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AGGRESSIVE SPACE MAPPING
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Shao Hua Chen, Member, IEEE, Ronald H. Hemmers, Student Member, IEEE, and Kaj Madsen

Abstract

We propose a significantly improved Space Mapping (SM) strategy for electromagnetic (EM)
optimization. Instead of waiting for upfront EM analyses at several base points, our new approach
aggressively exploits every available EM analysis, producing dramatic results right from the first
step. We establish a relationship between the novel SM optimization and the quasi-Newton iteration
for solving a system of nonlinear equations. Approximations to the matrix of first-order derivatives
are updated by the classical Broyden formula. A high-temperature superconducting microstrip
filter design solution emerges after fewer EM frequency sweeps than the number of designable
parameters! Furthermore, less CPU effort is required to optimize the filter than is required by one
single detailed frequency sweep. We also extend the SM concept to the parameter extraction phase,
overcoming severely misaligned responses induced by inadequate empirical models. This novel

concept should have a significant impact on parameter extraction of devices.
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I. INTRODUCTION

In our recent pioneering work [1-3], we introduced the concept of Space Mapping (SM)
optimization. The method combines the computational efficiency of empirical engineering
circuit models, accumulated and developed over many years, with the acclaimed accuracy of
electromagnetic (EM) simulators. This facilitates a highly efficient approach to attacking the
demanding EM design process.

In our original formulation of the SM algorithm, an upfront effort was needed in the EM
space simply to establish full-rank conditions leading to the initial mapping between the
optimization and EM spaces. Since such initial base points are found by simple perturbation around
the starting point in the EM space, they are unlikely to produce a substantially better design than
the starting point itself. Hence, that approach represents a time-consuming and possibly
unproductive effort.

In this paper, we present a significantly improved approach to SM. The method employs
the quasi-Newton iteration in conjunction with first-order derivative approximations updated by
the classical Broyden formula [4]. From an initial estimate of the EM solution, obtained by an
empirical or coarse-grid EM model optimization, we target each costly EM analysis directly at
achieving the best EM design. The results are then immediately utilized to improve the
approximation. Using this approach, we expect to obtain a progressively improved design after
each iteration. This procedure is based on an elegant theoretical formulation and a simple
implementational strategy.

One of the key steps in SM is the model parameter identification phase. The SM technique
relies on determining pairs of corresponding EM and empirical model points obtained by parameter
extraction optimization. Accordingly, we review the appropriate theory and techniques used in
traditional parameter extraction. In addition, we describe algorithms based on the idea of
Frequency Space Mapping (FSM) [5]. They offer a powerful means of overcoming the problems

caused by local minima and model misalignment.



Our new theory and techniques are illustrated through the design of a low-loss narrow-
bandwidth high-temperature superconducting (HTS) microstrip filter [3,5,6]. We utilize the user-
friendly OSA90/hope optimization system with the Empipe interface [7] to the Sonnet em field
simulator [8].

In Section II, we review the original SM technique. In Section III, we introduce the theory
and implementation of our new aggressive SM approach. Section IV reviews traditional parameter
extraction optimization and our new FSM algorithms. Sections V-VIII illustrate the design of the

HTS microstrip filter. Finally, Section IX contains our conclusions.

II. OVERVIEW OF THE ORIGINAL SPACE MAPPING METHOD

Let the behaviour of a system be described by models in two distinct spaces: the
optimization space, denoted by X, and the EM (or validation) space, denoted by X,,. We
represent the model parameters in these spaces by the vectors X,s and x,,, respectively. We assume
that X, and X, have the same dimensionality, i.e., X,; € IR" (X,s-space) and x,,, € R" (X,,,-space)
but, in general, they may not represent the same parameters.

The X,;-space model can be comprised of empirical models [3, 5], or an efficient coarse-
grid EM model [1,2]. Typically, the X,,-space model is a fine-grid EM model [1-3, 5] but,
ultimately, can represent actual hardware prototypes if time and resources permit. We assume that
the X ;-space model responses, denoted by R, (x,,), are much faster to calculate but less accurate
than the X, -space model responses, denoted by R, (Xo0).

In SM optimization, we wish to find a mapping, P, from the X,,-space to the X .-space,

Xos = P(Xgp) (1)

such that
R, (P(Xgp)) & Ry (Xep,)- (2)
We assume that such a mapping exists and is one-to-one within some local modeling region
encompassing our SM solution. We also assume that, based on (2), for a given X its image x,g in

(1) can be found by a suitable parameter extraction procedure, and that this process is unique.



We initially perform optimization entirely in X, to obtain the optimal design x;s, for

instance in the minimax sense, and subsequently use SM to find the mapped solution X, in X, as

Xom = P7H(X5) 3)
once the mapping (1) is established (since we assume P is one-to-one, P! exists). This scenario
is illustrated in Fig. 1. We designate X, as the SM solution instead of x;m since the mapped
solution may not be the true optimum in X,,, again for instance in the minimax sense.

The mapping is established through an iterative process. In our original work [1-3], we
obtain the initial approximation of the mapping, pO), by performing EM analyses at a preselected

set of, at least, m base points in X, around the starting point. Here, the first base point is
P (4)
followed by other points found by perturbation as
2 xW AU l03 m (5)
where m is the number of fundamental functions [1]. This is followed by parameter extraction

optimization in X, to obtain the set of corresponding base points xg) for i =1,2,..,m The

parameter extraction is carried out by the following optimization:

minimize | R (x\y - R, (x| (6)
X
for i =1, 2, ..., m where | -|| indicates a suitable norm. The additional m -1 points apart from xe(;,)

are required merely to establish full-rank conditions leading to our first approximation to the
mapping. Hence, these EM analyses represent an upfront effort before any significant
improvement over the starting point can be expected. With the high cost associated with each EM
analysis, the additional m -1 simulations represent an inefficient component of the algorithm.

At the jth iteration, both sets may be expanded to contain, in general, m; points which are
used to establish the updated mapping PU), Since the analytical form of P is not available, we use
the current approximation PU) to estimate X, in (3), ie.,

(mj-rl) -
em

PO)(x2). (7



The process continues iteratively until the termination condition

| Ros(x3) = Rom(xd ™Dy < € ®)

is satisfied, where ¢ is a small positive constant. If so, PY) is our desired P. If not, the set of

m.+1 m.+1
base points in X_, is augmented by xe(m’ ) and correspondingly, xt(”’ ) determined by (6)
. . . . - m.+1 1y -1
augments the set of base points in X,;. Upon termination, we set X, = xe(m’ - pU) (x,,) as the

SM solution. The original SM algorithm is illustrated graphically in Fig. 2.

III. AGGRESSIVE APPROACH TO SPACE MAPPING
Theory
Consider an important property of (8). When approaching the SM solution, the optimal X -
-+1)

space model response Rm(x;s) will closely match the X,,-space model response Re,,,(xg:’ ),

within some tolerance ¢. Hence, after performing an additional parameter extraction optimization

. . . m;+1 i+1 * . .
in X, the resulting point xt(,s’ ) = P(xe::’ * )) should approach x,,. Stated more precisely, as j—M,
(mj"l) *
X, — X, OT
(m;+1) .
lxos” " - x| <m as j—oM ©)

where n is a small positive constant and M is the number of iterations needed to converge to an SM
solution.

Based on this observation, we can now introduce our new approach. As in (1), we assume
that the vector of X ,-space model parameters is a nonlinear vector function, P, of the X,,,-space
model parameters (due to any inherent nonlinearity between the two models). We define our goal
by setting n to 0 in (9). Hence, we consider the set of » nonlinear equations

f(Xgn) = 0 (10)

of the form

[ (Xem) = P(Xg) = X5 | (11)

where x;s is a given vector (optimal solution in X).



Let xgn) be the jth approximation to the solution of (10) and f(” written for f(xe(m)).
Based on f(l), f(z), vees f(j) (found by parameter extraction (6) in all previous iterations), an
approximation BU) to the Jacobian matrix J(xe(,’;,)),

T
arTxl)y

J(xY)y = , (12)

0.,

is established. Since the Jacobian matrix is not available, the next iterate xg,",:'l) is found by a

quasi-Newton iteration with J(xg;,)) replaced by BU) as

xUD 2 x0), p0) (13)
where h{) solves the linear system
B AW - _f0), (14)

Thus, combining (13) and (14), the quasi-Newton iteration is
xU*D _ xU) _ gyl (15)

assuming BU) is non-singular. The next approximation BU*1) o the Jacobian matrix is found by

the classical Broyden updating formula [4] as

13+ B - 1)) - BORD)

BU+D - U, 0" (16)

PAORT0)
Incorporating (14) into (16) gives a simplified updating formula

FU+D) g (0)”
POE0)

BU+) _ gli) a7

where fU +1) js (11) evaluated at xe(,’;:l) using the parameter extraction optimization as in (6). In
our current implementation, the initial approximation B o the Jacobian matrix is set to the
identity matrix.

This new approach is significantly more efficient than our original SM algorithm. The
reason for this is that we target every valuable EM analysis for the purpose of improving our

estimate of the solution. In other words, x(”l)

em _ is generated not merely as a base point for

establishing the mapping, but to solve the nonlinear system of equations (10). Using the new

6



method, we avert from performing time-consuming and possibly unproductive EM analyses at
perturbations around the starting point (4). Instead, we begin with a straightforward initial estimate
and attempt to improve the EM design in a systematic manner free of ad hoc decisions. Our quasi-

Newton approach to SM is illustrated graphically in Fig. 3.

Implementation
We now present a straightforward implementation of our new aggressive SM algorithm. We
begin with a point, x;s 2 arg min{F(x,)}, representing the optimal design in the X;-space where F (x,)

is some appropriate objective function. Then, our algorithm proceeds as follows:

Step 0. Initialize xe(,:,) =x5, BM =1, f1 - P(xe(,i,)) - x5, j=1. stopif | f®] <n.
Step 1. Solve B AU = - 70) for AU,

Step 2. Set xg:l) = xg;,) + k),

Step 3. Evaluate P(xg;:l)) by parameter extraction.

Step 4. Compute fU*1) = pxUsy - x* 1t || 7U*) | < n, stop.

Step 5. Update BU) to BU*Y),

Step 6. Set j=j+1;g0to Step 1.

IV. MODEL PARAMETER IDENTIFICATION
Review of Traditional Parameter Extracti_on
One of the key steps of SM involves parameter extraction optimization in order to match
responses. For each X, -space point x,, we need to find a corresponding X, -space point x,.

Assuming our response of interest is a function of frequency, let
R (Xerms @) & [Rom (Xom) Rem(Fem) -+ Rem Fem) 1T (18)
represent the X, -space model response simulated at k frequency points w; for i = 1, 2, ..., kK where

Ron (Xom) & Rom(Femr 0)5 1= 1,2, 0 k. (19)

Also, let



Rog(Xo5 @) & [Rog(Xos) Rog(¥os) o Rog(X65)17 (20)
represent the X, ,-space model response where
R g5 (X55) 8 R, (x,5,w;), i=1,2,..,k. (21)
Thus, the identification problem can be formulated by minimizing a scalar objective function, H,
based on a set of k error functions given as
e(Xps, ) B [e1(Xy5) €5(Xps) - €(Xps) 1T (22)
of the form
ei(x,5) & e(x,5,w;) = Wi[Ros(Xo5) = Rem(Xem)1s  1=1,2, .. k (23)
where w; are some nonnegative weighting factors. Note, in our parameter extraction formulation x,,
and hence R,,(x,,,w) are fixed while the elements in x,; are optimized.

Thus, the parameter extraction problem is described by

minimize H(x,) (24)

Lo

where H is typically formulated as an £,-norm of the error functions [9]. One choice for H could

be the popular £,, or least-squares objective
k
2
H = Y [ei(x,)] (25)
i=1
but, we may wish to use the ¢£,-norm given by
k
H =Y |ei(x0)] (26)
i=1

which is robust against gross errors. Alternatively, we may consider the novel Huber-norm [10, 11]

k
H =Y prlei(xy)) (27)
i=1
where
e’/2 if lejl<k
pile;) & (28)

kle;| -k2/2  if lgl>k



which is robust against large errors and flexible w.r.t. small variations in the data.

As noted earlier, parameter extraction is an important step in SM. This can be a serious
challenge, especially at the starting point if the X, .-space model and X,,-space model responses
are severely misaligned. If we perform straightforward data-fitting optimization from such a
starting point using the traditional approach, the process can easily be trapped by local minima [5].

To address this issue, we explore significant enhancements to traditional parameter extraction.

A New Approach: Frequency Space Mapping (FSM)

At a given point, typically we will observe a general similarity between the responses R,
and R,, even if they are severely misaligned. With this in mind, the parameter extraction problem
can be better conditioned if we align R, and R, along the frequency axis first. Specifically, R,
is kept fixed while we adjust R, in some appropriate manner. This is accomplished by employing
a reference angular frequency w = w,, and a transformed angular frequency w,, related by

Wy = P(w). (29)
For our purposes, a suitable mapping can be as simple as frequency shift and scaling given by

Wy = OW + 6 (30)
where o represents a scaling factor and 6 an offset.

This brings us to Phase 1 of our FSM approach. We need to determine o, and §,, which
would effectively align R, and R,, in the frequency domain. This is done by holding both model
parameters x,; and X, constant and optimizing only the parameters o, and §,. This is described

by the following optimization:

minimize || R, (Xy5, 0,0 +8,) = Rep(Xgm> @) || (31)
%: %
where | -| is typically the £,, £, or Huber norm.

In Phase 2 of our FSM approach, we optimize the X -space model parameters x,; such that
R, matches R, while x,, again remains fixed. In addition, we optimize ¢ and § to obtain the

identity mapping starting from o =0, and 6 = §,. We have developed three algorithms to realize this



goal: a sequential FSM algorithm (SFSM) and two exact-penalty function algorithms (EPF), one
based on the £,-norm objective while the other is suitable for minimax optimization.
In the SFSM algorithm, we perform a sequence of optimizations in which the frequency

mapping is gradually reduced to the identity mapping while x,, is optimized at each step. Hence,

at the jth iteration of the SFSM algorithm we set both ¢(/) and §(/) and then optimize xg) such

that R, best matches R,,. This can be written as

minimize | Ryy(xY), 00w + 60)) - Rp(Xpmo @) ||, J=0,1,.., K (32)
)

where

o) = 14 (g, - 1)K -I) (33)
K
and
s0) = 5 (K-J) (34)
°TK

where K determines the number of steps in the sequence. After the sequence of optimizations,
ng ) is the solution to the parameter extraction problem since o®) =1 and §®&) = 0. It should be
clear that for larger values of K we increase the probability of success in the parameter extraction
problem at the expense of longer optimization time.

In the EPF algorithms, we need to perform only one optimization. The £;-norm version
of the EPF formulation is given by

minimize {|| Ryg(Xp5, 0w + 8) = Repp(Xgms @) ||1 +oylo-1] + a6} (35)
X,,0,6

where o, and a, are suitably large positive weighting factors. In the minimax version of the EPF

formulation [12], we have

minimize { max (U(xos,‘a, 8), U(xy,0,6) - c,-)} (36)
Xpsr @, 0, 6 1<i<4
where
U(X,5,0,8) = || Ros(Xpss 0w +8) = Reopp(Xepms @) ||, 37)

10



o-1

clo,8) = | 7D (38)
s

-(6)
and o;> 0 for i = 1, 2, 3, 4. For both EPF formulations, the values of a; are kept fixed and must
be sufficiently large to obtain the identity mapping in (30) and hence the solution to the parameter

extraction optimization.

While the frequency transformation concept is familiar to microwave engineers, particularly
filter designers, here it is defined in a novel way. Our FSM is established through an iterative

process and facilitates automated compensation for inadequate modeling. This significantly

improves robustness of the parameter extraction phase of the overall SM technique as needed in (6).

V. THE HTS FILTER
We consider the design of a four-pole quarter-wave parallel coupled-line microstrip filter,
as illustrated in Fig. 4 [3,5]. L,, L, and L, are the lengths of the parallel coupled-line sections and
S,, S, and S, are the gaps between the sections. The width W=7mil is the same for all the
sections as well as for the input and output microstrip lines. The input and output line lengths are
Ly=50mil. The thickness of the lanthanum aluminate substrate used is 20 mil and the dielectric
constant is assumed to be 23.425. The design specifications imposed on |S,,| are as follows:
IS4yl < 0.05 in the stopband (f < 3.967 GHz and f > 4.099 GHz)
IS5l > 0.95 in the passband (4.008 GHz < f < 4.058 GHz)
where f is frequency. This corresponds to a 1.25% bandwidth. L,, L,, Ls, S;, S, and Sg are
considered as design parameters. Ly and W are kept fixed.
We employ both analytical/empirical models available in OSA90/hope and a fine-grid Sonnet
em model. The HTS filter empirical model is assembled from fundamental components such as
microstrip lines, coupled lines and open stubs. The OSA90/hope empirical model and Sonnet em

model material and physical parameters are listed in Table I. They are fixed. On a Sun

11



SPARCstation 10, approximately 1 CPU hour is needed to simulate the filter at a single frequency

for an on-grid point.

V1. EMPIRICAL MODEL DESIGN OF THE HTS FILTER
For the empirical model frequency-domain design of the HTS filter, we consider the
minimization of a scalar objective function, say G, which provides a measure of the deviation of
the |S,,| filter response from the imposed design specifications. In order to formulate G we
consider error functions, g;(x,,), defined as
8i(x,) = Rog(Xp5, w;) = Sy(w;)  or  gi(xy) = S)(w;) - Rye(x,5, w;) (39)
where S,(w;) and S;(w;) are the upper and lower specifications, respectively, and R y(x,s, w;) is
the empirical model response of the filter at a given point of the designable parameters x,,. The
errors are computed at frequencies for which S, and/or S, are specified. A negative error value
indicates that the corresponding specification is satisfied. For positive error values the
corresponding specifications are violated. For filter design, we make use of the generalized
minimax objective function

G = max {g;(x,)). (40)

We started the design of the HTS filter using an OSA90/hope empirical model. The
minimax solution is listed in Table II(a). Fig. 5 shows the |S,,| and |S;,| responses after
optimization.

Next, we investigate the robustness of the empirical model nominal solution. The same
optimization variables, namely L;, L,, Lg, S;, S, and S3 as in the nominal minimax design are
selected. Again, L, and W are kept fixed. We perform a number of empirical model minimax
optimizations, each starting from a different starting point. We use 50 starting points randomly
spread around the minimax solution with a +1% deviation. Fig. 6(a) plots the |S,;| responses for
all 50 starting points. The bar chart in Fig. 6(b) depicts the Euclidian distances between the
reference minimax solution and the perturbed starting points. Fig. 7 shows the corresponding
diagrams after minimax optimizations. Figs. 7(b) and 7(c) clearly illustrate the existence of multiple

12



minimax solutions for the HTS filter. Table II(b) lists a second minimax solution. Fig. 8 compares
the |S,,| and |S,,| responses between the two solutions. The responses exhibit similarity despite the
large numerical deviation in the parameter values.

We perform EM analyses at the two minimax solutions. The em results differ significantly
from the empirical model responses, as shown in Fig. 9. However, the two em analyses exhibit
strong similarity. Our aim then, is to use SM to find a solution in the EM space which will

substantially reproduce the optimal performance predicted by the empirical model.

VII. ILLUSTRATION OF FSM

A critical step in SM is parameter extraction optimization to match the empirical model
response to the EM model response. At the starting point, the empirical and EM model responses
may be severely misaligned, as shown in Fig. 10. If we perform a straightforward ¢, optimization
from such a starting point, the extraction process can be trapped by a local minimum, as illustrated
in Figs. 11 and 12.

We apply our new FSM approach to overcome the difficulties imposed by local minima.
First, Phase 1 aligns R, and R,,, along the frequency axis by optimizing the frequency shift and
scaling parameters while holding x,; and x,, fixed, with x, = X,,,. The result is shown in Fig. 13.
Next, we initiate Phase 2 employing the SFSM algorithm setting K =15 to obtain both the identity
mapping and the optimal values of x,,. Fig. 14 depicts the resulting response match using the
SFSM algorithm. Fig. 15 compares the |S,,| match between the straightforward £; optimization and

the SFSM algorithm.

VIII. AGGRESSIVE SM OPTIMIZATION OF THE HTS FILTER
We perform SM optimization applying our new quasi-Newton SM algorithm with the
Broyden update starting from the empirical model minimax solution (a) listed in Table II. The SM

solution is listed in Table III. We require only 7 frequency points per EM frequency sweep. The

13



solution emerges after only 4 EM analyses (frequency sweeps). Fig. 16 compares the filter

responses of the empirical model optimal design and the em simulated SM solution.

IX. CONCLUSIONS
We have proposed a new automated SM approach which aggressively exploits every EM
analysis. We have employed the classical Broyden update to target the next EM point at the optimal
design. We have described and demonstrated our new approach to the EM design of an HTS
microstrip filter. We have pioneered the application of the SM concept to parameter extraction by
developing new FSM algorithms for overcoming poor starting points induced by inadequate

empirical models.
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TABLE 1

MATERIAL AND PHYSICAL PARAMETERS
FOR THE OSA90/hope AND em MODELS

OSA90/hope em
Model Model Model
Parameters Parameter Parameter
Values Values
EPSR 23.425 23.425
H (mil) 19.9516 19.9516
H2 (mil) oo 250
T (mil) 1.9685E-2 0
TANP 3.0E-5 3.0E-5
ROC (fim) 0 4.032E-8
RHS (mil) 0 -
MTAND - 0
SR (2/sq) - 0
XCELL (mil) - 1
YCELL (mil) - 1.75
EPSR: dielectric constant of the substrate
H: substrate thickness
H2: shielding cover height
T: conducting metal thickness
TAND: substrate dielectric loss tangent
ROC: resistivity of the conducting strip
RHS: surface roughness of the metal strip
MTAND: magnetic loss tangent
SR: surface reactance

XCELL: x-grid cell size
YCELL: y-grid cell size

* in em ROC is represented by RHO
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TABLE II
HTS FILTER EMPIRICAL MODEL DESIGN RESULTS

Minimax Minimax
Pal(.?nnill(;ter Solution Solution
(a) (b)
L 188.33 137.4
L, 197.98 248
L, 188.58 138.6
s, 21.97 17.35
S, 99.12 120.5
Sy 111.67 75.9

W and L, are kept fixed at 7 mil and 50 mil, respectively.

TABLE III
SM OPTIMIZATION RESULTS

Parameter SM Solution
(mil)

L 186

L, 196

Ly 185

S, 21

S, 80.5

S 85.75
Number of

EM Analyses

All parameter values are rounded to
the nearest grid-point. W and L, are
kept fixed at 7mil and 50 mil,
respectively.
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Optimization Space EM Space

P~1

Fig. 1. Illustration of SM. The inverse mapping P "1 maps the optimal design x;s to X, in the
EM space.
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(c)

EM Space

T&h

EM Space

-
_—

Illustration of the original SM algorithm: (a) set xg,) = ;s, (b) generate, at least, m-1
additional base points around xg,), (c) perform X, ,-space model parameter extraction

according to (6).



Fig. 2.

Optimization Space EM Space

Optimization Space EM Space
A

(e)

Optimization Space EM Space

()

Illustration of the original SM algorithm (cont.): (d) apply the inverse mapping to obtain
the next X,,-space point xg,), (e) perform X,.-space model parameter extraction to
obtain x((,:) , (f) apply the updated inverse mapping to obtain the SM solution X, = xe(,i),

assuming || Ryy(x5) - Ron(x) | < €.
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Los , JTem
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Optimization Space EM Space

4

Zos xé'lrzl,
Pa®) | —

20
(b)
Optimization Space EM Space
Th
h(1)=_B(1)“f(1)
x;s. x((z,l,%
©

Fig. 3. Illustration of the quasi-Newton SM algorithm: (a) Initialize xe(;,) = x;s and BV =1 ,

(b) perform X_,-space model parameter extraction according to (6), (c) obtain xg,z,,) by
solving BWaM = — () for a1,
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Fig. 3.

Optimization Space

EM Space
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EM Space
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Tem

z$), HP) - B(2)‘1f(2)

f J
P&,
Zos o
()

(d)

Optimization Space

|

Zos o

(e)

Optimization Space

P8,

*

EM Space
Tem = xl(??’l)"b

()

Illustration of the quasi-Newton SM algorithm (cont.):

(d) perform X,,-space model

parameter extraction to obtain xt(,f), (e) obtain xe(.,i) by solving B a2 o _ f(z) for h(z),

(f) the SM solution is X,, = x) assuming | ng
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Fig. 4. The structure of the HTS filter [3, 5].
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and reference minimax solution.
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The em simulated |S,,| response of the HTS filter at the solution obtained using the
quasi-Newton SM optimization method (O). The OSA90/hope empirical model solution
(—) is shown for comparison. Responses for (a) the overall band and (b) the passband
in more detail.
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