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ABSTRACT

This thesis addresses robust Huber-based optimization for circuit design,
modeling and diagnosis.

Optimization problems using Huber functions are formulated. First- and
second-order sensitivities of the Huber objective functions are investigated. The
robustness of the Huber approach is explored. One-sided Huber-based optimization
is introduced for engineering design problems.

Dedicated algorithms for Huber-based optimization are reviewed. The
appropriateness and efficiency of the algorithms are demonstrated.

Robust statistical modeling is addressed. Statistical parameter extraction and
postprocessing are used to obtain the sample of models and estimate parameter
statistics. The advantage of the Huber statistical estimator is illustrated. Suitable
threshold selection is discussed.

For the first time, the analog fault isolation problem is solved by
Huber-based optimization. The effectiveness of the Huber approach is
demonstrated by both theoretical formulation and a real example.

The Huber concept is applied to large-scale design problems. The one-sided
Huber preparatory optimization is shown to be more effective than minimax method

in terms of providing a good starting point for full-scale design optimization.
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Chapter 1
INTRODUCTION

Optimization-oriented computer-aided circuit design (CAD) has been an
active area of computer applications for more than two decades (Bandler and Chen
(1988) [1]). The classic paper by Temes and Calahan in 1967 [2] was one of the
earliest to formally advocate the use of iterative optimization in circuit design.

Since its inception, computer-aided design optimization has been
experiencing significant advances made by engineers and scientists. Techniques for
efficient large-scale network simulation and optimization have been developed due
to the emergence of the VLSI era. Optimization methods have evolved from
primitive and low-dimension-oriented algorithms to sophisticated and powerful ones.

Plainly speaking, the aim of circuit optimization is to select appropriate
circuit (model) parameter values so that the circuit best satisfies the design
requirements. Closely related is the modeling problem, where parameters are to be
determined in accordance with measurements/experimental data.

Nominal design and modeling is the conventional approach adopted by many
circuit designers. It concentrates on satisfying design requirements by the responses
of a single circuit or circuit model of interest. Unfortunately, practical realization
of a nominal design is inevitably subject to fluctuation and/or deviation due to

manufacturing uncertainties, parameter tolerances and model inaccuracy, etc.



2 Chapter 1 INTRODUCTION

The focus of circuit design is shifting from improving individual circuit
responses to estimation and enhancement of yield of production by taking various
uncertainties into consideration. To be distinguished from the traditional nominal
design, the new approach is called yield/cost-driven design (Bandler and
Abdel-Malek (1977) [3], Abdel-Malek and Bandler (1980) [4,5]). The objective is
the minimization of cost, the maximization of production yield, or a combination
of both.

Circuit design problems can be considered as optimization problems at
different levels of the hierarchical simulation model (Bandler, El-Kady, Kellermann
and Zuberek [6] and Tromp [7] and [8]). Therefore, unified, integrated approaches
have been developed to attempt the problems [1], either nominal or statistical.

The classic least-squares (£,) measure (see, for example, Morrisdn [9]) has
been religiously accepted as the criterion for the matching between the simulated
responses (and/or outcomes) and the specifications. The £, approach has been
strongly advocated to overcome large errors [10,11]. Another widely advertised
method is minimax optimization (for example, Madsen, Schjaer-Jacobsen and
Yoldby (1975) [12]). These optimization objectives are generalized as ¢ objectives
(Bandler and Chen [1]).

However, the use of the £, and minimax optimization methods is
considerably limited by the presence of gross errors originating from measurements,
faulty elements and/or devices or process uncertainties, etc. The £, solution is
inherently affected by "bad data points" (Bandler, Chen, Biernacki, Madsen, Li Gao

and Yu [13]). Minimax optimization emphasizes the biggest errors and, therefore,



is least suitable for data fitting. The £, method, though robust against large errors,
is not suitable for modeling small variations in the data.

Huber (1964) [14] proposed a function which he considered is the most
robust for statistics. Ekblom and Madsen [15] and Gao Li and Madsen [16] provided
an algorithm, the Ekblom Madsen algorithm (EMA), and the corresponding
computer implementation, respectively, for robust nonlinear optimization using the
"Huber function". The work of Bandler, Chen, Biernacki, Madsen, Li Gao and Yu
[13] first introduced the robust Huber concept to the engineering field.

This thesis addresses a novel approach to "robustizing" circuit optimization
~-using Huber functions: both two-sided and one-sided [13-18]. Advantages of the
Huber functions for optimization in the presence of faults, large and small
measurement errors, bad starting points and statistical uncertainties are described.
In its context, comparisons are made with optimization using traditional ¢, £, and
minimax objective functions. The gradients and Hessians of the Huber objective
functions are formulated and compared with those in the least-squares case. We
review a dedicated, efficient algorithm for minimizing Huber objective functions
and show, by comparison, that generic optimization methods are not adequate for
Huber-based optimization. A wide range of significant applications is illustrated,
including FET statistical modeling, multiplexer optimization, analog fault location
and data fitting.

Throughout this thesis, unless otherwise indicated, the terms "Huber
optimization" and "Huber solution" refer to the optimization using the dedicated

EMA and the solutions obtained by this algorithm, respectively. When the problem
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is discussed on a more general basis, for example, when a problem is solved by
formulating the Huber penalty terms into the objective function of a generic
optimizer, it is referred to as "Huber-based optimization" or "Huber-based solution".

The robustness of the Huber-based optimization is exhibited in Chapter 2
through theoretical formulations. The gradients and Hessians of the Huber objective
functions are derived. Comparison with the gradient and Hessian of the L,
objective is made to further the insight into the properties of the Huber
formulation. The performance of Huber optimization is compared with £, and ¢,
optimization through a data fitting example with gross errors. A "one-sided" Huber
function is also formulated in this chapter for engineering design problems.

Chapter 3 gives a detailed review of the dedicated EMA. Two stages of the
algorithm, namely a trust-region method and a quasi-Newton method, are described.
Comparison is made between the trust-region method and conventional Newton
method. Switching criteria between the two stages are addressed. The dedicated
EMA is compared with generic methods in a number of numerical examples in
Chapters 3 and 4.

Chapters 4 to 6 address three application areas of circuit design and
modeling. We show, through examples, that the utilization of Huber-based
optimization is far more advantageous than traditional optimization methods in these
areas.

Robust statistical modeling is explored in Chapter 4. The applicability of
the Huber-based optimization is exposed through the description of statistical

parameter extraction and estimation. The robustness of the Huber statistical



estimator is illustrated by a MESFET example. Appropriate selection of the
threshold value is also addressed.

Analog fault diagnosis by Huber-based optimization is presented in Chapter
5. The Huber concept is integrated into the problem formulation. A resistive mesh
network example is provided to illustrate the effectiveness of the Huber method in
fault isolation, in comparison with the £, method. The impact of different starting
points for optimization is investigated.

Preprocessing of large-scale microwave multiplexer design optimization is
addressed in Chapter 6. A comparison between "one-sided" Huber optimization and
- minimax optimization is made in terms of providing a good starting point for
subsequent full-scale optimization. A 5-channel microwave multiplexer design
problem is presented. The effectiveness and efficiency of the one-sided Huber
. optimization is demonstrated.

The numerical examples demonstrated in this thesis have been prepared using
the CAE software systems OSA90/hope™ [19] and HarPE™ [20] developed by
Optimization Systems Associates, Inc., Dundas, Ontario, Canada.

We conclude this thesis in Chapter 7, with some suggestions for further
research.

In this thesis, the author contributed substantially to the following original
developments:

1. A new approach of robustizing circuit design using Huber functions.
2. Exposition of the derivative information of the Huber functions in relation to

their robustness.
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Expansion of the one-sided Huber function for design optimization with upper
and/or lower specifications.

Statistical device modeling using the Huber function as a robust estimator.
Integration of the Huber concept into the formulation of analog fault diagnosis.

Preparatory one-sided Huber optimization for large-scale design optimization.



Chapter 2
ROBUST HUBER-BASED
OPTIMIZATION —THEORETICAL
FORMULATION AND PROPERTIES

2.1 INTRODUCTION

For about three decades, robustness has been an important goal of many
mathematicians and statisticians, knowing that real-world data is inevitably degraded
by errors. As is well-known, however, the classical least squares method is unduly
sensitive to gross errors. In one of the pioneering papers, Huber (1964) [14]
proposed an alternative to replace the vulnerable least-squares estimator: the Huber
function.

The high sensitivity of the £, estimator was attributed by Dutter and Huber
(1981) [21] and Shanno and Rocke (1986) [22] to the fact that each item enters the
objective quadratically. A consequence of this is that large error functions have a
major influence on the results.

The Huber function was devised as a slower growing function. It appears
to be a hybrid of the £, and £, objective functions. As we will demonstrate later,

the Huber-based optimization inherits mixed numerical properties from both
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methods, i.e., the robustness against gross errors as well as the discriminatory power
to deal with small, statistical variations. In fact, as pointed out by Shanno and
Rocke [22], the Huber function is one of the two most commonly adopted penalty
functions for robust statistics. The other penalty function is the so-called biweight
function due to Beaton and Tukey (1974) [23].

The recent paper by Bandler, Chen, Biernacki, Madsen, Gao and Yu (1993)
[13] first introduced the robust Huber functions to circuit design engineers.
Mathematical robustness has, thereby, entered into real and complicated applications.

This chapter is devoted to providing a mathematical understanding of the
Huber-based optimization. Definitions of the Huber functions and Huber-based
optimization are given following the general formulation for circuit optimization.
Investigation of the gradients and Hessians of the Huber objective functions is made
to expose the distinctive robust property. A data fitting problem is demonstrated,
associating the abstract theory with reality. Emphasis is given to comparing the
Huber solution with £; and £, solutions. One-sided Huber-based optimization is

also formulated for design problems with upper and/or lower specifications.

2.2 THEORETICAL FORMULATION
2.2.1 General Formulation for Circuit Optimization

The following formulation is based on Bandler and Chen [1]. More detailed
illustrations of specifications and error functions can also be found in Bandler [24]

and Bandler and Rizk [25].
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The performance of an electrical system is usually expressed by circuit
outputs or responses, which are very often functions of independent variables such
as time, frequency and temperature. Circuit output or response can be
mathematically abstracted as

R = R(¢, ¥) (2-1)
where ¢ = [¢;, ¢, ... ¢,,]T is the parameter vector of the system and ¥ is the
independent variable. The superscript T in the above notation stands for vector or
matrix transposition.

Circuit design is to select appropriate values for the parameters in ¢ so that
--the circuit responses satisfy design specifications, each of which can be denoted by
S = S(¥) (2-2)
Fig. 2.1(a) depicts a scenario of one circuit response with upper and lower
_specifications. Fig. 2.2(a) illustrates a single specification case.

Error functions arise from the difference between the specifications and the
responses. In the single specification case, an error function is defined as

e($, ¥) = wiR - S| (2-3)
where w is a nonnegative weighting factor. In the case of having upper
specifications S, or lower specifications S;, error functions are defined as

ey($, ¥) = w(R - S,) (2-4)
or

e1($, ¥) = wi(S; - R) (2-5)
respectively, where w, and w, are nonnegative weighting factors. Fig. 2.1(b,c) and

Fig. 2.2(b) depict the concept of error functions. It is clearly observed that positive
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R’ Su’ SI

response R
upper specification S,
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lower specification S,

Fig. 2.1(a) Circuit response with upper and lower specifications.
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Fig. 2.1(b) Error function with respect to the lower specification.
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Fig. 2.1(c) Error function with respect to the upper specification.
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single specification §

\

response R
¥
Fig. 2.2(a) Circuit response with a single specification.
satisfaction L.
v101at101<\
U4

Fig. 2.2(b) Error function with respect to the single specification.
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error function values indicate violating the corresponding specification while
nonpositive values mean satisfaction.

For computational purposes, the circuit responses, the specifications and the
error functions have to be discretized w.r.t. the independent variable ¥. Therefore,
instead of a continuous error function e(¢, ¥), we have a set of sampled error
functions e](¢), ji=1,2, .., m, where

ed)=ed %), j=12,..,m (2-6)
In general, different weighting factors may be imposed at different sample points
of 9. Figs. 2.3 and 2.4 show the error functions discretized from the corresponding
continuous error functions in Figs. 2.1 and 2.2.

Mathematically, a circuit optimization problem can be formulated as

minimize F(x)

i @7

where F(x) is a scalar objective function, composed of error functions, x are
optimization variables, which may include the circuit parameters ¢.
Temes and Zai (1969) [26] proposed the ¢, norm of the error functions e as

a candidate for the objective function F(x) in (2-7). It has the form

m 1/p
lell, - [gue,-lp] o8)
JI

Two most well-known members of the Lp optimization family are the least

squares (4,) defined by

m 1/2
minimize F(x) & |e|, = [ _Ele,-(x)lz] (2-9)

x J=1

and the £; which solves
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eu

Fig. 2.3(a) Discretized error functions from Fig. 2.1(b).

euj

1,
[T

Fig. 2.3(b) Discretized error functions from Fig. 2.1(c).



2.2 Theoretical Formulation

TTI.IT?

Fig. 2.4.

Discretized error functions from Fig. 2.2(b).

15



16 Chapter 2 ROBUST HUBER-BASED OPTIMIZATION

m
minimize F(x) 2 |e]; = ¥ le ()l
x j=1

(2-10)

Equivalently, assuming real errors, the £, optimization problems can be
considered as solving

m
minimize F(x) & Eejz(x)

; & @-11)

It is clear that the £, method penalizes the errors quadratically. As speculated by
statisticians (see Dutter and Huber [21], Shanno and Rocke [22]), this rapidity of
growth in the penalty function is the source of failure of the £, estimation in the
presence of gross errors.

On the other hand, if the errors are penalized linearly, as in the £; case, the
estimator becomes the so-called sample median [14]: the estimator lacks the power
to discriminate among small statistical variations and depends only on the order of

the data [13].

2.2.2 The Huber Function and Huber-based Optimization

The Huber function, defined as [13-18,21,22]

pile) & «*/2 if lel < k (2-12)
* klel - k2/2  if || > k

where k is a positive constant, was devised as an intermediary between the least-
squares and the £, functions. Fig. 2.5 depicts the Huber function in comparison

with the ¢, and £, functions.
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AF

k>

Fig. 2.5(a). The ¢, and £, functions. The £, function is rescaled and shifted in
accordance with the corresponding part in the Huber function. It
has the form F = kle| - k%/2. The ¢, function has the form F = ¢%/2.
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%
x-k%2

Fig. 2.5(b). The Huber, ¢, and ¢, functions. The strikes and dots represent the
discrete points on the £, and &, curves, respectively, in Fig. 2.5(a).
The continuous curve indicates the Huber function.
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The corresponding Huber-based optimization problem is then defined as
[13,15,16,18]

minimize F(x) & ¥ pife; (x)) (2-13)
x j=t

As we can see from the figures, the errors are treated quadratically only
when they are smaller than the threshold value k ("small errors"); when an error
becomes an "outlier", the Huber function increases linearly. This linear growth for
the outliers is the key to the robustness of the Huber-based method.

This adequate treatment of errors can be interpreted in a different way. The
Huber function p, is a hybrid of the least-squares (£,) (when le| < k) and the ¢,
(when |e| > k) functions. The £, is robust against gross errors [10,11]. Since the
Huber function penalizes errors above the threshold (i.e., le| > k) in the ¢, sense, it
is robust against those errors, i.e., the solution is not sensitive to those errors. For
small errors, the £, measure is invoked to acquire the least-squares’ distinctive
modeling power.

The adjustments in the function definition of p, (e.g., constants 2, k2/2, etc.)
ensure a smooth transition between &, and ¢, at le] = k. This means that the first
derivative of p, w.r.t. e is continuous.

The constant k in (2-12) and (2-13) defines the threshold between "large"
and "small" errors. By varying k, we can alter the proportion of error functions to
be treated in the £, or £, sense. Huber gave a look-up table [17] from which k can

be determined according to the percentage of gross errors in the data.
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Moreover, as Huber [14] indicated, the traditional ¢, and ¢, approaches are
two limiting cases of (2-13): if k is set to a sufficiently large value, the optimization
problem becomes least squares. On the other hand, as k approaches zero, Pr /k will

approach the £, function.

2.3 GRADIENT INVESTIGATION

In this section, we investigate the derivatives of the Huber function (2-12)
and the gradient and Hessian of the Huber objective function (2-13) given by
Ekblom and Madsen [15]. This is because such investigation can provide a better
understanding from a mathematical point of view. Also, as we will manifest in the
next chapter, modern state-of-the-art optimization algorithms employ gradient-
based methods.

The first derivative of p, w.r.t. & is given by
e(x) if le(x) <k

if e(x) > k (2-14)
-k if ej(x) < -k

A Bplefx))
T T 9e(x)

The growth of v is bounded by k, holding constant if the point is an outlier (i.e.,
when leji > k). This boundedness was introduced in an attempt to limit the influence
of any gross errors [21]. A consequence of this, as observed by Gao Li and Madsen
[16], is that the Huber-based solution is unaffected if some of the outliers are
moved even further away.

The gradient vector of the Huber objective function F w.r.t. the optimization

variables x is given by
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m
VF =Y ve (2-15)
j=1
where
T
a a o
o & |26 %60 95 (2-16)
dx; 0x, ax,
The structure of (2-15) is very similar to the gradient of £, (least squares),
which is
m
VIQ2 = jzl:e)- e 2-17)

By comparing (2-15) with (2-17), we can see that vj serves as a weighting
factor in the Huber gradient. For lej < k, v; is defined in (2-14) as ¢;, which is the
same as in the £, gradient given by (2-17). For led > k, v is held constant at the
value of e at the threshold. In other words, the Huber gradient can be thought of
as a modified £, gradient where the gross errors are reduced to the threshold value.

The Hessian matrix of the Huber objective function F w.r.t. x can be

expressed as
m
H=Y(de e +ve) (2-18)
j=1 ‘

where

d A Podefx)) |1 if lg(x) <k

(2-19)
9e(x) 0 ifle(x)l >k
)T
er 829 (2-20)
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Compared with the £, Hessian matrix given by

m
He, = 305 &7 + ¢ (2-21)

the contribution of the gross errors is reduced. For each j in (2-18), if & is an
outlier, the first item is completely eliminated and the effect of the second item is

reduced to threshold.

2.4 A DATA FITTING EXAMPLE

To demonstrate the theoretical properties of the Huber formulation, we
present a data fitting problem in the presence of large and sm<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>