throughout all yield optimization
iterations. To maintain high accuracy, the Q-models are automatically updated whenever an
outcome leaves the validity region of the current Q-model.

We show that when the proposed multilevel Q-modeling technique is used together with
expensive, but more accurate simulations at the component level, the results are more reliable than
those obtained from traditional analytical/empirical component simulations.

Efficiency and accuracy of our technique are demonstrated by yield optimization of a three-
stage microstrip transformer and a small-signal amplifier. For the three-stage microstrip
transformer we additionally perform yield sensitivity analyses and investigate different sets of

optimization variables. Optimization was performed within the OSA90/hope™ [8] simulation-



optimization environment with Empipe™ [9] driving em™ [7] on a Sun SPARCstation 1+. We used

the OSA90/hope one-sided ¢, optimizer [10] for yield optimization.

II. EFFICIENT Q-MODELING
Formulation of the Method
The Q-model of a generic response f(x), i.e., any response or gradient function for which

we want to build and utilize the model, is a multidimensional quadratic polynomial of the form

q(x) =ag + Y ai(x;-r) + ¥ a;;(x; -n)(x;-r) (1)
i=1 i=1
j2i

where x = [x; x, ... xn]T is the vector of generic parameters in terms of which the response is
defined, and r = [r, r, ... ,]” is a chosen reference point in the parameter space.

To build the Q-model we use n + 1 < m < 2n + 1 base points at which the function f(x) is
evaluated. The reference point r is selected as the first base point x!. The remaining m - 1 base

points are selected by perturbing one variable at a time around r, namely,
x*1=r4[0..080...07, i=1,2,..,n ()
X o r 4 10..0-8,0..01, i=1,2, ., m-@m+1) 3)

where B, is a predetermined perturbation. If a variable is perturbed twice the second perturbation
is located symmetrically w.r.t. r. We have applied the Maximally Flat Quadratic Interpolation
(MFQI) technique [2] to such a set of base points (see [3, 4] for details). MFQI builds the Q-model
by minimizing in the least-squares sense all the second-order term coefficients in (1). It is
intuitively equivalent to constructing an interpolation which has the smallest deviation from the

linear interpolation.



Implementation

Applying MFQI to the base points defined by r, (2) and (3) and reordering the variables

such that the first m - (n + 1) variables are perturbed twice yields the following formulas for the

coefficients in (1)

@y = — (x4 (xS 2f(N), i = 1,2, e m - (n 4 1)

28;

a; =0, i=m-n,...,n m#+2n+1
and
aij=0, L, j=1,2,..,mn, i#]j
The coefficients ay and g; are given by

ayg = f(r)
_ l _ n+l+i + i+1 ; B +
ai—m[ f(x )+ f(xM))], i=1,2,....m-(n+1)

and

a; = _I..[f(xi*l) -f(r)l, i=m-n, ..., n, m#2n+1

Substituting (4), (5) and (6) into (1) results in the following formula for the Q-model g(x)

m-(n+1)

(4a)

(4b)

(4¢)

(%)

(6a)

(6b)

a(x) =f(r) + 3 {UGEY) - S« (AT f ) <21 - 1) /8% - 1) /(26)

i=1
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It is important to realize that the variable number of base points m offers a trade-off

between the accuracy and cost of circuit analysis. Reducing the number of base points decreases



the number of function evaluations. However, perturbing a variable only once results in a linear
rather then quadratic interpolation w.r.t. that variable. This provides a spectrum of available
models from a linear model L-model, for m = n + 1, to a quadratic model w.r.t. all variables for
m=2n+1.

The simplicity of (7) results in high efficiency of the approach. It should be noted that the
computational effort increases only linearly with the number of variables .

To apply a gradient-based optimizer we need to provide the gradient of functions g(x)

which are actually used by the optimizer. Differentiating (7) w.r.t. x; results in

8q(x)/8x; = [(f(x™1) - f(x™14))/2 + (f(x*1) + f(x™ ) - 26(r)x; - r)/B1/B:,

i=1,.,m-(n+1) (8a)
and
3q(x)/3x; = [f(x™Y) - f(PDVB;, i=m=-n, .xn, m#2n+1 (8b)

which again is very efficient.
Linear Versus Quadratic Modeling

We use a simple example in which we approximate the response of a microstrip line
simulated as a two port network by the em [7] simulator.

We fix the width of the microstrip line and sweep its length / with a step Al. First, we
simulate the circuit at each point in the sweep. This provides us with the response reference data.
Subsequently, we use both L- and Q-models to approximate responses at every other sweep point
using adjacent sweep points as the model base points. Fig. 1 summarizes the results. It shows the
real part of §;; with / swept from 3.2 to 3.8 mm and A/ = 0.1 mm. The responses for / = 3.3, 3.5
and 3.7 mm are modeled. The L-model uses responses at two adjacent points to model the response
at the point in between, e.g., responses at points 3.2 and 3.4 mm are used to model the response
at 3.3 mm. The Q-model uses three points, e.g., responses at points 3.4, 3.6 and 3.8 mm are used

to model the response at 3.7 mm.



It can be seen that the Q-model is more accurate than the L-model.

III. MULTILEVEL SIMULATION AND MODELING
Multilevel Modeling
Multilevel modeling is depicted schematically in Fig. 2. The circuit under consideration is
divided into subcircuits, possibly in a hierarchical manner. At the lowest level we have circuit
components, e.g., a lumped capacitor or a microstrip structure.
Defining f,, f; and f, as circuit, subcircuit and component responses, respectively,. we can
express the response of the circuit as a function of the subcircuit responses which are in turn

functions of component responses. This hierarchy can be expressed formally as

fe = fFs1s fsgs s £ ) )
fsi = fsileivs Jeizs o Jeing)s 1= 1,2, s mg (10)

and
feij=feij(®), i=1,2, .1, j=1,2, ., n, (11)

where ng is the number of subcircuits and #n,; is the number of components in the ith subcircuit.
x is the vector of circuit parameters. The responses are typically frequency-domain functions of
multiport responses.

We can create a single Q-model for the overall circuit. We can also create a hierarchy of
Q-models to represent some or all of the subcircuits and components, as illustrated in Fig. 2.

If, for example, the vector of base points of a Q-model is given as [x! x? ... x'”]T, where
x! is treated as the reference point r (see (2) and (3)) and n + 1 < m < 2n + 1, with n being the

number of model parameters, then we can express the simulation results at these base points as

[AxY) f(x?) ... Ax™)] (12)
with

FOxD) = [f1(x) foxD) o FRDT, i=1,2, ... m (13)



where k is the total number of different responses. f can be a response of either circuit, subcircuit

or a component. Then

f(x) = q(x) = [g,(x) g5(%) ... ge(2)]7 (14)

The Q-models in (14) approximate f(x) for x belonging to the Q-model validity region centered
around the reference point r = x?!.
Implementation

During optimization the design center moves, and so does the set of associated statistical

outcomes. This may result in moving some or even all of the statistical outcomes out of the .validity

region of the current Q-models. In the present implementation the validity region ¥ is defined as
V= {xl (xi - ri) < ﬂ1/2, (ri - xl) < ﬂl/z}’ i= 1, 2, ey 1 (15)

where B; is the perturbation used in (2) and (3) to compute the model base points. Moving a point
outside the current ¥V requires that the Q-models in (14), and hence ¥, be appropriately updated.
We have developed an updating scheme in which the Q-models are updated automatically in real
optimization time. If a statistical outcome is outside the current ¥, a new set of base points is
generated and the responses at these base points are simulated but only if they have not been
simulated previously. Updated Q-models follow immediately from recomputing (7). Our Q-model
updating scheme is based on a data base system storing results for newly simulated base points and
providing extremely fast access to the results of already simulated base points. The data base and
Q-models are updated whenever new results become available.

If all components, subcircuits and the overall circuit were to be simulated rather than

modeled the evaluation of the circuit response f. could proceed as follows.



for the ith subcircuit, i = 1, 2, ..., ng {
for the jth component in the ith subcircuit, j = 1, 2, ..., n, {
find fe,-j by simulating the component according to (11);
)
find f; according to (10);
}
find f. according to (9);

Applying this algorithm to yield estimation or optimization may become prohibitive, especially if
an EM simulator is to be used. Replacing costly circuit simulations with model evaluations yields

an alternative algorithm.

if circuit model q, exists
evaluate q,;
else {
for the ith subcircuit, i = 1, 2, ..., ng {
if subcircuit model q; exists {
evaluate q;;
)

else {
for the jth component in the ith subcircuit, j = 1, 2, ..., n,; {
if component model Qi exists {
evaluate q,;;
}
else {
find fe,-]- by simulating the component according to(11);
)
)
find f; according to (11);
}
)
find f,. according to (9);

Here, some of the responses f,;;, f;; or f, are replaced by the corresponding models Qeij> i O 4
Discrete Parameters

The circuit, subcircuits and components may contain discrete parameters. For discrete
parameters simulation can only be performed at discrete values located on the grid, as illustrated
in Fig. 3. Normally, the reference vector r is taken as the nominal point x®. This is likely to be

off-the-grid. Similarly, the other base points x**! and x"*1*! are likely to be off -the-grid. Local



interpolation involving several simulations on the grid in the vicinity of each of the base points
must then be performed. In order to avoid these excessive simulations those base points are

modified to snap to the grid.

IV. YIELD OPTIMIZATION OF A 3-SECTION MICROSTRIP TRANSFORMER
The Transformer

A 3-section 3:1 microstrip impedance transformer is shown in Fig. 4. The source and load
impedances are 50 and 150 ohms, respectively. The design specification is set for input reflection

coefficient as
IS4l < 0.12, from 5 GHz to 15 GHz

The error functions for yield optimization are calculated for frequencies from 5 GHz to 15 GHz
with a 0.5 GHz step. The transformer is built on a 0.635 mm thick substrate with relative dielectric
constant 9.7.

For EM simulators, the circuit is typically partitioned into components which are defined
to encompass parts of the structure that can be isolated from the other parts. This can significantly
increase the efficiency of EM simulation.

The transformer was decomposed into three components, each corresponding to a different
section of the transformer. In order to account for the discontinuity effects the first two sections
were simulated as step discontinuities and the last section as a microstrip line. Each of the
components is simulated as a two-port network.

As a verification, we also simulated the entire transformer structure as one piece. The
results of simulating the circuit at the nominal minimax solution using the two methods are virtually
the same.

Yield Optimization with Six Optimization Variables
We start yield optimization from the solution of a nominal design with Wi, Wo, Wa, Ly, L,

and Ly as variables. Normal distributions with 2% standard deviations were assumed for W, W,



and W3 and 1% standard deviations for L,, L, and L;. Three component level Q-models were
established for each section of the transformer at the nominal point using em [7]. The Q-models
were updated during the optimization process whenever necessary.

Utilizing these Q-models we conducted two experiments to demonstrate multilevel
Q-modeling: (1) yield optimization using single-level (component) modeling, and (2) yield
optimization using two-level (component and circuit response) modeling. 100 statistical outcomes
were used for yield optimization. The solutions in both cases are almost identical: yield (estimated
by 250 outcomes) is increased from 71% to 86% using single-level modeling and to 85% using two-
level modeling. Fig. 5(a) illustrates the Monte Carlo sweep before optimization and Fig. 5(b) shows
the corresponding sweep after yield optimization using single-level (component) modeling. The
values of the optimization variables before and after yield optimization for both single- and two-
level modeling are given in Table I. The solution of design centering is quite close to the nominal
minimax design. This is expected, taking into account small tolerances on the parameters.

CPU time for yield optimization, performed on a Sun SPARCstation 1+, was 16 minutes for
single-level modeling and 3 minutes when multilevel Q-models were used. Elapsed time for the
em [7] simulations using single-level modeling was about 100 hours. The two-level modeling
approach exploited the data base created during single-level optimization and did not require any
additional em [7] simulations.

Yield Optimization with Three Optimization Variables

We investigated yield optimization with W;, W, and W as variables. L,, L, and L, were
not optimized. The solutions obtained using component and both component and circuit modeling
are again very similar. Yield is increased to 79% with component-level Q-models and to 78% with
component- and circuit-level Q-models. Parameter values for both solutions are listed in Table II.
The CPU time was 5 minutes for component-level and 41 seconds for two-level Q-modeling. The
previously established data base was sufficient for this experiment, so that no additional em [7]

simulations were required.
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Yield Sensitivity Analysis

We performed the yield sensitivity analysis at the centered solution obtained using six
optimization variables. Fig. 6 shows yield as a function of the specification. The specif ic;ation is
swept from 0.10 to 0.13 with 0.005 step using 250 Monte Carlo outcomes. The diagram confirms
high sensitivity of yield w.r.t. the specification. The yield varies from 0% to 100% over a very
small range of the specification.

We performed sensitivity analysis w.r.t. all six optimization variables using 250 statistical
outcomes. As expected, the yield is very sensitive to the widths of all the sections and it is
insensitive to the lengths of the sections. We also observed that the yield exhibits highest sensitivity
w.r.t the width of the third section W4. The analysis required very little additional computational

effort. See Fig. 7 for the results.

V. YIELD OPTIMIZATION OF A SMALL-SIGNAL AMPLIFIER
The specification for a typical single-stage 6-18 GHz small-signal amplifier shown in Fig.

8 is
7 dB < |S,;| < 8 dB, from 6 GHz to 18 GHz

The error functions for yield optimization are calculated at frequencies from 6 GHz to 18 GHz with
a 1 GHz step. The gate and drain circuit microstrip T-junctions and the feedback microstrip line
are built on a 10 mil thick substrate with relative dielectric constant 9.9.

First, we performed nominal minimax optimization using analytical/empirical microstrip

component models. W,

o1 Lgl, Wgz, ng of the gate circuit T-junction and Wi1s Lgys Wag, Ly, of the

drain circuit T-junction were selected as optimization variables. W;,3, Lg3’ W;3 and L,z of the
T-junctions, W and L of the feedback microstrip line, as well as the FET parameters were not

optimized. Fig. 9 shows the parameters of the T-junctions and the microstrip line. Fig. 10 shows

the small-signal FET model.
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We assumed a 0.5 mil tolerance and uniform distribution for all geometrical parameters of
the microstrip components. The statistics of the small-signal FET model were extracted from
measurement data [11] and are given in Table III. The correlations among FET model parameters
are listed in Table IV. The value of the feedback resistor was 1600 ohms.

Monte Carlo simulation with 250 outcomes performed at the nominal solution with
analytical/empirical microstrip component models reported 91% yield. To obtain a more accurate
estimate, we used component level Q-models built from em [7] simulations for the microstrip
components. The yield dropped to 55%. Figs. 11(a) and 11(b) show the Monte Carlo sweeps
obtained using analytical/empirical and our em [7] based Q-models, respectively. Close similarities
can be observed for lower frequencies, while discrepancies become larger for higher frequencies.

Utilizing the component level quadratic Q-models built from em simulations, we further
performed yield optimization of this amplifier. Yield estimated by 250 Monte Carlo simulations
was increased to 82%. The corresponding Monte Carlo sweep diagram is shown in Fig. 12. Yield

and the values of the optimization variables before and after optimization are given in Table V.

VI. CONCLUSIONS

We have presented a new multilevel quadratic modeling technique suitable for effective and
efficient yield-driven design optimization. The method dynamically integrates the Q-models and
data base generation and updating, increasing both speed of processing and accuracy of the results.
The approach is particularly useful for circuits containing complex subcircuits or components whose
simulation requires significant computational effort. The efficiency of this technique allowed us
to perform yield-driven design and to analyze yield sensitivity for circuits containing microstrip
structures accurately simulated by em [7]. We used a three-stage microstrip transformer and a
small-signal amplifier to demonstrate the efficiency and accuracy of the method. Our approach

significantly extends the microwave CAD applicability of yield optimization techniques.
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TABLE 1
MICROSTRIP PARAMETERS OF THE 3-SECTION MICROSTRIP TRANSFORMER

Parameters Nominal design Centered design Centered design
(single-level modeling) (two-level modeling)

W, 0.4294 0.4363 0.4377
W, 0.2080 0.2055 0.2053
Wa 0.07 0.07 0.07
L, 3.0 2.951 2.8875
L, 3.0 2.998 3.0007
Lg 3.0 3.046 3.058
Yield (250 outcomes) 71% 86% 85%

Dimensions of the parameters are in millimeters. 100 outcomes were used for yield optimization.

TABLE II
MICROSTRIP PARAMETERS OF THE 3-SECTION MICROSTRIP TRANSFORMER

Parameters Nominal design Centered design Centered design
(single-level modeling) (two-level modeling)

W, 0.4294 0.4339 0.4333
W, 0.2080 0.2081 0.2079
Wg 0.07 0.0Z 0.0Z
L, 3.0, 3.0, 3.0,
L, 3.0, 3.0* 3.0,
L, 3.0 3.0 3.0
Yield (250 outcomes) 71% 79% 78%

* . .
Parameters not optimized.

Dimensions of the parameters are in millimeters. 100 outcomes were used for yield optimization.
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TABLE III
EXTRACTED STATISTICAL DISTRIBUTIONS FOR THE FET PARAMETERS (FIG. 10)

FET Mean Standard FET Mean Standard
Parameter Value Deviation (%) Parameter Value Deviation (%)
Rs(0) 2.035 3 Cps(pF) 0.06978 1
Rp() 3.421 8 &m -0.0713 2
R(0) 3.754 6 7(pS) 1.9093 2
Lg(nH) 0.0811 7 Csp(pF) 0.02606 2
Gps(1/9) 0.00598 1 Cgs(pF) 0.30319 1.5

TABLE 1V
EXTRACTED FET MODEL PARAMETER CORRELATIONS

Rg Rp Rg Lg Gps  Cps &m T Cep  Cos
Rs 1 -0.3121 -0.5869 0.5244 0.1914 -0.1805 -0.4473 -0.0567 -0.0971 -0.2548
Rp -0.3121 1 0.7279 -0.7479 0.07056 0.411 0.3914 -0.047 -0.206 0.2474
Rg -0.5869 0.7279 1 -0.8461 -0.0663 0.4825 0.6637 -0.2376 -0.1262 0.1974
Lg 0.5244 -0.7479 -0.8461 1 0.0162 -0.7326 -0.5204 0.02553 0.3676 -0.3084
Gpg 0.1914 0.07056 -0.0663 0.0162 1 0.1504 -0.5752 -0.2991 -0.171 0.3561
Cps -0.1805 0.411 0.4825 -0.7326 0.1504 1 0.1765 0.0295 -0.6786 0.1946
&m -0.4473 0.3914 0.6637 -0.5204 -0.5752 0.1765 1 -0.1781 0.0863 -0.3412
T -0.0567 -0.047 -0.2376 0.02553 -0.2991 0.0295 -0.1781 1 -0.2122 0.2624
Cgp -0.0971 -0.206 -0.1262 0.3676 -0.171 -0.6786 0.0863 -0.2122 1 -0.2904
Cgs -0.2548 0.2474 0.1974 -0.3084 0.3561 0.1946 -0.3412 0.2624 -0.2904 1

15



TABLE V

MICROSTRIP PARAMETERS OF THE AMPLIFIER

Parameters Nominal design Centered design
We1 17.45 19
L, 35.54 34.53
22 9.01 8.611
L,, 39.97 33
2 3 . 3 .,
L,q 107 107
d1 8.562 7
Ly 4.668 6
Wyiq 3.926 3.628
Ly, 9.992 11 .
Wyis 3.5* 3.5*
Lys 50 59
w 2", 2"
L 10 10
Yield (250 outcomes) 55% 82%

* Parameters not optimized.

Dimensions of the parameters are in mils. 50 outcomes were
used for yield optimization. 0.5 mil tolerance and uniform

distribution were assumed for all the parameters.
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O

Fig. 3 Illustration of base points and discrete points. The large circles represent possible locations
of base points w.r.t. a grid. The solid dots indicate discrete simulation points on the grid.
If the base points are snapped to the grid, the number of simulations can be significantly
reduced.

Ly Lo Ls

o ////

Fig. 4 The 3-section 3:1 microstrip impedance transformer. The thickness and dielectric constant
of the substrate are 0.635 mm and 9.7, respectively.
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Fig. 5 Modulus of the reflection coefficient of the 3-section microstrip impedance transformer vs.
frequency: (a) before and (b) after yield optimization. Yield is increased from 71% to 86%
after optimization using single-level (component) Q-models.
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on |Sy,|. High sensitivity of yield w.r.t. the specification can be observed. Yield is
estimated with 250 Monte Carlo outcomes.
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Fig. 7 Yield sensitivity analysis for the three-stage microstrip transformer at the centered solution.

250 Monte Carlo outcomes were used for yield estimation. The results are obtained with
little additional computational effort. Yield as a function of (a) Wi, (b) Wy and (c) Ws.
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Fig. 7 (con’d) Yield as a function of (d) L, (e) L, and (f) L.
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Fig. 8 Circuit diagram of the 6-18 GHz small-signal amplifier. We use em [7] to model the two T-

junctions and the microstrip line.
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Fig. 9 Parameters of (a) the feedback microstrip line and (b) the microstrip T-junctions.
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Fig. 10 Schematic diagram of the small-signal FET model. The value of the capacitor C,is 2.0
pF. The transadmitance g is evaluated as g = gme'zf"f’, where g,. and 7 are given in Table

IIT and f is the frequency.
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Fig. 11 |S,| of the small-signal amplifier for 250 statistical outcomes at the nominal minimax
solution: (a) using analytical/empirical microstrip component models, and (b) using em [7]
based Q-models.
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Fig. 12 |S,,| of the small-signal amplifier for 250 statistical outcomes after yield optimization using
em [7] based Q-models. Yield is increased from 55% to 82%.
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