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abstract

A new technique for direct optimization of microwave circuits is introduced in this work.  It is

known that the responses generated by electromagnetic (EM) simulators are accurate.  However, these

simulators require extensive CPU time and that makes them not suitable for direct optimization of

microwave circuits.  These simulators are usually referred to as fine models.  It is  assumed that the circuit

under consideration can be simulated using a less accurate (coarse) but fast model.  This model might be an

empirical or circuit theoretic model.  This model is then first optimized to get the optimal design of the

coarse model. This design is then taken as the starting design of the fine model.  Also, the Jacobian of the

coarse model responses with respect to the coarse model parameters at the optimal design is taken as initial

estimate for the Jacobian of the fine model parameters with respect to the fine model parameters.  This

follows from the assumption of the presence of certain degree of similarity between the two models. 

Broyden’s update is then used to update the fine model responses Jacobian at each iteration.
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I. INTRODUCTION

In this work, a new technique for direct optimization of microwave circuits is proposed.  The

technique is gradient-based.  It should offer an excellent starting point for the optimization process.  The

technique exploits Broyden's formula [1] for updating the gradient and thus should reduce the computational

time.  Also, the initial gradient estimation is obtained from a simpler and less expensive model.

This technique represents an extension to the space mapping technique suggested by Bandler et al.

[2], [3].  The space mapping technique integrates electromagnetic (EM) simulators into the automated

design procedure for microwave circuits.  These simulators are known to be accurate but require extensive

CPU time.  The models represented by these simulators are called fine models.  A less accurate model,

whose responses can be calculated in a fast way, is first optimized.  Such models are called coarse models. 

A mapping is then established between the coarse model and the fine model.  This mapping is then used to

find the optimal solution of the fine model.

The proposed technique is similar in idea to one of the techniques used for solving the

postproduction tuning problem [4].  It was suggested that the postproduction tuning problem be converted to

a linear minimax problem.  The sensitivities used in solving this problem were obtained by a computer

model.

Several algorithms have been developed for the direct optimization of microwave circuits.  The

work proposed in [5] is of practical importance.  It was suggested in this work that an initial Jacobian

estimation be obtained by perturbation.  Then, Broyden's formula is used to update the Jacobian of the error

vector using function values obtained at each iteration.  A special iteration of Powell [6] is then used to

prevent collinearity of the optimization steps.

II. FUNDAMENTAL CONCEPTS AND DEFINITIONS

The proposed technique assumes the presence of a coarse model and a fine model for simulating the

microwave circuit under consideration.  As was indicated before, the fine model responses are accurate but

CPU expensive and the coarse model responses are less accurate but can be obtained in a fast way. 
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Applying direct optimization to the fine model would require a tremendous amount of time.  This lead to the

introduction of the space mapping technique.

It is assumed that the responses of the coarse model are given by )(xR cc which is a vector of

dimension mr  where mr is the number of raw responses.  Also, it is assumed that the fine model responses

are given by the vector )(xR ff  which is assumed to have the same dimensionality as )(xR cc .  The

corresponding responses of each vector are assumed to have the same physical nature.  Let xc be a vector of

coarse model parameters and let x f  be a vector of fine model parameters.  Both vectors are assumed to

have dimensionality n where n < mr.

Similar to the space mapping technique, the proposed technique starts by applying an optimization

technique to the coarse model.  An optimal design of the coarse model x*
c is thus obtained.  Also, an

approximation of the Jacobian matrix of the coarse model responses at the coarse model optimal solution is

obtained.  This matrix is denoted by )( *xB cc .

Once the optimal solution of the coarse model is obtained, it is used as an initial guess for the fine

model optimal solution, i.e., x )1(
f = x*

c  .  Also, the matrix )( *xB cc is used as an initial guess for the Jacobian

matrix of the fine model, i.e., B )1(
f = )( *xB cc .  The second phase of the technique is to use direct

optimization to match the responses of the fine model to the corresponding optimal responses of the coarse

model.  To achieve this target, the error vector

 )()( )(*)( xRxRf j
ffcc

j −= (1)

is defined, where the index j represents the iteration count.  The next iterate x )1( +j
f is found by using the

quasi-Newton iteration

hxx )()()1( jj
f

j
f +=+ (2)

where h )( j is the iteration step obtained by solving

fhB )()()( jjj
f =                                                                (3)
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where B )( j
f is an approximation of the Jacobian matrix of the fine model at the j th iteration and f )( j  is the

value of the error function at the j th iteration.  The system of equations defined by (3) is an overdetermined

system of linear equations.  A solution for this overdetermined system can be obtained using one of two

methods.  A least squares solution can be obtained by solving the system of equations

fBhBB )()()()()( jTj
f

jj
f

Tj
f = (4)

It is assumed that the matrix B )( j
f  is a full rank matrix.  The second suggested method is that only a subset

of the fine model responses be used to determine the iteration step.  Consider the index set Is of cardinality n

such that

Is = {i1, i2, . ., in } (5)

where ik, k =1, 2, . ., n are the indices of the fine model responses that significantly deviates from their

corresponding optimal coarse model responses in (1).  A square matrix B )( j
s  of dimension n is then defined

whose rows are the subset of the rows of B )( j
f  with indices in Is.  This implies that the rows of  B )( j

s are

approximations to the gradients of the selected fine model responses.  Once the matrix B )( j
s is constructed,

the iteration step is then found by solving the system of linear equations

 fhB )()()( j
s

jj
s = (6)

where f )( j
s is an n-dimensional vector whose components are the subset of the components of f )( j  with

indices in Is.  A similar approach was adopted in [4] for determining the subset of responses to be used as

tuning responses.  It was suggested that all the responses close to violating the objective function of the

linearized minimax problem be included as tuning responses.

After obtaining the iteration step h )( j , the new solution for the fine model x )1( +j
f  is obtained using

(2).  The new approximation of the Jacobian matrix of the fine model responses is obtained by updating the

old one using Broyden's formula which is given by 

 h
 h h

 h B- B- B
+ B= B

+
+

f
Tj

jTj

jj
f

j
f

j
fj

f
j )(

)()(

)()()(1)(
)(1)(                                                     (7)



The iterations proceed until a good match between the fine model responses and the coarse model optimal

responses is obtained.  The technique implementation is given in the following section.

III. THE ALGORITHM

Step 0. Obtain the optimal solution of the coarse model x*
c  and the corresponding approximation to the

Jacobian matrix )( *xB cc .

Step 1. Initialize x )1(
f = x*

c , B )1(
f = )( *xBc c .and j = 1.  Evaluate )( )1(xR ff .  If ( )1f < ε , stop.

Step 2. Determine the iteration step.  If least squares is used, the iteration step is obtained by solving the

system of equations

fBhBB )()()()()( jTj
f

jj
f

Tj
f =

Otherwise, the iteration step is found by solving the equations

fhB )()()( j
s

jj
s =

Step 3. Set hxx )()()1( jj
f

j
f +=+

Step 4. Evaluate )( )1(xR +j
ff .  If ε<+f )1( j , stop.

Step 5. Update B )( j
f to B )1( +j

f using the Broyden formula.

Step 6. Set j = j + 1.  Go to Step 2.



IV. CONCLUSIONS

A new technique for the direct optimization of microwave circuits is suggested here.  First, the

technique optimizes the design of a coarse model of the circuit under consideration.  This model is a fast

model but is less accurate than the EM simulators.  The optimal solution of the coarse model and the

Jacobian of the coarse model responses are taken as initial guess for the fine model solution and the fine

model Jacobian matrix, respectively.  At each iteration, the Jacobian matrix of the fine model is update

using Broyden's formula.  Convergence is achieved when the fine model responses are matched to the

optimal coarse model responses.
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