A TRUST REGION AGGRESSIVE SPACE MAPPING ALGORITHM
FOR EM OPTIMIZATION

M.H. Bakr, J.W. Bandler, R.M. Biernacki, S.H. Chen and K. Madsen
S0S-97-9-R

November 1997

a M.H. Bakr, JW. Bandler, R.M. Biernacki, S.H. Chen and K. Madsen

No part of this document may be copied, translated, transcribed or entered in any form into any machine
without written permission. Address inquiries in this regard to Dr. JW. Bandler. Excerpts may be
guoted for scholarly purposes with full acknowledgment of source. This document may not be lent or
circulated without thistitle page and its original cover.



A TRUST REGION AGGRESSIVE SPACE MAPPING ALGORITHM
FOR EM OPTIMIZATION

M.H. Bakr, J.W. Bandler, R.M. Biernacki, S.H. Chen and K. Madsen
Simulation Optimization Systems Research Laboratory
and Department of Electrical and Computer Engineering
McMaster University, Hamilton, Canada L8S 4L7
Tel 905 628 8228
Fax 905 628 8225
Email j.bandler@ieee.org

Abstract

A robust new algorithm for EM optimization of microwave circuits is presented. The algorithm
integrates a trust region methodology with the aggressive space mapping (ASM) concept. The trust
region ensures that each step taken results in improved alignment between the coarse and fine models
needed to execute ASM. A new automated multi-point parameter extraction process is implemented.
Waveguide transformer design, and EM optimization of a double-folded stub filter and of an HTS filter
illustrate our new results.

SUMMARY
Introduction

A novel agorithm for aggressive space mapping (ASM) EM optimization [1] is introduced.
Space mapping aims at aligning two different simulation models: a “coarse” model, typically an
empirical circuit simulation and a “fine’” model, typically a full wave EM simulation. The technique

combines the accuracy of the fine model with the speed of the coarse model.
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Parameter extraction is a crucia part of the technique. In this step the parameters of the coarse
model whose response matches the fine model response is obtained. The extracted parameters may not
be unique, causing the technique to fail to converge to the optimal design.

Recently, a multi-point parameter extraction concept was proposed [2] to enhance the uniqueness
of the extraction step at the expense of an increased number of fine model simulations. The selection of
points was arbitrary, not automated and no information about the mapping between the two spaces was
taken into account.

Our proposed ASM algorithm automates the selection of fine model points used for the multi-
point parameter extraction step. An iterative approach utilizes all the fine model points simulated since
the last successful iteration in the multi-point parameter extraction. Also, the current approximation to
the mapping between the two spaces isintegrated into the parameter extraction step.

The step taken at each iteration is constrained by a suitable trust region [3]. The size of this trust
region is modified according to the match between the actual reduction in the misalignment between the
two spaces and the predicted reduction in the misalignment. This ensures that the alignment between the
two spacesisimproved in each iteration.

The New Algorithm
At the ith iteration, the error vector f D= p (x$)) - X defines the difference between the

vector of extracted coarse model parameters x{2 =P (x{)) and the optimal coarse model design X in the

“0s’ space. Subscript “em’” identifies the fine model space, P denotes the mapping function. The

mapping between the two models is established if this error vector is driven to zero. So, the value
H f (i)H can serve as a measure of the misalignment between the two spaces in the ith iteration. The step

taken in theith iteration is given by

(B(i)T B(i) +1 1 )h(i) — . B(i)T f(i) (1)



where B" is an approximation to the Jacobian of the coarse model parameters with respect to the fine

model parameters at the ith iteration. The parameter | is selected such that the step obtained satisfies
||h“)|| £d,whered isthe size of the trust region. Thisis done utilizing the iterative algorithm suggested
in[3]. The candidate point for the next iterationis x§;Y = x&, +h®. Single point parameter extraction
isthen applied at the point x&:Vtoget Y= P(x$Y) - xis. Thepoint x{72 is accepted if it satisfies
a success criterion related to a reduction in the ¢, norm of the vector f . Then the matrix B" is updated
using Broyden's formula [4]. Otherwise, the validity of the extraction process leading to f D ot the

suggested point x4 is suspect. The residua error f Y is then used to construct a candidate step

from the point x§:” by using (1). The new point is then added to the set of points employed for

simultaneous parameter extraction: a new value for f @9 is obtained by solving

m|n|m|ze‘Ros(Xos+B(')(X Xan? ) - Rem (Xem)H @)

XOS

simultaneously for al Xem1 V , where V is the set of fine model points used for multi-point parameter
extraction. Thus, the extracted vector of coarse model parameters is obtained by matching the responses

of the two models at a number of points in the parameter space. Also, it is clear from (2) that a

perturbation in the fine model space of DXemcorresponds to a perturbation in the coarse model space of

B" Dxen. This is logical since the matrix B™ represents the most up-to-date approximation to the
mapping between the two spaces. Thus, the available information about the mapping between the two
space is exploited.

The new extracted coarse model parameters either satisfy the success criterion or they are used to
predict another candidate point which is then added to the set of points used for parameter extraction and
the whole process is repeated. See Fig. 1. Using this recursive multi-point parameter extraction process

improves the accuracy. This may lead to the satisfaction of the success criterion or the step is declared a



failure. The step failure is declared in one of two cases. either the vector of extracted parameters
approaches a limiting value with the success criterion not satisfied, or the number of fine model
simulations since the last successful iteration has reached (n+1). In the first case, the extracted coarse

model parameters are trusted and the accuracy of the linearization used to predict h® is suspected. Thus
to ensure a successful step from the current point x{), the trust region size is shrunk and a new suggested
point x4 is obtained. In the latter case, sufficient information is available to obtain an estimate for the

Jacobian of the fine model responses with respect to the fine model parameters. This is done by solving

the system of linear equations

a@x(l) X(|+1)) 0 zgg(l)_ (|+1)) 0
(i) _

(X Xl)) = (; (1) _ (1) -
g(x"’ x(”l)) 5 é(gm_ g(“'l’)Tg
t
where x{¥is the kth candidate point used for multi-point parameter extraction and g(k)ls the

corresponding error between the fine model responses and the optimal coarse model responses. This

matrix is then used to make astep h®) in the parameter space by solving the system of equations
Q'3 +1 1)hO=-37g", @)
varying parameter | until ||h(”|| £d. If thereis no reduction in the I, norm of the vector function g, the

trust region is shrunk and (4) is resolved. This is repeated until either the size of the trust region has
shrunk significantly and hence the algorithm terminates or a successful step istaken. This successful step
isthen used instead of the step obtained by (1) and the algorithm proceeds.
Double-folded Stub Filter

We consider the design of the double-folded stub (DFS) microstrip structure shown in Fig. 2
(Bandler et al. [5,6,7]). Folding the stubs reduces the filter area w.r.t. the conventional double stub

structure (Rautio [8]). The filter is characterized by five parameters: Wi, Wo, S Ly and Ly (see Fig. 2).



L1, Lp and S are chosen as optimization variables. W; and W, are fixed at 4.8 mil. The design
specifications are given by ¥5:%2 -3 dB in the passband and¥5;1%£ -30 dB in the stopband, where the
passband includes frequencies below 9.5 GHz and above 16.5 GHz and the stopband lies in the range [12
GHz, 14 GHZz]. The structure is simulated by Sonnet’s em [9] through OSA’s Empipe [10]. The coarse
model is acoarse-grid em model with cell size 4.8 mil by 4.8 mil. The fine model is afine-grid em model
with cell size 1.6 mil by 1.6 mil. Other parameters are summarized in Tablel.

Table 11 shows the optimal coarse model parameters obtained by the OSA90/hope [10] minimax
optimizer. Fig. 3 shows the response along with the fine model em response evaluated using the optimal
coarse model parameters. The time needed to simulate the structure (coarse model) at a single frequency
isonly 5 CPU seconds on a Sun SPARCstation 10. This includes the automatic response interpolation
carried out to accommodate off-grid geometries.

Itisclear from Fig. 3 that the fine model response violates the design specifications at the starting
point. The new ASM technique required only two iterations to reach the solution. The algorithm’'s
progress is shown in Table Ill. The number of required fine model simulations is 17. Most of these
simulations were needed for response interpolation. The response of the fine model at the solution is
shown in Fig. 4. The CPU time needed for the fine model is approximately 70 seconds per frequency
point.

Waveguide Transformer

We optimized a two-section waveguide transformer as shown in Fig. 5. This example is a
classical microwave circuit design problem [11] and is presented to illustrate the new ASM agorithm.
Here we use two empirical models: an ideal model which neglects the junction discontinuities and a
nonideal model which includes the junction discontinuity effects[11].

The ideal (coarse) model is first optimized. The results are shown in Table IV. The optimum
ideal model response is shown in Fig. 6 along with the nonideal model response at the same point. Our

algorithm terminated in three iterations, requiring 5 fine model simulations. The optimal nonideal model



design is given in Table V. The corresponding nonideal model response is shown in Fig. 7. This
example is known to have more than one minimum for the parameter extraction step [2]. However, our
new algorithm converged successfully to the optimal design. The number of simulations needed to align
the two modelsis smaller than that reported in [2].
HTSFilter

We consider optimization of a high-temperature superconducting (HTS) filter [1,12]. This filter
is illustrated in Fig. 8. The specifications are/£¥# 0.95 in the passband and ¥&;:%£ 0.05 in the
stopband, where the stopband includes frequencies below 3.967 GHz and above 4.099 GHz and the
passband lies in the range [4.008 GHz, 4.058 GHZz]. The design variables for this problem are L, Ly, Lg,
S, S and S5, Wetake Lo = 50 mil and W=7 mil. The coarse model exploits the empirical models of
microstrip lines, coupled lines and open stubs available in OSA90/hope. The fine model employs afine-
grid em simulation. The material and physical parameters values used in both OSA90/hope and in em are
shown in Table VI. The coarse model is first optimized using the OSA90/hope minimax optimizer. The
optimal coarse model design is given in Table VII. The fine model response at the optimal coarse model
design are shown in Fig. 9. The parameter extraction for this problem has severa solutions. Fig. 10
shows how two of the extracted coarse model parameters changed with the number of points used for
parameter extraction. The first point (1) is obtained using normal parameter extraction. These extracted
values would have caused the original ASM technique to diverge. The new technique automatically
generates a candidate point which is then used together with the original point to carry out a multi-point
parameter extraction and the second point (2) is obtained. To confirm that this point is the required one a
third candidate point is automatically generated and the extraction is repeated using the three points to
obtain the third extracted point (3). The second and third extracted points show that the extracted vector
of coarse model parameters is approaching a limiting value and can thus be trusted. The coarse model

response corresponding to the three extracted points of Fig. 10 are shownin Fig. 11.



For the remaining iterations, single point parameter extraction worked well. The fine model
responses and the coarse model responses for the corresponding extracted points are shown in Fig. 12.
The optimal fine model design was obtained in 5 iterations which required 8 fine model simulations. The
optimal fine model designisgivenin Table VIII. The fine model response at this design is shown in Fig.
13. The passband ripples are shown in Fig. 14.

In the origina space mapping approaches [1,12] this example required significant manual
intervention to successfully complete the parameter extraction phase. Furthermore, without such
intervention the previous approaches would not work.

Conclusions

A powerful new algorithm implementing the aggressive space mapping technique is introduced.
It aims at automatically improving the uniqueness of the parameter extraction step, the most critical step
in the space mapping process, and exploiting al available fine model simulations. Through examples
which have proved difficult in the past we show that the new ASM agorithm automatically overcomes
the nonuniqueness of the parameter extraction step in a logical way. We are currently testing the

proposed algorithm using HP HFSS [13].
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TABLE
MATERIAL AND PHY SICAL PARAMETERS FOR THE COARSE
AND FINE em MODELS OF THE DFSFILTER

Model Parameter Value
substrate dielectric constant 9.9
substrate thickness (mil) 5
shielding cover height (mil) ¥
conducting material thickness 3.0E-6
substrate dielectric loss tangent 2.0E-3
resistivity of metal (\Wim) 1.72E-8
magnetic |oss tangent 0
surface reactance (W'sq) 0
lower frequency limit (GHZz) 5
upper frequency limit (GHz) 20
frequency increment size (GHZz) 0.25

TABLE Il

OPTIMAL DESIGN OF THE COARSE MODEL
FOR THE DFSFILTER

Parameter Vaue (mil)
Ly 88.8
Lo 84.1
S 39
TABLEIII

VALUES OF DESIGNABLE PARAMETERS AT EACH ITERATION
FOR THE DFSFILTER

Parameter Xgm )ém Xgm
Ly 88.8 89.5 94.3
Lo 84.1 84.6 854
S 3.9 4.7 4.7

al valuesarein mils




TABLE IV
OPTIMAL DESIGN OF THE COARSE (IDEAL) MODEL
FOR THE TWO-SECTION WAVEGUIDE TRANSFORMER

Parameter Vaue (cm)
a 0.712
by 1.395
a 1.657
b, 1.590
TABLEV

VALUES OF OPTIMIZABLE PARAMETERS

AT EACH ITERATION OF THE NEW ASM TECHNIQUE
FOR THE TWO-SECTION WAVEGUIDE TRANSFORMER

Parameter X Xem e e
a 0.712 0.715 0.716 0.716
by 1.395 1.400 1.402 1.402
a 1.657 1.591 1.560 1.560
b, 1.590 1541 1518 1518

al valuesarein cm
TABLE VI
MATERIAL AND PHYSICAL PARAMETERS
FORTHE HTSFILTER
Model Parameter OSA90/hope em
substrate dielectric constant 23.425 23.425
substrate thickness (mil) 19.9516 19.9516
shielding cover height (mil) ¥ 250
conducting material thickness 1.968E-2 0
substrate dielectric loss tangent 3.0E-5 3.0E-5
resistivity of metal (\Wm) 0 4.032E-8
surface roughness of metal 0 Ya
magnetic |oss tangent Ya 0
surface reactance (W'sq) Ya 0
x-grid cell size (mil) Ya 1.00
y-grid cell size (mil) Ya 1.75
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TABLE VII
THE OPTIMAL DESIGN OF THE COARSE MODEL
FORTHE HTSFILTER

Parameter Optimal Vaue (mil)
L1 188.33
L, 197.98
L3 188.58
S 21.97
S 99.12
S 111.67
TABLE VIII

THE INITIAL AND FINAL DESIGNS OF THE FINE MODEL
FORTHE HTSFILTER

Parameter Initial Value (mil) Final Value (mil)
L1 188.33 181.43
L, 197.98 200.51
L3 188.58 180.49
S 21.97 19.44
S 99.12 80.52
S 111.67 83.41

11
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»

the solution

Fig. 1. lllustration of the automated multi-point parameter extraction.
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Fig. 2. The DFSfilter [8].
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Fig. 5. A typical two-section waveguide transformer.

1.04
o

1.03
P'-1 o
= 1.02
w2
- o

1.01 © |

o o\° o -
1.00

57 58 59 60 6.1 62 63 6.4 65 6.6 6.7
frequency (GHz)

Fig. 6. The optimal coarse model response (%) and the fine model response (0)
at the starting point for the two-section waveguide transformer.
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Fig. 10.

|,1]dB

350
®
300 [

250 [
200

150 [ 3 1

160 165 170 175 180 185 190 195
Ly

The variation of two of the extracted coarse model parameters in the first iteration with the

number of points used for parameter extraction where (1) is obtained using a single fine model

point, (2) is obtained using two fine model points and (3) is obtained using three fine model
points.
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Fig. 11. The coarse model response (%) and the fine model response (0) corresponding to the
three extracted pointsin Fig. 10 where (a) is obtained using asingle fine model, (b) is
obtained using two fine model points and (c) is obtained using three fine model
points.
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Fig. 13. Theoptimal coarse model response (%2) and the optimal fine model
response (0) for the HTSfilter.
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