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Abstract

A robust new algorithm for EM optimization of microwave circuits is presented.  The algorithm

integrates a trust region methodology with the aggressive space mapping (ASM) concept.  The trust

region ensures that each step taken results in improved alignment between the coarse and fine models

needed to execute ASM.  A new automated multi-point parameter extraction process is implemented.

Waveguide transformer design, and EM optimization of a double-folded stub filter and of an HTS filter

illustrate our new results.

SUMMARY

Introduction

A novel algorithm for aggressive space mapping (ASM) EM optimization [1] is introduced.

Space mapping aims at aligning two different simulation models:  a “coarse” model,  typically an

empirical circuit simulation and a “fine” model, typically a full wave EM simulation.  The technique

combines the accuracy of the fine model with the speed of the coarse model.
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Parameter extraction is a crucial part of the technique.  In this step the parameters of the coarse

model whose response matches the fine model response is obtained.  The extracted parameters may not

be unique, causing the technique to fail to converge to the optimal design.

Recently, a multi-point parameter extraction concept was proposed [2] to enhance the uniqueness

of the extraction step at the expense of an increased number of fine model simulations.  The selection of

points was arbitrary,  not automated and no information about the mapping between the two spaces was

taken into account.

Our proposed ASM algorithm automates the selection of fine model points used for the multi-

point parameter extraction step.  An iterative approach utilizes all the fine model points simulated since

the last successful iteration in the multi-point parameter extraction.  Also, the current approximation to

the mapping between the two spaces is integrated into the parameter extraction step.

The step taken at each iteration is constrained by a suitable trust region [3].  The size of this trust

region is modified according to the match between the actual reduction in the misalignment between the

two spaces and the predicted reduction in the misalignment.  This ensures that the alignment between the

two spaces is improved in each iteration.

The New Algorithm

At the ith iteration, the error vector ( ) ( )( )i
em
i

o s
* f P x x= − defines the difference between the

vector of extracted coarse model parameters  os
i( )x = em

iP x( )( ) and the optimal coarse model design os
*x  in the

“os” space.  Subscript “em” identifies the fine model space, P denotes the mapping function.  The

mapping between the two models is established if this error vector is driven to zero.  So, the value

( )if can serve as a measure of the misalignment between the two spaces in the ith iteration.  The step

taken in the ith iteration is given by

( ) ( ) ( ) ( ) ( )( )i T i i i T i B B I h B f+ = −λ                                         (1)
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where ( )iB  is an approximation to the Jacobian of the coarse model parameters with respect to the fine

model parameters at the ith iteration.  The parameter λ is selected such that the step obtained satisfies

( )ih ≤δ, where δ  is the size of the trust region.  This is done utilizing the iterative algorithm suggested

in [3].  The candidate point for the next iteration is em
i

em
i i ( ) ( ) ( )+ = +1x x h .  Single point parameter extraction

is then applied at the point em
i( )+ 1x to get  i+

em
i

os
( 1) ( ) *( )f P x x= −+ 1 .  The point em

i( )+ 1x is accepted if it satisfies

a success criterion related to a reduction in the 2l norm of the vector f . Then the matrix ( )iB is updated

using Broyden’s formula [4].  Otherwise, the validity of the extraction process leading to ( )i + 1f at the

suggested point em
i( 1)+x  is suspect.  The residual error ( )i + 1f  is then used to construct a candidate step

from the point em
i( 1)+x by using (1).  The new point is then added to the set of points employed for

simultaneous parameter extraction: a new value for ( )i + 1f  is obtained by solving

os
os os

i
em

i
em emminimize  

x
R x B x x R xem( ( ) ( )( ) ( )+ − −+ 1 ,                                             (2)

simultaneously for all em Vx ∈ , where V is the set of fine model points used for multi-point parameter

extraction.  Thus, the extracted vector of coarse model parameters is obtained by matching the responses

of the two models at a number of points in the parameter space.  Also, it is clear from (2) that a

perturbation in the fine model space of em∆x corresponds to a perturbation in the coarse model space of

( )i
emB x∆ .  This is logical since the matrix ( )iB represents the most up-to-date approximation to the

mapping between the two spaces.  Thus, the available information about the mapping between the two

space is exploited.

The new extracted coarse model parameters either satisfy the success criterion or they are used to

predict another candidate point which is then added to the set of points used for parameter extraction and

the whole process is repeated.  See Fig. 1.  Using this recursive multi-point parameter extraction process

improves the accuracy.  This may lead to the satisfaction of the success criterion or the step is declared a
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failure.  The step failure is declared in one of two cases: either the vector of extracted parameters

approaches a limiting value with the success criterion not satisfied, or the number of fine model

simulations since the last successful iteration has reached (n+1).  In the first case, the extracted coarse

model parameters are trusted and the accuracy of the linearization used to predict ( )ih  is suspected.  Thus

to ensure a successful step from the current point em
i( )x , the trust region size is shrunk and a new suggested

point em
i( )+ 1x is obtained.  In the latter case, sufficient information is available to obtain an estimate for the

Jacobian of the fine model responses with respect to the fine model parameters.  This is done by solving

the system of linear equations

T
em
i

em
T

em
i

t

T
em
i

t
n-

T

Ti

Ti
t
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where t
k( )x is the kth candidate point used for multi-point parameter extraction and t

k( )g is the

corresponding error between the fine model responses and the optimal coarse model responses.  This

matrix is then used to make a step ( )ih  in the parameter space by solving the system of equations

( ) ( ) ( )T i T i J J I h J g+ = −λ ,                                                               (4)

varying parameter λ until ( ) .ih ≤δ  If there is no reduction in the l2 norm of the vector function g, the

trust region is shrunk and (4) is resolved.  This is repeated until either the size of the trust region has

shrunk significantly and hence the algorithm terminates or a successful step is taken.  This successful step

is then used instead of the step obtained by (1) and the algorithm proceeds.

Double-folded Stub Filter

We consider the design of the double-folded stub (DFS) microstrip structure shown in Fig. 2

(Bandler et al. [5,6,7]).  Folding the stubs reduces the filter area w.r.t. the conventional double stub

structure (Rautio [8]).  The filter is characterized by five parameters : W1 , W2 , S, L1 and L2  (see Fig. 2).
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L1, L2 and S are chosen as optimization variables.  W1 and W2 are fixed at 4.8 mil.  The design

specifications are given by S21≥ -3 dB in the passband andS21≤ -30 dB in the stopband, where the

passband includes frequencies below 9.5 GHz and above 16.5 GHz and the stopband lies in the range [12

GHz, 14 GHz].  The structure is simulated by Sonnet’s em [9] through OSA’s Empipe [10].  The coarse

model is a coarse-grid em model with cell size 4.8 mil by 4.8 mil.  The fine model is a fine-grid em model

with cell size 1.6 mil by 1.6 mil.  Other parameters are summarized in Table I.

Table II shows the optimal coarse model parameters obtained by the OSA90/hope [10] minimax

optimizer.  Fig. 3 shows the response along with the fine model em response evaluated using the optimal

coarse model parameters.  The time needed to simulate the structure (coarse model) at a single frequency

is only 5 CPU seconds on a Sun SPARCstation 10.  This includes the automatic response interpolation

carried out to accommodate off-grid geometries.

It is clear from Fig. 3 that the fine model response violates the design specifications at the starting

point.  The new ASM technique required only two iterations to reach the solution.  The algorithm’s

progress is shown in Table III.  The number of required fine model simulations is 17.  Most of these

simulations were needed for response interpolation.  The response of the fine model at the solution is

shown in Fig. 4.  The CPU time needed for the fine model is approximately 70 seconds per frequency

point.

Waveguide Transformer

We optimized a two-section waveguide transformer as shown in Fig. 5.  This example is a

classical microwave circuit design problem [11] and is presented to illustrate the new ASM algorithm.

Here we use two empirical models: an ideal model which neglects the junction discontinuities and a

nonideal model which includes the junction discontinuity effects [11].

The ideal (coarse) model is first optimized.  The results are shown in Table IV.  The optimum

ideal model response is shown in Fig. 6 along with the nonideal model response at the same point.  Our

algorithm terminated in three iterations, requiring 5 fine model simulations.  The optimal nonideal model
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design is given in Table V.   The corresponding nonideal model response is shown in Fig. 7.  This

example is known to have more than one minimum for the parameter extraction step [2].  However, our

new algorithm converged successfully to the optimal design.  The number of simulations needed to align

the two models is smaller than that reported in [2].

HTS Filter

We consider optimization of a high-temperature superconducting (HTS) filter [1,12].  This filter

is illustrated in Fig. 8.  The specifications areS21≥ 0.95 in the passband and S21≤ 0.05 in the

stopband, where the stopband includes frequencies below 3.967 GHz and above 4.099 GHz and the

passband lies in the range [4.008 GHz, 4.058 GHz].  The design variables for this problem are L1, L2, L3,

S1, S2 and S3.  We take L0 = 50 mil and W = 7 mil.  The coarse model exploits the empirical models of

microstrip lines, coupled lines and open stubs available in OSA90/hope.  The fine model employs a fine-

grid em simulation.  The material and physical parameters values used in both OSA90/hope and in em are

shown in Table VI.  The coarse model is first optimized using the OSA90/hope minimax optimizer.  The

optimal coarse model design is given in Table VII.  The fine model response at the optimal coarse model

design are shown in Fig. 9.  The parameter extraction for this problem has several solutions.  Fig. 10

shows how two of the extracted coarse model parameters changed with the number of points used for

parameter extraction.  The first point (1) is obtained using normal parameter extraction.  These extracted

values would have caused the original ASM technique to diverge.  The new technique automatically

generates a candidate point which is then used together with the original point to carry out a multi-point

parameter extraction and the second point (2) is obtained.  To confirm that this point is the required one a

third candidate point is automatically generated and the extraction is repeated using the three points to

obtain the third extracted point (3).  The second and third extracted points show that the extracted vector

of coarse model parameters is approaching a limiting value and can thus be trusted.  The coarse model

response corresponding to the three extracted points of Fig. 10 are shown in Fig. 11.
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For the remaining iterations, single point parameter extraction worked well.  The fine model

responses and the coarse model responses for the corresponding extracted points are shown in Fig. 12.

The optimal fine model design was obtained in 5 iterations which required 8 fine model simulations.  The

optimal fine model design is given in Table VIII.  The fine model response at this design is shown in Fig.

13.  The passband ripples are shown in Fig. 14.

In the original space mapping approaches [1,12] this example required significant manual

intervention to successfully complete the parameter extraction phase.  Furthermore, without such

intervention the previous approaches would not work.

Conclusions

A powerful new algorithm implementing the aggressive space mapping technique is introduced.

It aims at automatically improving the uniqueness of the parameter extraction step, the most critical step

in the space mapping process, and exploiting all available fine model simulations.  Through examples

which have proved difficult in the past we show that the new ASM algorithm automatically overcomes

the nonuniqueness of the parameter extraction step in a logical way.  We are currently testing the

proposed algorithm using HP HFSS [13].
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TABLE I
MATERIAL AND PHYSICAL PARAMETERS FOR THE COARSE

AND FINE em MODELS OF THE DFS FILTER

Model Parameter Value

substrate dielectric constant 9.9
substrate thickness (mil) 5
shielding cover height (mil) ∞
conducting material thickness 3.0E-6
substrate dielectric loss tangent 2.0E-3
resistivity of metal (Ωm) 1.72E-8
magnetic loss tangent 0
surface reactance (Ω /sq) 0
lower frequency limit (GHz) 5
upper frequency limit (GHz) 20
frequency increment size (GHz) 0.25

TABLE II
OPTIMAL DESIGN OF THE COARSE MODEL

FOR THE DFS FILTER

Parameter Value (mil)

L1 88.8

L2 84.1

S 3.9

TABLE III
VALUES OF DESIGNABLE PARAMETERS AT EACH ITERATION

FOR THE DFS FILTER

Parameter em
0x em

1x em
2x

L1 88.8 89.5 94.3

L2 84.1 84.6 85.4

S 3.9 4.7 4.7

all values are in mils
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TABLE IV
OPTIMAL DESIGN OF THE COARSE (IDEAL) MODEL

FOR THE TWO-SECTION WAVEGUIDE TRANSFORMER

Parameter Value (cm)

a1 0.712

b1 1.395

a2 1.657

b2 1.590

TABLE V
VALUES OF OPTIMIZABLE PARAMETERS

AT EACH ITERATION OF THE NEW ASM TECHNIQUE
FOR THE TWO-SECTION WAVEGUIDE TRANSFORMER

Parameter em
0x em

1x em
2x em

3x

a1 0.712 0.715 0.716 0.716

b1 1.395 1.400 1.402 1.402

a2 1.657 1.591 1.560 1.560

b2 1.590 1.541 1.518 1.518
all values are in cm

TABLE VI
MATERIAL AND PHYSICAL PARAMETERS

FOR THE HTS FILTER

Model Parameter OSA90/hope em

substrate dielectric constant 23.425 23.425
substrate thickness (mil) 19.9516 19.9516
shielding cover height (mil) ∞ 250
conducting material thickness 1.968E-2 0
substrate dielectric loss tangent 3.0E-5 3.0E-5
resistivity of metal (Ωm) 0 4.032E-8
surface roughness of metal 0 
magnetic loss tangent  0
surface reactance (Ω /sq)  0
x-grid cell size (mil)  1.00
y-grid cell size (mil)  1.75
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TABLE VII
THE OPTIMAL DESIGN OF THE COARSE MODEL

FOR THE HTS FILTER

Parameter Optimal Value (mil)

L1 188.33
L2 197.98
L3 188.58
S1 21.97
S2 99.12
S3 111.67

TABLE VIII
THE INITIAL AND FINAL DESIGNS OF THE FINE MODEL

FOR THE HTS FILTER

Parameter Initial Value (mil) Final Value (mil)

L1 188.33 181.43
L2 197.98 200.51
L3 188.58 180.49
S1 21.97 19.44
S2 99.12 80.52
S3 111.67 83.41
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parameter extraction fails; an additional point        is obtained and multi-point parameter
extraction is carried out to sharpen the solution

Fig. 1.  Illustration of the automated multi-point parameter extraction.
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Fig. 2.  The DFS filter [8].
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Fig. 3.  The optimal coarse model response ( ) and the fine model response (ο)
                                 at the starting point for the DFS filter .
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Fig. 4.  The optimal coarse model response ( ) and the optimal fine model
                                     response (ο) for the DFS filter.
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Fig. 6.  The optimal coarse model response ( ) and the fine model response (ο)
                                 at the starting point for the two-section waveguide transformer.
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Fig. 7.  The optimal coarse model response ( ) and the optimal fine model
                                     response (ο) for the two-section waveguide transformer.

Fig. 5.  A typical two-section waveguide transformer.
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Fig. 8.  The structure of the HTS filter [12].
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Fig. 9.  The optimal coarse model response ( ) and the fine model response (ο)
                                 at the starting point for the HTS filter.
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Fig. 10.  The variation of two of the extracted coarse model parameters in the first iteration with the

number of points used for parameter extraction where (1) is obtained using a  single fine model
point, (2) is obtained using two fine model points and (3) is obtained using three fine model
points.
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Fig. 11.  The coarse model response ( ) and the fine model response (ο) corresponding to the
three extracted points in Fig. 10 where (a) is obtained using a single fine model, (b) is
obtained using two fine model points and (c) is obtained using three fine model
points.
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                                       (a)                                                                                  (b)

                                        (c)                                                                                      (d)

Fig. 12. The coarse model response ( ) at the extracted point and the fine model
                response (ο) corresponding to the second, third, fourth and fifth iterations.
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Fig. 13.  The optimal coarse model response ( ) and the optimal fine model
                                      response (ο) for the HTS filter.
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Fig. 14. The optimal coarse model response ( ) and the optimal fine model
                                      response (ο) for the HTS filter in the passband.


