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ABSTRACT 

We present exciting applications of the Huber 
concept in circuit modeling and optimization. By 
combining the desirable properties of the £1 and l

2 

norms, the Huber function is robust against gross 
errors and smooth w.r.t. small variations in the data. 
We extend the Huber concept by introducing a one­
sided Huber function tailored to design optimization 
with upper and lower specifications. We demonstrate 
the advantages of Huber optimization in the presence 
of faults, large and small measurement errors, bad 
starting points and statistical uncertainties. Circuit 
applications include parameter identification, design 
optimization, statistical modeling, analog fault 
location and yield optimization. 

INTRODUCTION 

Realistic circuit optimization must take into account 
model/measurement/statistical errors, variations and 
uncertainties. Least-squares (£2) solutions are 
notoriously susceptible to the influence of gross 
errors: just a few "wild" data points can alter the 
results significantly. The l1 method is robust against 
gross errors (1,2]. However, it inappropriately treats 
small variations in the data. In other words, neither 
the l

1 
nor � alone is capable of providing solutions 

which are robust against large errors and flexible 
w.r.t. small variations in the data.
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The Huber function [3-5) is a hybrid of the 1.1 and �
norms. The large errors are treated in the 1.1 sense 
and the small errors are measured in terms of least 
squares. Consequently, the Huber solution can 
provide a smooth model from data which contains 
many small variations and such a model is also robust 
against gross errors. 

We extend the Huber concept by introducing a "one­
sided" Huber function for design optimization with 
upper and/or lower specifications. The minimax 
objective is often chosen to achieve an equal-ripple 
design. However, from a "bad" starting point, a 
minimax optimizer can be trapped by the initial large 
errors. We have demonstrated (5) that the one-sided 
Huber function can be employed in a "preprocessing" 
optimization to overcome such a bad starting point. 
In this paper, we compare minimax optimization of 
multicavity filters with and without one-sided Huber 
preprocessing from randomly generated starting 
points. 

Also, for the first time, we present a one-sided 
Huber approach to yield optimization of linear and 
nonlinear circuits. 

Our approach is implemented in the CAD system 
OSA90/hope™ (6) which was used to produce the 
examples in this presentation. 

THEORY 

The Huber function is defined as [3-5] 

if 1/1 s k 
{ 

/2/2
Pif) = 

kill - k 2/2 if 1/1 > k

(1) 

where k is a positive constant threshold value and / 
represents an error function. 



The sum of Pk is a hybrid of the l2 (when 1/l ~ k) and 
the l 1 (when 1/l > k) norms. The definition of Pk 
ensures a smooth transition between lz and t1 at 1/l 
= k. The threshold k separates "large" and "small" 
errors. With a sufficiently large k, Pk becomes least 
squares. As k approaches zero, Pk approaches the t1 
norm. By changing k, we can alter the proportion of 
error functions to be treated in the t1 or l2 sense. 

We define the "one-sided" Huber function as 

if I~ o 
(2) 

if I> o 

This definition is tailored to one-sided (upper/lower) 
specifications. A negative value of / indicates that 
the corresponding specification is satisfied and is 
therefore truncated. 

MUL TICA VITY FILTER PARAMETER 
IDENTIFICATION 

y-te consider a 6th-order multicavity filter [2]. The 
mput reflection coefficient is used as simulated 
measurement. Two large errors are deliberately 
introduced into this data. The task is to identify the 
parameters from the contaminated data [2]. Our 
results obtained using the Huber function (I) are 
shown in Table I for selected couplings. The 
percentage entries represent the relative differences 
between the identified parameter values and the 
actual parameter values. 

In Case A, the two large errors are the only errors 
contained in the data. The results in Table I show 
that the l 2 solution is hopelessly corrupted by the 
gross errors, whereas the t1 and Huber solutions are 
equally robust. 

In Case B, the data is truncated to the first two 
significant digits to emulate the limited accuracy of 
measurement equipment. The truncation errors are 
small relative to the two gross errors. We choose a 
threshold value commensurate with the magnitude of 
the truncation errors so that they are treated in the t2 
sense by the Huber norm. Consequently, the Huber 
solution is less affected than the corresponding l 
solution (see Table I). 

1 

In Case C, we introduced into the data small errors 
randomly generated from the uniform distribution 
[-0.0 I 0.0 I]. Again, the Huber solution is better in 
comparison with the t1 solution, as shown in Table I. 

TABLE I 
PARAMETER IDENTIFICATION FOR 

MUL TICA VITY FILTER 

Couplings M12 M45 M1a 

Actual Values 0.859956 0.526602 0.087293 
Starting Point 0.819006 0.511264 0.093863 

Case A: lz -I 1% 7.3% 278% 
l1 0.05% -0.06% -0.01% 

Huber 0.02% 0.01% -1.2% 

Case B: l1 0.51% -2.9% -14% 
Huber 0.15% -0.01% -8.3% 

Case C: l1 1.8% -4.1% -43% 
Huber 0.41% 0.04% -27% 

ANALOG FAULT LOCATION 

Consider a resistive mesh network which has been 
used to demonstrate the l 1 approach to analog fault 
location [2]. We have reported successful application 
of the Huber function to this problem [5]. In this 
paper, we present new results which take into 
account data truncation errors to represent the 
limited accuracy of measurement equipment. 

Selected parameter values of the mesh network are 
listed in Table II. Two faults were assumed, namely 
G2 and G1a· We generated simulated node voltage 
measurements at the accessible nodes. The voltages 
were then truncated to the first two significant digits. 

TABLE II 
FA ULT LOCATION OF THE RESISTIVE 

MESH CIRCUIT 

Element Percentage Deviation 
Nominal Actual 

Value Value Actual l1 Huber 

Gz 1.0 0.50 -50.0 -47.55 -54.40 
G3 1.0 1.05 5.0 -25.45 -3.68 
G10 1.0 0.95 -5.0 -20.24 -3.53 
G17 1.0 1.05 5.0 0.00 -0.81 
Gia 1.0 0.50 -50.0 -8.90 -49.97 
G19 1.0 0.95 -5.0 -25.32 -4.74 
Gzo 1.0 0.95 -5.0 -20.73 -5.98 



The nominal parameter values are used as the starting 
point for optimization. The results listed in Table II 
show that the l 1 optimization failed to isolate the 
faults. The l 1 optimization attempts to suppress as 
many parameter deviations as possible to exactly 
zero, which may lead to an incorrect solution, as 
demonstrated in this case. 

ONE-SIDED HUBER PREPROCESSING OF 
ARBITRARY STARTING POINTS 

We have exploited the potential of using one-sided 
Huber preprocessing to overcome bad starting points 
in large-scale multiplexer optimization [5]. In this 
paper, we expand our investigation by testing several 
starting points for optimization. 

For the same 6th-order multicavity filter, 30 starting 
points were generated using uniform distribution 
centered at a "good" starting point with ±30% spread 
of the parameter values. The input return loss of the 
filter at these starting points is shown in Fig. l(a). 
Clearly, some of the starting points are very bad. 

From each starting point, we performed: (l) direct 
minimax optimization and (2) one-sided Huber 
optimization (preprocessing) followed by minimax 
optimization. The optimized responses are shown in 
Figs. 2(b) and 2(c), respectively. Although one-sided 
Huber preprocessing did not guarantee convergence 
to the optimal solution from all the starting points, it 
produced more focused results. 

FET STATISTICAL MODELING 

In our approach to statistical device modeling [7] we 
first extract model parameters for individual devices 
from device measurements and then postprocess the 
sample of model parameters to estimate the statistics 
(means, standard deviations and correlations). At the 
postprocessing stage we normally apply least-squares 
estimators using the error functions lj (</>) = 1 - </>j 

to estimate mean values, or lj(~) = v1 - (</>j -1)2 

to estimate standard deviations. </>j is the extracted 
value of a parameter of the jth device, j = l, 2, ... , N 
and N is the total number of devices. ~ denotes the 
estimated variance from which we can calculate the 
standard deviation o 1 . 

The Huber function (I) can be used as an automatic 
robust statistical estimator in place of least-squares 
estimators. If the sample of device measurements 
contains some wild points (e.g., due to faulty devices) 
they will severely degrade the least-squares estimates. 
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Figure I 

In our earlier work [7] using the l 2 estimator, the 
wild points had to be manually excluded. Applying 
Huber estimators to the same data [5] we obtained 
similar results but without excluding any points. 



ONE-SIDED HUBER FORMULATION 

FOR YIELD OPTIMIZATION 

In Monte Carlo analysis, we consider a number of 
statistical outcomes of circuit parameters denoted by 
if/. Following the generalized l

p 
centering approach 

[I), for each. outcome we create a generalized l
p 

function v(4l) which has a positive value if the 
outcome violates the design specifications or a zero 
or negative value if the specifications are satisfied. 

In our earlier work [1,8], we have formulated yield 
optimization as a one-sided l

1 
problem. Here, we 

formulate yield optimization as a one-sided Huber 
problem in which the objective function is defined as 

N 

U(tf,0) = :E p;(a; v(4>i)) (3) 

i=l 

where ;0 represents the nominal circuit parameters to
be centered, a; is a positive multiplier associated with 
the ith outcome, N the total number of outcomes and p; 
the one-sided Huber function defined in (2). 

We considered a linear LC filter [9]. The one-sided 
l

1 method needed 160 CPU seconds (11 iterations) on 
a Sun SPARCstation 10 while the one-sided Huber 
yield optimization with k=0.2 finished in 123 CPU 
seconds (9 iterations). Both produced 75% yield. 

We also considered a nonlinear frequency doubler 
(10]. We assumed uniform tolerances for the linear 
matching subcircuits and normal distributions (with 
correlations) for the intrinsic FET parameters. At 
the nominal design (before yield optimization) yield 
was 28%. The centered designs were obtained after 
17 iterations and 337 CPU seconds using one-sided 
l

1 
centering, and after 29 iterations and 574 CPU 

seconds using one-sided Huber technique, both on a 
Sun SPARCstation 10. The optimized yield values 
were 76% and 77%, respectively. Thus, the new one­
sided Huber approach proved to be a competitive 
alternative to the one-sided l

1 
centering approach. 

CONCLUSIONS 

We have presented exciting developments in applying 
a novel Huber approach to parameter identification, 
preprocessing of arbitrary starting points, statistical 
modeling, analog fault location and design centering. 
Compared with l

1
, l2 

and minimax techniques, the 
Huber approach has demonstrated robustness and 
consistency in the presence of large and small errors, 
deterministic and statistical variations, which are 
critical considerations for practical CAD in an 
engineering environment. 
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