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Abstract 

This paper presents an integrated approach to nonlinear circuit optimization. 

Electromagnetic simulations are seamlessly integrated into harmonic balance simulation and 

optimization. For the first time, complicated planar structures can be made fully optimizable 

through the parameterization process of our breakthrough Geometry Capture technique. They are 

then treated as individual elements in electromagnetic simulations and are embedded into the overall 

nonlinear circuit to be optimized. A comprehensive class B frequency doubler design demonstrates 

our approach. 
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SUMMARY 

Introduction 

In this paper we present a novel approach to nonlinear circuit design by directly integrating 

electromagnetic (EM) simulations into harmonic balance (HB) optimization. The parameterized 

microstrip subcircuit is simulated by the EM simulator. The results are returned to the HB 

simulator for complete circuit simulation and optimization. We parameterize a complicated planar 

structure as an individual element using the breakthrough "Geometry Capture" technique. This 

technique was created to make arbitrary microstrip structures fully optimizable. 

Large-signal circuit optimization with the HB technique has been significantly advanced 

during the last decade (e.g., [1-6]). The computational time is greatly reduced due to the efficiency 

of the HB simulation and the elegant sensitivity calculation [3, 4]. HB optimization using the FAST 

sensitivity technique has been applied to performance- and yield-driven designs [5, 6]. 

Conventionally, the microstrip elements are modeled by equivalent circuits, approximate 

physical models or look-up tables. The entire circuit is simulated at the circuit-level. EM 

simulators are used for generating equivalent circuits or look-up tables outside the optimization 

loop. In our recent pioneering work direct utilization of EM simulators in the optimization process 

has been limited to predefined substructures such as microstrip lines, steps and T - junctions, which 

are then connected in circuit-theoretic fashion (e.g., [7, 8]). The primary disadvantage of that 

approach is that many effects, such as the couplings between different elements, are not dealt with 

since the microstrip substructures are simulated individually. 

With the availability of powerful workstations, massively parallel systems and fast, robust, 

commercial EM simulators, circuit designers are increasingly interested in interfacing EM with 

circuit simulation (e.g., [9-11]). However, the EM simulators, whether stand-alone or incorporated 

into CAD frameworks, may not realize their full potential to the designer unless they are driven 

by optimization routines to automatically adjust the designable parameters [12). 
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Our novel approach to EM/HB optimization is demonstrated by a comprehensive class B 

frequency doubler design. OSA90/hope [13] and em [14] connected through Empipe [15] are used 

to carry out all the computations. 

Integration of EM and HB Simulation 

In general, a nonlinear circuit can be partitioned into a nonlinear subcircuit, a linear 

subcircuit and an excitation subcircuit as shown in Fig. 1. The linear subcircuit can be further 

divided into a lumped element subcircuit and a microstrip element subcircuit also shown in Fig. 

1. Let the circuit parameters be 

(1) 

where ;N are the parameters of the nonlinear subcircuit, ;LL and ;LM are the parameters of the 

lumped element subcircuit and the microstrip element subcircuit, respectively. The HB equation 

of the circuit can be written as 

(2) 

where Vis the vector of nonlinear port voltages to be solved for, I and Q the vectors of currents 

and charges entering the nonlinear ports, respectively, 0 the angular frequency matrix, 1
8 

the vector 

of equivalent excitation currents, and Y the equivalent admittance matrix of the linear subcircuit 

corresponding to the connection ports. Y is a function of frequency / and parameters of linear 

subcircuit ;LL and ;LM, which can be expressed as 

(3) 

where RE~/, ;LM) represents the EM responses. 

Once REJJ/, ;LM) is returned from the EM simulator we can obtain Y(;) from (3) and then 

solve the HB equation (2). The Newton update for solving the HB equation can be written as 

(4) 

where J(;, V(;)) is the Jacobian matrix. 
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Geometry Capture 

Automated EM optimization raises a number of challenges. We have refined interpolation 

and modeling techniques [7, 8, 10, 15-17) in order to reconcile the discrete nature of numerical EM 

solvers and the requirement of continuous variables and gradients by the optimizers. We have also 

introduced an intelligent data base to eliminate duplicate EM simulations. 

There is also the problem of geometrical parameterization. Conventional circuit theory 

based simulators assume a library of built-in elements with predefined parameters. Circuits to be 

simulated must be modeled as a set of such interconnected elements. The characteristics of each 

element can be modified parametrically by, for instance, changing a numerical entry in the netlist. 

EM simulators, on the other hand, deal directly with the layout representation of a circuit. The 

numerical values contained in their "netlist" are typically geometrical coordinates which cannot be 

related in an obvious way to designable parameters. 

An Empipe element library [l 5] was created in our earlier work. The library contains 

geometrical primitives (lines, bends, junctions, gaps, stubs, etc.) from which a subcircuit structure 

can be built. This approach gained immediate acceptance by CAD users by virtue of its familiarity 

and ease of use. Also, it minimizes the complexity of EM analysis since each time only one 

elementary geometry is analyzed. However, this approach inherently omits possible proximity 

couplings between the elements since they are connected by the circuit-level simulator. 

Furthermore, it does not accommodate structures which cannot be decomposed into library 

elements. 

To provide a tool for parameterizing arbitrary structures, we created the user-friendly 

"Geometry Capture" [15). Using a graphical layout editing tool (such as xgeom for em from Sonnet 

Software [ 14 ]), the user generates a set of geometries marking the evolution of the structure under 

consideration as the designable parameters change (Fig. 2). The resulting geometries are then 

processed by Empipe to extract the information from which a mapping between the geometrical 

coordinates and the designable parameter values is established. Fig. 3 depicts an EM optimization 
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framework in which Geometry Capture for arbitrary structures complements the Empipe library 

of typical primitives. 

Gradient-Based Direct HB and EM Optimization 

Consider a vector of circuit responses 

(5) 

which may include output voltages, currents, powers, power gains, etc. Let S be a set of design 

specifications. The objective function for a design problem can be written as 

The corresponding design optimization problem is 

minimize U(;) 
I 

(6) 

(7) 

The derivatives of U w.r.t. each design variable ¢; in ; are required to solve (7) using gradient­

based optimizers. From (6) we have 

[ ]

T au au 8Rcr 
a¢; - aRcr a¢; 

(8) 

au;aRcr depends on the form of the objective function defined by (6). aRcr/8¢; can be derived 

from (5) as 

aR 
=- + 

8¢; [aRT]T [av + [av T ]T aREM] 
av aef>; aREM aef>; (9) 

which can be evaluated by perturbation with an elegant gradient estimation technique [8]. 

The complete design optimization can be illustrated by the flowchart shown in Fig. 4. 

Simulation and Optimization of a Class B Frequency Doubler 

A class B frequency doubler is used as an example to demonstrate our new approach of 

integrated HB/EM simulation and optimization. The circuit structure, as shown in Fig. 5, follows 
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[18]. It consists of a single FET (NE71000) and a number of distributed microstrip elements 

including two radial stubs and two large bias pads. Significant couplings between the distributed 

microstrip elements exist in this circuit, e.g., the couplings between the radial stubs and the bias 

pads. The conventional approach using empirical or physical models for individual microstrip 

elements neglects these couplings and therefore may result in large response errors. In order to take 

into account these couplings the entire microstrip structure should be considered as a single element 

to be simulated and optimized. 

The design specifications are 

conversion gain ~ 3 dB 
spectral purity ~ 20 dB 

at 7 GHz and 10 dBm input power. 

We use the Curtice and Ettenberg FET model [19] to model the FET NE71000. The model 

parameters are extracted from the typical DC and S parameters [20] using HarPE [21). 

The entire microstrip structure between the two capacitors is considered as one element to 

be simulated by em [14). The results are directly returned to OSA90/hope through Empipe for HB 

simulation and optimization. Ten parameters including <l>MLI• 4>ML2• •••• <l>MLio are selected as design 

variables. The minimax optimizer of OSA90/hope is used to carry out the performance-driven 

design. 

The values of design variables before and after optimization are listed in Table I. The 

conversion gain versus input power before and after optimization is shown in Fig. 6. The source 

and output voltage waveforms before and after optimization are plotted in Fig. 7. The 3D view 

of conversion gain versus frequency and input power before and after optimization are shown in 

Fig. 8. Significant improvement of the circuit performance is obtained and all specifications are 

satisfied after optimization. 
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Conclusions 

We have presented an integrated approach to nonlinear circuit design. The importance of 

using EM simulators directly in nonlinear HB simulation and optimization has been emphasized. 

The features of our new approach have been demonstrated by optimization of a class B frequency 

doubler exploiting our user-friendly Geometry Capture technique for arbitrary structure 

parameterization. Geometry Capture provides a powerful tool for microwave engineers to 

accurately design circuits consisting of complicated structures and investigate new microstrip 

components. 
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TABLE I 

DESIGN VARIABLE VALUES 
BEFORE AND AFTER OPTIMIZATION 

Variable 

¢ML! 

¢ML2 
¢MLS 

¢Mu 

¢ML6 

¢ML6 

¢ML7 

¢ML8 
¢ML9 

¢MLIO 

Before 
Optimization 

1.5 
8.1 
3.3 
5.7 
2.4 
2.4 
1.8 
7.9 
4.2 
2.7 

All dimensions are in mm. 
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After 
Optimization 

1.494 
7.820 
3.347 
5.992 
2.550 
2.305 
1.750 
7.827 
4.242 
2.622 
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Fig. 1. Partition of a nonlinear microwave circuit for combined HB/EM simulation. 
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.---------, r ~ (Capture) ~ ( Empipe) 

L--4- l 
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Fig. 2. An illustration of Geometry Capture for parameterizing L and W. 
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Fig. 4. Flowchart of integrated EM/HB circuit design optimization. 
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Fig. 5. Circuit structure of the class B frequency doubler. 
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