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Abstract

For the first time in design optimization of microwave circuits, the aggressive space mapping (SM) optimization

technique is applied to automatically align electromagnetic (EM) models based on hybrid mode-matching/network theory

simulations with models based on finite-element (FEM) simulations. SM optimization of an H-plane resonator filter

with rounded corners illustrates the advantages as well as the challenges of the approach. The parameter extraction

phase of SM is given special attention. The impact of selecting responses and error functions on the convergence and

uniqueness of parameter extraction is discussed. A statistical approach to parameter extraction involving1 and penalty

concepts facilitates a key requirement by SM for uniqueness and consistency. A multi-point parameter extraction

approach to sharpening the solution uniqueness and improving the SM convergence is also introduced. Once the

mapping is established, the effects of manufacturing tolerances are rapidly estimated with the FEM accuracy. SM has

also been successfully applied to optimize waveguide transformers using two hybrid mode-matching/network theory

models: a coarse one using very few modes and a fine model using many modes to represent discontinuities.
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I. INTRODUCTION

Direct exploitation of electromagnetic (EM) simulators in the optimization of arbitrarily shaped 3D structures

at high frequencies is crucial for first-pass success CAD [1,2]. Recently, we reported successful automated design

optimization of 3D structures using FEM simulations [1,3].

The objective of space mapping [3-5] is to avoid direct optimization of computationally intensive models. In

this paper, for the first time, the aggressive space mapping optimization is applied to automaticly align the results of two

separate EM simulation systems. The RWGMM library [6,7] of waveguide models based on the mode matching (MM)

technique [6-8] is used for fast/coarse simulations in the so-called optimization spaceXos. The library is linked to the

network theory optimizers of OSA90/hope [9]. Maxwell Eminence [10] simulations accessed through Empipe3D [9]

serve as the "fine" model in the so-calledXem space. The space mapping procedure executes all these systems

concurrently.

Both RWGMM and Maxwell Eminence provide accurate EM analysis. RWGMM is computationally efficient

in its treatment of a variety of predefined geometries. It is ideally suited for modeling complex waveguide structures

that can be decomposed into the available library building blocks. FEM-based simulators [11,12] such as Maxwell

Eminence [10,12] are able to analyze arbitrary shapes, but they are computationally very intensive.

Aggressive space mapping optimization of an H-plane resonator filter with rounded corners is carried out.

These rounded corners make RWGMM simulations somewhat less accurate. Once the mapping is established,

subsequent Monte Carlo analysis of manufacturing tolerances exploits the FEM-based space mapped model with the

speed of the MM/network theory simulator. To illustrate the flexibility in selecting theXem andXos models, space

mapping is also applied to optimize waveguide transformers using two hybrid MM/network theory models: a coarse one

using very few modes and a fine model using many modes to represent the discontinuities.

The parameter extraction phase is the key to effective space mapping optimization. The methodology, however,

is sensitive to nonunique solutions or local minima inconsistent with the aimed solution. An in-depth study of this

phenomenon is presented and ways to overcome such problems are addressed. We show that, at the expense of increased

simulations of the fast coarse model, we can satisfy the requirement for uniqueness and consistency. We investigate

how the choice of error functions influences the convergence and uniqueness of parameter extraction. We offer a

solution based on statistical parameter extraction involving a powerful1 algorithm and penalty function concepts. We
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introduce a multi-point parameter extraction approach to sharpening the solution uniqueness and improving the space

mapping convergence in the automated design of a waveguide transformer.

II. FULLY AUTOMATED SPACE MAPPING OPTIMIZATION

By inspecting the steps involved in space mapping optimization [3,4], we recognize that the parameter

extraction process is explicitly dependent on the specific models involved. In the flow diagram shown in Fig. 1 the MM

waveguide library serves as theXos model and the FEM simulator as theXemmodel. The other steps of space mapping

can be implemented within a generic layer of iterations. Following this guideline, the aggressive space mapping strategy

has been fully automated using a two-level Datapipe architecture [9,13]. Fig. 1 illustrates the two iterative loops

involving two different sets of variables. The outer loop updates the optimization variablesxemof theXemmodel based

on the latest mapping. The inner, dotted block, extracts the parametersxos of the Xos model while is held constant.x i
em

The Datapipe techniques allow us to carry out the nested optimization loops in two separate processes while maintaining

a functional link between their results (e.g., the next increment toxemis a function of the results of parameter extraction).

Within the inner loop of parameter extraction, we can also utilize the Datapipe technique to connect external

model simulators to the optimization environment (e.g., the Empipe3D system is a specialized Datapipe interface to

Maxwell Eminence). Further details of the parameter extraction step will be elaborated in Sections IV through VII.
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III. SPACE MAPPING OPTIMIZATION USING MM/NETWORK THEORY AND FEM

We address the design of the H-plane resonator filter with rounded corners shown in Fig. 2(b). The waveguide

cross-section is 15.8 × 7.9 mm, while the thickness of the irises ist = 0.4 mm. The radius of the corners isR= 1 mm.

The iris and resonator dimensionsd1, d2, l1, l2 are selected as the optimization variables.

First, minimax optimization of theXosmodel (Fig. 2(a)) is performed exploring the waveguide MM library with

the following specifications provided by Arndt [14]

S21 < -35 dB for 13.5 GHz≤ f ≤ 13.6 GHz

S11 < -20 dB for 14.0 GHz≤ f ≤ 14.2 GHz

S21 < -35 dB for 14.6 GHz≤ f ≤ 14.8 GHz

wheref represents the frequency.

The minimax solution isd1 = 6.04541,d2 = 3.21811,l1 = 13.0688 andl2 = 13.8841. It yields the targetxos

response for space mapping. At this point, the fine modelXem is analyzed by FEM using the values. Thexos

corresponding responses of the FEM model and hybrid mode-matching/network theory models are shown in Fig. 3.

Focusing on the passband, we treat responses in the region 13.96≤ f ≤ 14.24 GHz. The passband responses of both

models at the point are shown in Fig. 4. Some discrepancy is evident.xos

Tables I and II summarize the steps of the successful space mapping optimization. The solution, corresponding

to pointd1 = 6.17557,d2 = 3.29058,l1 = 13.0282 andl2 = 13.8841, shown in Fig. 5 was obtained after only four Maxwell

Eminence simulations, each with only fifteen frequency points. The space mapping results were verified by directly

optimizing the H-plane filter using Empipe3D driving the Maxwell Eminence solver. Essentially the same solution was

found.

IV. ERROR FUNCTIONS FOR PARAMETER EXTRACTION

A natural choice in formulating the objective function for the parameter extraction phase of space mapping is

to use the responses for which the specifications are given. In the case of the H-plane filter they are |S11| in dB at selected

passband frequencies, and thus the individual errors could be formed by subtracting |S11| in dB from the corresponding

specifications (also in dB). A good choice of the objective function for parameter extraction is the1 norm of the error

vetor. We are, however, free to use any error formulation that could allow us to align the models. The results reported
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in the preceding section were obtained usingS21 . With that formulation the space mapping iterations proceeded

flawlessly. No difficulty in the parameter extraction phase could be noticed.

We also took a close look at the1 objective function using some other error formulations. Fig. 6 shows two

cases of the1 norm for parameter extraction during the second iteration of space mapping. They are determined in the

vicinity of the starting point w.r.t. two selected parameters: the iris openingsd1 andd2. Fig. 6(a) corresponds to the error

definition in terms of S11 (dB). It exhibits many local minima and provides us with an excellent opportunity to

investigate the uniqueness of the parameter extraction phase in space mapping, as well as to improve its robustness.

When the errors are defined in terms ofS21 (as was used to obtain the space mapping results reported in Section III),

the corresponding function surface becomes significantly smoother, as shown in Fig. 6(b).

V. STATISTICAL PARAMETER EXTRACTION

We propose an automated statistical parameter extraction procedure to overcome potential pitfalls arising out

of inaccurate or nonunique solutions. First, we perform standard1 parameter extraction [15] of theXos model starting

from . If the resulting response matches well theXemmodel response (the1 error is small enough) we continue withxos

the space mapping iterations. Otherwise we turn to statistical exploration of theXos model.

The key to statistical parameter extraction is to establish the exploration region. Unlike general purpose

random/global optimization approaches we want to carry out local statistical exploration as deemed suitable for space

mapping. To this end we take advantage of the fact that during the space mapping iterations the desired parameter

extraction solutions should rapidly approach in theXos space (see [5,16]).xos

Consider thekth space mapping iteration. When the current mapping ( ) is applied to thexos P (k 1) (xem)

current point in theXem model space we arrive at , since that point has been determined by the inverse mappingxos

( , see [5]) . The fact that the new point (to be extracted) will be different from is not only a basisxk
em P (k 1) 1

(xos) xos

for modifying the mapping, but also it quantitatively establishes the degree of inconsistency w.r.t. the existing mapping.

This allows us to define an appropriate exploration region. If, for thekth step, we define the multidimensional interval

δ as

δ = - (1)xk 1
os xos

the statistical exploration may be limited to the region defined by
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xosi ∈ [ - 2 δi , + 2 δi ] (2)xosi xosi

Another choice for the exploration region could be an elliptical multidimensional domain with semiaxes 2δi

defined by

( xosi - )2 / δi
2 ≤ 4 (3)

i

xosi

A set ofNs starting points is then statistically generated within the region (2) or (3) andNs parameter extraction

optimizations are carried out. These parameter extractions are further aided by a penalty function [16] of the form

λ - (4)xk
os xos

augmenting the1 objective function. In the case of multiple minima this penalty term forces the optimizer to select

local minima closer to . The resulting solutions (expected to be multiple) are then categorized into clusters andxos

ranked according to the achieved values of the error function. Finally, the penalty term is removed and the process

repeated in order to focus the clustered solution(s). Absence of the penalty term brings the solution point to the "true"

local minimum, thus removes "fuzziness" which may occur when the penalty term is used. The aforementioned steps

are briefly summarized by the following algorithm and illustrated in the flow chart shown in Fig. 7.
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Algorithm

Step1 Initialize the exploration region. (2) or (3) can be used in the second and all subsequent space

mapping iterations.

Step2 Generate Ns random starting points.

Step3 Perform Ns parameter extractions from the Ns starting points including the penalty function (4).

Step4 Categorize the solutions. Select one or more best clusters of the solutions.

Step5 Focus the clusters by reoptimizing without the penalty term.

This approach has been automated by adding one more level in the Datapipe architecture described in Section II.

Furthermore, it can be parallelized since theNs parameter extractions considered are carried out independently.

VI. PARAMETER EXTRACTION OF THE H-PLANE FILTER

We use the H-plane filter example to investigate the statistical parameter extraction outlined in the preceding

section. To verify the robustness of the approach we have used the1 objective function with various definitions of

individual errors. The case when the individual errors are defined in terms ofS11 in dB was already illustrated by

Fig. 6(a) for the second iteration of space mapping.

Fig. 8 presents the variation of the MM/network theory model response in the vicinity of the starting point.

Responses are computed along the direction of the first aggressive space mapping step, defined by points and .xos x1
os

Although the responses shown in Fig. 8 are all smooth when only one parameter is varied, the1 objective function

defined in terms ofS11 (dB) has multiple minima, hence the optimizer may terminate at an undesirable solution.

A set of 100 starting points is statistically generated from a uniform distribution within the range (2). The

corresponding 1001 parameter extraction optimizations with the penalty term (4) are then performed from these points.

The distances between the point and the random starting points are depicted in Fig. 9(a). Correspondingly, thexos

distances between and the solutions of parameter extraction optimizations based on the errors defined in terms ofxos

S11 in dB are shown in Fig. 9(b). The solutions are scattered, confirming our observation that the1 objective

function has many local minima, as illustrated in Fig. 6(a). Among the 100 solutions a cluster of 15 points is detected

in Fig. 9(b). Removing the penalty term and restarting the parameter extraction process from all these points further

sharpens the solution. All the points within the cluster converge to the same solution, as depicted in Fig. 9(c). Figs. 10
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and 11 show the responses of the theXos model at those 100 points before and after parameter extraction, respectively.

Fig. 12 displays the responses corresponding to the cluster of 15 points which converged to the same solution, validating

successful parameter extraction.

Fig. 13 illustrates the impact of the penalty term. When the penalty term is not used, only 10 parameter

extractions lead to the desired solution, as shown in Fig. 13(a). HereS11 in dB is used to define the errors. Figs.

13(b) and 13(c) present the results when the errors are defined in terms ofS21 . Without the penalty term the

procedure leads to 52 successful parameter extractions (Fig. 13(a)); adding the penalty term (4) yields 100% success

(Fig. 13(c)). The corresponding responses at the solutions are shown in Fig. 14. Note that for this case of usingS21

in error definition, starting from the default point, , yields the correct result. This explain flawless space mappingxos

iterations reported in Section III.

Certainly that definition in terms of scattering coefficient in dB had amplified the error in computed parameter

S11. The relative error for such case is higher sinceS11 is small in the pass-band region, and de-facto this approach has

implication that optimizer is giving more significance to points with higher error than to more accurate points. We have

shown that even for such numerically sensitive case our new procedure guarantee successful parameter extraction.

VII. MULTI-POINT PARAMETER EXTRACTION

We use the two-section waveguide transformer example [17] to further investigate the impact of parameter

extraction uniqueness on the convergence of the space mapping iterations. We observe symmetrical1 contours with

respect to the two section lengthsL1 andL2, as illustrated in Fig. 15, with two local minima. Consequently the result

of parameter extraction is not unique. The impact can be seen in the trace depicted in Fig. 16, where the space mapping

steps oscillate around the solution due to the "fuzzy" results of parameter extraction.

We introduce a multi-point parameter extraction approach to sharpen the parameter extraction result. Instead

of minimizing

(5)Ros(x
i
os) Rem(x i

em)

at a single point, we find by minimizingx i
os

(6)Ros(x
i
os ∆x) Rem(x i

em ∆x)

where∆x represents a small perturbation to and . By simultaneously minimizing (6) with a selected set of∆x,x i
os x i

em
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we hope to improve the uniqueness of the parameter extraction process. Conceptually, we are attempting to match not

only the response, but also a first-order change in the response with respect to small perturbations in the parameter

values. We have exploited a similar concept in multi-circuit modeling [18]. Fig. 17 depicts the1 contours for multi-

point parameter extraction of the two-section transformer, which indicates a unique solution. We used three points (i.e.,

original and two perturbations inL1 andL2 directions) for parameter extraction. The corresponding space mappingx i
em

trace is shown in Fig. 18, where the convergence of the space mapping iterations is dramatically improved. The price

we may have to pay for such an improvement might be the increased number ofXemsimulations required: although more

Xem model simulations are needed in parameter extraction, the overall number of iterations may be reduced.

VIII. TOLERANCE SIMULATION USING SPACE MAPPING

Space mapping provides not only the optimized parameter values, but also an efficient means of statistical

tolerance analysis. We can map parameter tolerances in theXemspace to the corresponding incremental changes in the

Xos space. Consequently, we will be able to rapidly estimate the effects of manufacturing tolerances, benefitting at the

same time from the accuracy of the FEM model and the speed of the hybrid MM/network theory simulations.

As an illustration, we consider Monte Carlo analysis of the H-plane filter. We assign normally distributed

tolerances to all parameter values, with a standard deviation of 0.0333% (of the order of 1 µm). The Monte Carlo

simulation results are shown in Fig. 19. Assuming a specification ofS11 (dB) < -15 in the passband, the estimated

yield is 88.5% out of 200 outcomes. Then, we increased the standard deviations of the parameter tolerances to 0.1%.

This time the yield dropped to 19% out of 200 outcomes.

By using the space mapping model, the CPU time required for the Monte Carlo analysis is comparable to just

a single full FEM simulation.

IX. SPACE MAPPING OPTIMIZATION USING COARSE AND FINE MM MODELS

The RWGMM library allows a designer to take into account a large number of higher-order modes to model

waveguide transition components. Increasing the number of modes improves accuracy at the expense of higher

computational cost. Space mapping may enhance the efficiency of the MM-based optimization by aligning the response

of the fine model (including many modes) with the response of a coarse model (using one or a few modes).
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We apply this strategy to the optimization of three-section and seven-section transformers described in [17].

For the coarse model, we used just one mode. For the fine model, we included all the modes below the cut-off frequency

f = 50 GHz. The actual number of modes included in the fine model is automatically determined by the RWGMM

program. As the lengths and heights of the waveguide sections are optimized, the number of modes included in the fine

model varies from 49 to 198 for the three-section and at least 180 for the seven-section transformer. The optimized

solutions shown in Figs. 20 and 21 require two and 14 space mapping iterations, respectively.

X. CONCLUSIONS

We have presented new applications of aggressive space mapping to filter optimization using network theory,

mode-matching and finite element simulation techniques. A statistical approach to parameter extraction incorporating

the 1 error and penalty function concepts has effectively addressed the requirement of a unique and consistent solution.

We have introduced the multi-point approach to enhancing the prospect of a unique parameter extraction solution in the

space mapping process. Among important extensions of this work we envisage a highly efficient means for Monte Carlo

analysis of microwave circuits carried out with the accuracy of FEM simulation. We have also demonstrated space

mapping optimization based on coarse and fine MM models with different numbers of modes.
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TABLE I

SPACE MAPPING OPTIMIZATION OF THE H-PLANE FILTER

Point d1 d2 l1 l2

x1
em 6.04541 3.21811 13.0688 13.8841

x2
em 6.19267 3.32269 12.9876 13.8752

x3
em 6.17017 3.29692 13.0536 13.8812

x4
em 6.17557 3.29058 13.0282 13.8841

Values of all optimization variables are in mm.

TABLE II

PARAMETER EXTRACTION RESULTS FOR SPACE MAPPING OPTIMIZATION

Point d1 d2 l1 l2 -xos x i
os

x1
os 5.89815 3.11353 13.1500 13.8930 0.19823

x2
os 6.07714 3.25445 12.9757 13.8757 0.10519

x3
os 6.03531 3.22421 13.1119 13.8806 0.04482

x4
os 6.04634 3.22042 13.0618 13.8831 0.00750

Values of all optimization variables are in mm.
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Fig. 1. Flow diagram of the space mapping optimization (SM) procedure concurrently exploiting the hybrid
MM/network theory and FEM techniques and statistical parameter extraction.
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(a)

(b)

Fig. 2. Structures for space mapping optimization: (a) optimization space model, for hybrid MM/network theory;
(b) fine model, for analysis by FEM. The waveguide cross-section is 15.8 × 7.9 mm, the thickness of the
irises ist = 0.4 mm. Optimization variables are iris openingsd1, d2 and resonator lengthsl1, l2.
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Fig. 3. Responses from both simulations of the H-plane filter based on the hybrid MM/network theory optimization
solution before space mapping optimization.

Fig. 4. Responses from both simulations of the H-plane filter before space mapping optimization, focusing on the
passband.
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Fig. 5. Space mapping optimized FEM response of the H-plane filter compared with the optimalXosresponse target.
Optimal results have been obtained after only 4 simulations by Maxwell Eminence.
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(a)

(b)

Fig. 6. Variation of 1 error w.r.t. iris openingsd1 andd2. Other parameters were held fixed at values corresponding
to . Error function defined in terms of: (a) S11 (dB); (b) S21 .xos
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Fig. 7. Flow diagram of the statistical parameter extraction procedure.
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(a) (b)

(c) (d)

Fig. 8. Variation of responses w.r.t. each parameter, with total changes defined by the first space mapping step.λi

= 0 at andλi = 1 at . Variation of: (a) opening of the first irisd1; (b) opening of the second iris,d2;xos x1
os

(c) length of the first resonator; (d) length of the second resonator.
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(a)

(b)

(c)

Fig. 9. Statistical parameter extraction: (a) Euclidean distances of the starting points generated randomly; (b)
Euclidean distances of converged point after the first step; (c) Euclidean distances of converged point after
the second stage of statistical parameter extraction. All distances are measured from the standard starting
point . Error function defined in terms ofS11 (dB).xos
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Fig. 10. Statistical parameter extraction: responses at 100 starting points generated randomly by perturbing
parameters of the standard starting point.

Fig. 11. Statistical parameter extraction: responses at 100 parameter extraction solution points.
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Fig. 12. MM responses corresponding to a cluster of 15 converged points obtained after statistical parameter
extraction. The match to the FEM response is very good. The 15 responses are indistinguishable from each
other.
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(a)

(b)

(c)

Fig. 13. Statistical parameter extraction. Euclidean distances of converged point after the second stage of statistical
parameter extraction: (a) Error function defined in terms ofS11 (dB), no penalty term (4) used; (b) Error
function defined in terms ofS21 , no penalty term (4) used; (c) Error function defined in terms ofS21 ,
penalty term (4) used. All distances are measured from the standard starting point .xos
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Fig. 14. Statistical parameter extraction: responses at 100 parameter extraction solution points. No penalty term (4)
used. Error function defined in terms ofS21 .

Fig. 15. The 1 contours of the parameter extraction problem for the two-section waveguide transformer. The
symmetry between the variablesL1 andL2 produces two local minima. Consequently the result of parameter
extraction is not unique.
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Fig. 16. Trace of the space mapping steps of the two-section waveguide transformer projected onto the minimax
contours in theL1-L2 plane. The non-unique parameter extraction results lead to the space mapping steps
oscillating around the solution.

Fig. 17. The 1 contours of multi-point parameter extraction of the two-section waveguide transformer. The
parameter extraction has a unique solution.
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Fig. 18. Trace of the space mapping optimization with multi-point parameter extraction of the two-section
transformer projected onto the minimax contours in theL1-L2 plane. The convergence is dramatically
improved when compared with Fig. 16.

Fig. 19. Monte Carlo analysis of the H-plane filter. The parameter tolerances were statistically generated with a
standard deviation of 0.0333%. The estimated yield is 88.5% out of 200 outcomes.
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Fig. 20. S11 (dB) response of a three-section waveguide transformer simulated by RWGMM library before and
after two space mapping (SM) optimization steps. The SM solution is indistinguishable from the optimal
coarse model response.

Fig. 21. S11 (dB) response of a seven-section waveguide transformer simulated by RWGMM library before and
after 14 space mapping (SM) optimization steps. The SM solution is indistinguishable from the optimal
coarse model response.
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Figure Captions

1. Flow diagram of the space mapping optimization (SM) procedure concurrently exploiting the hybrid
MM/network theory and FEM techniques and statistical parameter extraction.

2. Structures for space mapping optimization: (a) optimization space model, for hybrid MM/network theory;
(b) fine model, for analysis by FEM. The waveguide cross-section is 15.8 × 7.9 mm, the thickness of the
irises ist = 0.4 mm. Optimization variables are iris openingsd1, d2 and resonator lengthsl1, l2.

3. Responses from both simulations of the H-plane filter based on the hybrid MM/network theory optimization
solution before space mapping optimization.

4. Responses from both simulations of the H-plane filter before space mapping optimization, focusing on the
passband.

5. Space mapping optimized FEM response of the H-plane filter compared with the optimalXosresponse target.
Optimal results have been obtained after only 4 simulations by Maxwell Eminence.

6. Variation of 1 error w.r.t. iris openingsd1 andd2. Other parameters were held fixed at values corresponding
to . Error function defined in terms of: (a) S11 (dB); (b) S21 .xos

7. Flow diagram of the statistical parameter extraction procedure.

8. Variation of responses w.r.t. each parameter, with total changes defined by the first space mapping step.λi

= 0 at andλi = 1 at . Variation of: (a) opening of the first irisd1; (b) opening of the second iris,d2;xos x1
os

(c) length of the first resonator; (d) length of the second resonator.

9. Statistical parameter extraction: (a) Euclidean distances of the starting points generated randomly; (b)
Euclidean distances of converged point after the first step; (c) Euclidean distances of converged point after
the second stage of statistical parameter extraction. All distances are measured from the standard starting
point .xos

10. Statistical parameter extraction: responses at 100 starting points generated randomly by perturbing
parameters of the standard starting point.

11. Statistical parameter extraction: responses at 100 parameter extraction solution points.

12. MM responses corresponding to a cluster of 15 converged points obtained after statistical parameter
extraction. The match to the FEM response is very good. The 15 responses are indistinguishable from each
other.

13. Statistical parameter extraction. Euclidean distances of converged point after the second stage of statistical
parameter extraction: (a) Error function defined in terms ofS11 (dB), no penalty term (4) used; (b) Error
function defined in terms ofS21 , no penalty term (4) used; (c) Error function defined in terms ofS21 ,
penalty term (4) used. All distances are measured from the standard starting point .xos

14. Statistical parameter extraction: responses at 100 parameter extraction solution points. No penalty term (4)
used. Error function defined in terms ofS21 .

15. The 1 contours of the parameter extraction problem for the two-section waveguide transformer. The
symmetry between the variablesL1 andL2 produces two local minima. Consequently the result of parameter
extraction is not unique.
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16. Trace of the space mapping steps of the two-section waveguide transformer projected onto the minimax
contours in theL1-L2 plane. The non-unique parameter extraction results lead to the space mapping steps
oscillating around the solution.

17. The 1 contours of multi-point parameter extraction of the two-section waveguide transformer. The
parameter extraction has a unique solution.

18. Trace of the space mapping optimization with multi-point parameter extraction of the two-section
transformer projected onto the minimax contours in theL1-L2 plane. The convergence is dramatically
improved when compared with Fig. 16.

19. Monte Carlo analysis of the H-plane filter. The parameter tolerances were statistically generated with a
standard deviation of 0.0333%. The estimated yield is 88.5% out of 200 outcomes.

20. S11 (dB) response of a three-section waveguide transformer simulated by RWGMM library before and
after two space mapping (SM) optimization steps. The SM solution is indistinguishable from the optimal
coarse model response.

21. S11 (dB) response of a seven-section waveguide transformer simulated by RWGMM library before and
after 14 space mapping (SM) optimization steps. The SM solution is indistinguishable from the optimal
coarse model response.

29


