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ABSTRACT 

A novel approach to statistical modeling is presented. 
The statistical model is directly extracted by fitting the 
cumulative probability distributions (CPDs) of the model 
responses to those of the measured data. This new technique is 
based on a solid mathematical foundation and, therefore, should 
prove more reliable and robust than the existing methods. The 
approach is illustrated by statistical MESFET modeling based on 
a physics-oriented model which combines the modified 
Khatibzadeh and Trew model and the Ladbrooke model (KTL). 
The approach is compared with the established parameter 
extraction/postprocessing approach (PEP) in the context of yield 
verification. 

INTRODUCTION 

Yield analysis and optimization which take into account 
the manufacturing tolerances and model uncertainties have been 
recently addressed in microwave CAD, e.g., [l-4]. Accurate and 
reliable statistical modeling is a prerequisite for accurate yield 
analysis and optimization [I]. 

In our previous work [5], we established the parameter 
extraction/postprocessing approach (PEP) to statistical modeling. 
Optimization is applied to extract parameters of individual 
devices by fitting the simulated responses to the corresponding 
measured data. The parameter statistics, i.e., the mean values, 
standard deviations, discrete distribution functions and the 
correlation matrix, are then obtained by postprocessing the 
resulting models. That approach strongly relies on the 
uniqueness of the parameter extraction process and therefore 
the resulting statistical models may not reflect 'the actuai 
distribution of measurement data, even if the fit of the simulated 
responses to the corresponding measurements for individual 
device models is excellent. 

In this paper we propose a novel approach to statistical 
modeling. The statistical model is determined by fitting the 
cumulative probability distributions (CPDs) (6] of the model 
responses to those of the measured data. Efficient l1 
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optimization [7] is used for CPD fitting. The optimization 
variables include the mean values and standard deviations of the 
statistical parameters. Thus, the model parameter statistics are 
obtained directly instead of from postprocessing a set of 
individually extracted models. 

The new technique was applied to statistical modeling of 
a MESFET. The statistical model used is based on a physics­
oriented model which combines the modified Khatibzadeh and 
Trew model and the Ladbrooke model (KTL) [8). 

The resulting model was tested using the yield 
verification technique presented in [2]. Monte Carlo simulation 
of a broadband small-signal amplifier was performed and 
compared using the new model and the data for several different 
specifications. 

HarPE [9] and OSA90/hope [IO] were used to implement 
the new technique and to carry out the calculations presented in 
this paper. 

DEFINITION OF CPD AND MATCHING ERROR 

Given a sample of data S = [X1 X
2 

... Xnf, the measured 
CPD of S, denoted by C(x), is defined as 

,,. 
C(x) = -

II 
(1) 

where llx is the number of data points in S which are smaller 
than or equal to x. When II is adequately large C(x) provides a 
very good approximation to the theoretical probability 
distribution from which the sample was drawn. Therefore, we 
can test whether two samples of data come from the same 
probability distribution by comparing their measured CPDs. 

Consider two samples of data Sa
= [Xa1 Xaz ... Xa,, f and 

Sb = [Xbl Xb2 ... Xb11bf. We can calculate their corresponding 
CPDs Cu(x) and Cb(x) using (I). The distance between the two 
CPDs at the point x is 

(2) 

The matching error between the two CPDs can be defined as 

(3) 

Ir we merge Sa and Sb to form Sc = [Xc1 Xc2 ... Xe,. f, 
lie == "a + "

b• with all the points sorted in ascending order the 
calculation of eab becomes 

• 



flc-1 

eab = L Dab(Xci) (Xc(i + l) - Xe;) 
i • l 

(4) 

which is the absolute value of the area between the two CPDs, 
as shown in Fig. I. 

X 

Fig. I Two cumulative probability distributions and their 
matching error (shaded area). 

FORMULATION OF CPD FITTING 

FOR STATISTICAL MODELING 

Suppose that the measurement data contains 11, measured 
responses for limo manufactured outcomes. For each measured 
response we thus have the sample 

S; = [X;1 X;2 ... X;,, .... {, i = I, 2, ... , 11, (5) 

The statistical model is simulated by Monte Carlo analysis with 
"
so 

outcomes and for each simulated response corresponding to 
S; we have the sample 

(6) 

where,>= [¢>1 ¢>2 ... 9'>n ]
T is the set of optimization variables such 

# 

as the mean values and standard deviations of a normal 
distribution, the nominal values and tolerances of a uniform 
distribution. For each pair S; and R; we calculate their CPDs 
using (I), the difference between these two CPDs using (2 ), and 
finally the matching error eM) using (4). Let 

(7) 

then the optimization problem of CPD fitting for statistical 
modeling can be defined as 

minimize U(,>) � H[e(I)] 
I 

(8) 

where H[e(,>)) represents a norm of e(,>) such as the l1, � or the 
Huber norm. In our CPD fitting we have used the t1 norm, 
which can be written as 

11, 

H[e(,>)J = L I eM) I 
i•l 

(9) 
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STATISTICAL MODEL EXTRACTION 

The proposed statistical modeling technique of CPD 
fitting was applied to a sample of GaAs MESFET data which 
was obtained by aligning the Plessey wafer measurements to a 
consistent bias condition [8]. There were 35 data sets (devices) 
containing the small-signal S parameters measured at the 
frequencies from I to 21 GHz with 2 GHz step under the bias 
condition of V &S .. -0.7 V and V ds • 5 V. 

The KTL model [8] was selected for statistical modeling. 
The attractive statistical characteristics of the KTL model have 
been presented by Bandler et al. [ 2,8] using the method of 
multi­device parameter extraction and statistical postprocessing. 
That method was also used here for finding the starting 
point for optimization. 

We considered 16 statistical parameters assuming normal 
distributions. This resulted in 32 optimization variables, namely 
all mean values and standard deviations. The initial values for 
the means and standard deviations were estimated from multi­
device parameter extraction and statistical postprocessing based 
on 15 devices. The resulting correlation matrix was used to 
represent the correlations between the statistical parameters. By 
applying CPD fitting we obtained the KTL model parameter 
values listed in Table I. The CPDs of the real part of S21 , 
Re{S21), at 11 GHz from the data and from the statistical KTL 
model before and after optimization are shown in Fig. 2. The 
mean values and the standard deviations of Re{S21 ) versus 
frequency from the data and from the model before and after 
optimization are depicted in Figs. 3 and 4, respectively. From 
Fig. 2 we can see that after optimization the CPD matching 
between the data and the K TL model is significantly improved. 
The mean values and standard deviations of model responses 
after optimization are also closer to those of the data, as 
indicated in Figs. 3 and 4. 

TABLE I 
CPD OPTIMIZED KTL MODEL PARAMETERS 

Parameter Mean a(%) Parameter Mean a(%) 

L(µm) 0.4685 3.57 Cds(pF) 0.0547 1 .58 
a(µm) 0.1308 5.19 C

S"
(pF) 0.0807 5.92 

NJ,.m-3) 2.3xl0 23 3.25 Cd/PF) 0.0098 6. 22  
vso,(m/s) I0.5xl0 4 2 .27 CipF) 2.4231 4.03 
µ0(m2/Vns) 6.5x10-10 2.16 Z(µm) 300 * 

LGo(nH) 0.0396 10.9 e 1 2.9 • 

RJ,.O) 1.2867 4.3 2 Vbo(V) 0.6 • 

R,(O) 3.9119 1.91 '01(0/V2) 0.35 • 

Rf..:O) 8.1718 0.77 r0i(O) 2003 • 

LfnH) 0.0659 5.74 r0s(O) 7.0 * 

L.(nH) 0.0409 5.49 ao 1.0 • 

Gds(l/0) 3.9x10-3 1.78 

L is the gate length, a the channel thickness, Nd the doping 
density, vsa1 the saturation electron drift velocity, µ0 the low­
field mobility of GaAs, Lga the inductance from gate bond 
wires and pads, Z the gate width, e the dielectric constant and 
Vbo the zero-bias barrier potential. r01, r02, r03 and a0 

are 
fitting coefficients. Rd, R,, R

8
, Ld, L,, Gds, eds, C

ge, Cde and 
Cx are extrinsic parameters. 

u denotes standard deviation.

• Assumed fixed (non-statistical) parameters.
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Fig. 2 CPDs of Re{S21) at 11 GHz from data (---) and from 
the statistical K TL model before (-•-) and after (-) 
CPD matching. 
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Fig. 3 Mean values of Re{S21) versus frequency from data(---) 
and from the statistical K TL model before (-·-) and after 
(-) CPD matching. 
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Fig. 4 Standard deviations of Re{S21) versus frequency from 
data (---) and from the statistical KTL model before 
( -•-) and after (-) CPD matching. 

In order to compare these results with the PEP method 
we also performed statistical modeling using multi-device 
parameter extraction and postprocessing based on the same 35 
data sets. The KTL model parameter values obtained by the PEP 
method are listed in Table II. The CPDs of Re(S21) at 11 GHz 
for both models are plotted in Fig. 5 together with the 
corresponding CPDs from the data. The mean values and the 

3 

standard deviations of Re{S21 ) versus frequency are shown in 
Figs. 6 and 7, respectively. From Fig. 5 we can observe that the 
CPD matching of Re(S21) of the KTL model obtained by CPD 
fitting is better than that obtained by the PEP method. From 
Figs. 6 and 7 we see that our new approach gives better standard 
deviation match though the mean value matches of both models 
are similar. 

TABLE II 
PEP OPTIMIZED KTL MODEL PARAMETERS 

Parameter Mean a(%) Parameter Mean a(%) 

L(µm) 0.5190 4.72 C,t,(PF) 0.0486 2.84 
a(µm) 0.1584 8.20 Cge(PF) 0.0698 9.72 
N,l..m.3) 2.2xI023 4.68 Cde(PF) 0.0109 10.5 
v,0 i(m/s) I0.7xI04 2.24 C_.(pF) 3.3046 3.69 
µ0(m2/Vns) 5.9x10·10 1.89 Z(µm) 300 * 
LO0(nH) 0.0331 12.2 e 12.9 * 
RJ.,.O) 1.1190 9.43 Vbo(V) 0.6 * 
R,(O) 3.3226 2.69 ro1(0/V2) 0.35 * 
Rg(O) 6.6209 1.59 ro2(O) 2003 * 
L/nH) 0.0533 l0.4 'oiO) 7.0 * 
L,(nH) 0.0407 9.75 ao 1.0 * 
G,t,(1/ll) 3.8x10-3 2.51 

The parameter definitions are the same as in Table I. 
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Fig. 5 CPDs of Re{S21 ) at II GHz from data (---) and from 
the CPD (-) and PEP (-•-) statistical K TL models. 
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Fig. 6 Mean values of Re{S21) versus frequency from data(---) 
and from the CPD(-) and PEP(-•-) statistical KTL 
models. 
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Fig. 7 Standard deviations of Re(S21} versus frequency from 
data (---) and from the CPD (-) and PEP (-•-) 
statistical KTL models. 

YIELD VERIFICATION 

The ultimate goal of statistical modeling is to provide 
accurate statistical models for yield optimization. Therefore, the 
statistical model can be further verified by comparing the yield 
estimations by the model and data [2]. To this end we performed 
yield verification using Monte Carlo simulation. 

We considered yield optimization of a small-signal 
broadband amplifier used in [2]. The design was carried out 
using OSA90/hope (JO]. The passband of the amplifier is 8 GHz 
- 12 GHz. Three different specifications were considered. Yield 
optimization was performed using the two statistical KTL models 
(CPD and PEP). The yields predicted by Monte Carlo simulation 
from the data and from both models are listed in Tables III. We 
can see that the yields predicted by both models are in good 
agreement for every specification. 

TABLE lil 
YIELD PREDICTED BY THE KTL MODELS AND 

VERIFIED BY DAT A 

Yield Before Optimization Yield After Optimization 

CPD PEP Data CPD PEP 
Spec. (%) (%) (%) (%) (%) 

Spec. I 22 26 28.6 71 69.5 

Spec. 2 30 38.5 37.1 76.5 78.5 

Spec. 3 64.5 67.5 76.7 98.5 93.5 

Spec. I: 7.5 dB < IS211 < 8.5 dB, IS111 < 0.5, IS221 < 0.5. 

Spec. 2: 6.5 dB < IS211 < 7.5 dB, IS111 < 0.5, IS221 < 0.5.

Spec. 3: 6.0 dB < IS211 < 8.0 dB, IS111 < 0.5, IS221 < 0.5. 

Data 
(%) 

77.6 
90.9 
99.5 

200 outcomes are used for yield prediction by the statistical KTL 
model, 210 for yield verification using the device data. 
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CONCLUSIONS 

We have presented a novel approach to statistical 
modeling. The parameter mean values and standard deviations 
are directly optimized to match the cumulative probability 
distributions of the model responses to those of the data. This 
approach avoids parameter extraction of individual devices and 
therefore, is not affected by possible pitfalls of the paramete; 
extraction process. Our investigations set the stage for further 
research, which could include determining parameter correlations 
in addition to mean values and standard deviations, as well as 
possible extensions to other than normal distributions. In 
principle, the proposed method is not limited to normal 
distributions. Finally, we point out that although the PEP 
technique normally provides adequate statistical models, the new 
CPD technique is based on a solid mathematical foundation and 
therefore, should prove more reliable and robust. 

' 
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