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Abstract A robust new algorithm for EM optimization of microwave circuits is presented.  The

algorithm (TRASM) integrates a trust region methodology with the aggressive space mapping (ASM).

The trust region ensures that each iteration results in improved alignment between the coarse and fine

models needed to execute ASM.  The parameter extraction step is a crucial part of the ASM technique.

The nonuniqueness of this step may result in the divergence of the technique.  To improve the uniqueness

of the extraction phase we developed a recursive multi-point parameter extraction.  This suggested step

exploits all the available electromagnetic (EM) simulations for improving the uniqueness of parameter

extraction.  The new algorithm was successfully used to design a number of microwave circuits.

Examples include the EM optimization of a double-folded stub filter and of an HTS filter using Sonnet’s

em.  The proposed algorithm was also used to design two-section, three-section and seven-section

waveguide transformers exploiting Maxwell Eminence.  The design of a three-section waveguide

transformer with rounded corners was carried out using HP HFSS.  We show how the mapping can be

used to carry out Monte Carlo analysis using only coarse model simulations.
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I. INTRODUCTION

A novel algorithm for aggressive space mapping (ASM) optimization [1] is introduced.  Space

mapping aims at aligning two different simulation models: a “coarse” model, typically an empirical

circuit simulation and a “fine” model, typically a full wave EM simulation.  The technique combines the

accuracy of the fine model with the speed of the coarse model.  Parameter extraction is a crucial part of

the technique.  In this step the parameters of the coarse model whose responses match the fine model

responses are obtained.  The extracted parameters may not be unique, causing the technique to fail to

converge.

Recently, a multi-point parameter extraction concept was proposed [2] to enhance the uniqueness

of the extraction step at the expense of an increased number of fine model simulations.  The selection of

points was arbitrary, not automated and no information about the mapping between the two spaces was

taken into account.

Our proposed trust region aggressive space mapping (TRASM) algorithm automates the selection

of fine model points used for the multi-point parameter extraction process.  In the multi-point parameter

extraction, an iterative approach utilizes all the fine model points simulated since the last successful

iteration.  Also, the current approximation to the mapping between the two spaces is integrated into the

parameter extraction step.  The space mapping step at each iteration is constrained by a suitable trust

region [3].

The TRASM algorithm was applied to a number of examples.  The EM solver em [4] was used

successfully to optimize the design of an HTS filter and a double-folded stub filter.  Maxwell Eminence

[5] through Empipe3D [6] was used as a fine model to design two-section, three-section and seven-

sections waveguide transformers.  HP HFSS [7] was used to carry out the optimization of a three-section

waveguide transformer with rounded corners.  The coarse models for these examples exploited either a

coarse grid EM model or circuit-theoretic/analytical models.  The different types of models used illustrate

the flexibility of selection of coarse and fine models.
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The required number of fine model simulations to obtain the final design, as demonstrated by the

examples, is of the order of the problem dimension.  Such designs would otherwise be obtained by

computationally very expensive direct optimizations of the fine models.

The algorithm also establishes a mapping between the two spaces, the fine model space and the

coarse model space.  This mapping is updated at each iteration of the algorithm.  The final mapping can

be used to carry out a space-mapped Monte Carlo analysis of the fine model exploiting only coarse model

simulations.  We demonstrate this approach by performing a statistical analysis of the three-section

waveguide transformer with rounded corners simulated by HP HFSS.

II. THE AGGRESSIVE SPACE MAPPING TECHNIQUE

It is assumed that the circuit under consideration can be simulated using two models: a fine

model and a coarse model.  The fine model is accurate but is computationally intensive.  This model can,

for example, be a finite element model.  We refer to the vector of parameters of this model as emx .  The

coarse model is a fast model but it is less accurate than the fine model.  This model can be a circuit-

theoretic empirical model.  The vector of parameters of this model is referred to as osx .

The first step of the technique is to obtain the optimal design of the coarse model os
*x .  The

technique aims at establishing a mapping P between the two spaces [1]

os emx P x= ( )                                                                     (1)

such that

em em os osR x R x( ) ( )− ≤ε                                                       (2)

where Rem is the vector of fine model responses, Ros is the vector of coarse mode responses and  is a

suitable norm.  The error function

f P x x= −( ) *
em os                                                               (3)
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is first defined.  The final fine model design is obtained and the mapping is established if a solution for

the system of nonlinear equations

f(xem) = 0                                                                          (4)

is found.

Let em
i( )x be the ith iterate in the solution of (4).  The next iterate em

i+( 1)x  is found by a quasi-

Newton iteration

em
i

em
i i( ) ( ) ( )+ = +1x x h                                                                   (5)

where ( )ih  is obtained from

( ) ( ) ( )( )i i
em
iB h f x= −                                                                 (6)

and ( )iB is an approximation to the Jacobian of the vector f with respect to emx at the ith iteration.  The

matrix B is updated at each iteration using Broyden’s update [8].

It is clear from (1)-(3) that the vector function f is obtained by evaluating P x( )em .  This can be

achieved through the process of parameter extraction.  This extraction step involves solving a subsidiary

optimization problem.  The parameter extraction step is discussed in more detail in Section III.

III. THE PARAMETER EXTRACTION STEP

In the parameter extraction step the parameters of the coarse model whose response matches the

fine model response are obtained.  It can be formulated as

os
em em

i
os osminimize

x
R x R x( ) ( )( ) − .                                                     (7)

The extracted parameters may not be unique, causing the technique to fail to converge.

A multi-point parameter extraction concept was proposed [2] to enhance the uniqueness of

parameter extraction at the expense of an increased number of fine model simulations.  This extraction

step is given by
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os
os os em emminimize  

x
R x x R x x( ) ( )+ − +∆ ∆ ,                                              (8)

simultaneously for a set of perturbations ∆x .  Thus the two models are matched at a number of points.

In [2], there were no guidelines regarding the selection as well as the number of points used for the multi-

point parameter extraction.  Also, there is one important drawback in the multi-point parameter extraction

procedure suggested in [2].  It was assumed that the perturbation ∆x is identical in both spaces.  This is

not reliable since the relation between the perturbations in the two spaces is determined by the matrix B,

which is an approximation of the Jacobian of the coarse model parameters with respect to the fine model

parameters, not by the identity matrix.  Our new algorithm, automates the selection of fine model points

used for the multi-point parameter extraction.  This new algorithm is presented in the next section.

IV. THE NEW ALGORITHM

At the ith iteration, the residual vector ( ) ( )( )i
em
i

o s
* f P x x= − defines the difference between

the vector of extracted coarse model parameters  os
i( )x = em

iP x( )( ) and the optimal coarse model design.  The

mapping between the two models is established if this residual vector is driven to zero.  It follows that the

value ( )if can serve as a measure of the misalignment between the two spaces in the ith iteration.  The

step taken in the ith iteration is obtained from

( ) ( ) ( ) ( ) ( )( )i T i i i T i B B I h B f+ = −λ                                                    (9)

where ( )iB  is an approximation to the Jacobian of the coarse model parameters with respect to the fine

model parameters at the ith iteration.  The parameter λ is selected such that the step obtained satisfies

( ) ,ih ≤δ where δ  is the size of the trust region.  This is done utilizing the iterative algorithm suggested

in [3].  The point suggested for the next iteration is em
i

em
i i ( ) ( ) ( ) .+ = +1x x h   Single point parameter extraction

is then applied at the point em
i( )+ 1x to get  i+

em
i

os
( 1) ( ) *( ) .f P x x= −+ 1   The point em

i( )+ 1x is accepted and the
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matrix ( )iB is updated using Broyden’s formula [8] if a success criterion related to the reduction in the

2l norm of the vector f is satisfied.  In our implementation, this success criterion is given by

( ) ( )( ) ( 1) ( ) ( ) ( ) ( ). .i i+ i i i  if f f f B h− > − +0 01                                         (10)

The success criterion (10) ensures that the ratio between the actual reduction in the 2l norm of the vector

f and the predicted reduction is greater than a certain value.  Otherwise, the validity of the extraction

process leading to ( )i + 1f at the suggested point em
i( 1)+x  is suspect.  The residual vector ( )i + 1f  is then used to

construct a candidate point from the point em
i( 1)+x by using (9).  This candidate point is then added to the

set of points employed for simultaneous parameter extraction at the point em
i( 1)+x : a new value for ( )i + 1f  is

obtained by solving

os
os os

i
em em

i
em emminimize 

x
R x B x x R x( ( )) ( )( ) ( 1)+ − −+ ,                                 (11)

simultaneously for all em Vx ∈ ,  where V is the set of fine model points used for multi-point parameter

extraction.  This multi-point parameter extraction step differs from (8) in one important aspect.  A

perturbation in the fine model space of em∆x corresponds to a perturbation in the coarse model space of

( )i
emB x∆ .  This is logical since the matrix ( )iB represents the most up-to-date approximation to the

mapping between the two spaces.  Thus, the available information about the mapping between the two

spaces is exploited.

The new extracted coarse model parameters either satisfy the success criterion (10) or they are

used to obtain another candidate point which is then added to the set V and the whole process is repeated.

See Fig. 1.  This recursive multi-point parameter extraction process is expected to improve the

uniqueness of the extraction step.  This may lead to the satisfaction of the success criterion (10) or the

step is declared a failure.  Failure is declared in one of two cases: either the vector of extracted

parameters approaches a limiting value with the success criterion not satisfied, or the number of fine

model simulations since the last successful iteration has reached n+1.  In the first case, the extracted
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coarse model parameters are trusted and the accuracy of the linearization used to predict ( )ih  is suspected.

Thus, to ensure a successful step from the current point em
i( )x , the trust region size is shrunk and a new

suggested point em
i( )+ 1x is obtained.  In the latter case, sufficient information is available to obtain an

estimate for the Jacobian of the fine model responses with respect to the fine model parameters.  This is

done by solving the system of linear equations

T
em
i

em
i

T
em
i

t

T
em
i

t
n-

T

Ti i

Ti
t

Ti
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where t
k( )x is the kth candidate point used for multi-point parameter extraction and t

k( )g is the

corresponding error between the fine model response and the optimal coarse model response.  This matrix

is then used to obtain a step ( )ih  in the parameter space by solving the system of equations

( ) ( ) ( )T i T i J J I h J g+ = −λ ,                                                            (13)

varying the parameter λ until ( ) .ih ≤δ  If there is no reduction in the 2l  norm of the vector function g,

the trust region is shrunk and (13) is resolved.  This is repeated until either the size of the trust region has

shrunk significantly and hence the algorithm terminates or a successful step is taken.  The successful step

is then used instead of the step obtained by (9).

At the end of each iteration, the ratio between the actual reduction in the 2l norm of the vector f

and the predicted reduction using linearization is used to check the accuracy of the linearization.  The

criterion

( ) ( )( ) ( 1) ( ) ( ) ( ) ( ).i i+ i i i  i f f f f B h− ≥ − +080                                            (14)

was used to check how accurate the linearization is.  If (14) is satisfied then we exploit the accuracy of

the linearization and increase the size of the trust region.
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In the initialization phase we assign em os
*(0)x x=  and (0)B I= , the identity matrix.  Also, we assign

values to the two parameters fδ and ε.  These two parameters are used to determine the termination

condition of the algorithm

As there is no iteration prior to the first iteration we are not able to compare the norm of f with a

previous value to ensure the uniqueness of the step.  To ensure the uniqueness of ( )0f , the multi-point

parameter extraction at the first point is repeated for an increasing number of points in the set V until it

approaches a limiting value.  This limiting value can then be trusted and the algorithm proceeds.  For any

iteration i ≥ 0, the basic steps taken are as follows.

Algorithm

Step 0 Given em
i( )x , ( )if , ( )iB and  i( )δ .  Set  i+( )1δ =  i( )δ .

Step 1 Obtain ( )ih by solving (9) with δ =  i( + )1δ .  Let ( )
2

( )i i+ =1δ h .

Step 2 If  i( + )1δ ≤ fδ  stop else evaluate em
i( +1)x using (5) and set V em

i= +{ }( 1)x .

Step 3 Apply multi-point parameter extraction using the points in the set V to obtain ( )i+1f .

Step 4 If the success criterion (10) is satisfied go to Step 9.

Step 5 If V  is equal to one go to Step 8.

Comment  V  denotes the cardinality of the set V.

Step 6 Compare ( )i + 1f obtained using V  fine model points with that previously obtained using V − 1

fine model points.  If ( )i + 1f  is approaching a limiting value shrink the trust region size

 i( )+ 1δ and go to Step 1.

Step 7 If V  is equal to n obtain an approximation for the Jacobian of the fine model responses, shrink

the trust region size  i( )+ 1δ , evaluate a new step ( )ih by solving (13) with δ =  i( )+ 1δ for a suitable

value of λ that results in the reduction in the 2l norm of the vector g and go to Step 2.
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Comment  The trust region is shrunk to ensure a successful step.

Step 8 Obtain a temporary point using em
i( )+ 1x , ( )i + 1f and  i( )+ 1δ .  Add this point to the set V and go to

Step 3.

Step 9 Update the matrix ( )iB to ( )i + 1B using Broyden’s formula [8].

Step 10 If em em
i

em em
iR x R x( ) ( )( 1) ( )+ − ≤ε  stop.

Step 11 Increase the trust region size  i( + )1δ if (14) is satisfied.

Step 12 Let i=i+1.  Go to Step 0.

The algorithm terminates if the size of the trust region  i( )+ 1δ has shrunk below a certain threshold

or if there is no significant change in the fine model responses in two consecutive iterations.  The

algorithm produces two main results.  These results are the final fine model design emx and the matrix B

which represents the mapping between the two spaces.

In our implementation, proper scaling is applied to the optimizable parameters to make them of

the same order.  The initial trust region size is taken as 2% to 10% of the ∞l  norm of the vector of scaled

parameters.
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V. EXAMPLES

Double-folded Stub Filter

We consider the design of the double-folded stub (DFS) microstrip structure shown in Fig. 2

(Bandler et al. [9]).  Folding the stubs reduces the filter area w.r.t. the conventional double stub structure

(Rautio [10]).  The filter is characterized by five parameters : W1 , W2 , S, L1 and L2  (see Fig. 2).  L1, L2

and S are chosen as optimization variables.  W1 and W2 are fixed at 4.8 mil.  The design specifications are

given by S21≥ -3 dB in the passband andS21≤ -30 dB in the stopband, where the passband includes

frequencies below 9.5 GHz and above 16.5 GHz and the stopband lies in the range [12 GHz, 14 GHz].

The structure is simulated by Sonnet’s em [4] through Empipe [6].  The coarse model is a coarse-grid em

model with cell size 4.8 mil by 4.8 mil.  The fine model is a fine-grid em model with cell size 1.6 mil by

1.6 mil.  Other parameters are summarized in Table I.

Fig. 3 shows the response along with the fine model em response evaluated using the optimal

coarse model parameters.  The time needed to simulate the structure (coarse model) at a single frequency

is only 5 CPU seconds on a Sun SPARCstation 10.  This includes the automatic response interpolation

carried out to accommodate off-grid geometries.

It is clear from Fig. 3 that the fine model response violates the design specifications at the starting

point.  The new ASM algorithm required only two iterations to reach the final design .  The algorithm’s

progress is shown in Table II.  The number of fine model points needed is 5.  Linear response

interpolation was enabled to simulate the off-grid fine model points.  The response of the fine model at

the final design is shown in Fig. 4.  The CPU time needed for the fine model is approximately 70 seconds

per frequency point.

HTS Filter

We consider optimization of a high-temperature superconducting (HTS) filter [1,11].  This filter

is illustrated in Fig. 5.  The specifications areS21≥ 0.95 in the passband and S21≤ 0.05 in the

stopband, where the stopband includes frequencies below 3.967 GHz and above 4.099 GHz and the
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passband lies in the range [4.008 GHz, 4.058 GHz].  The design variables for this problem are L1, L2, L3,

S1, S2 and S3.  We take L0 = 50 mil and W = 7 mil.  The coarse model exploits the empirical models of

microstrip lines, coupled lines and open stubs available in OSA90/hope.  The fine model employs a fine-

grid em simulation.  The material and physical parameters values used in both OSA90/hope and in em are

shown in Table III.  The coarse model is first optimized using the OSA90/hope minimax optimizer. The

fine model response at the optimal coarse model design is shown in Fig. 6.  The parameter extraction for

this problem has several solutions.  Fig. 7 shows how two of the extracted coarse model parameters

changed with the number of points used for parameter extraction in the first iteration.  The first point (1)

is obtained using normal parameter extraction.  These extracted values would have caused the original

ASM technique to diverge.  The new technique automatically generates a candidate point which is then

used together with the original point to carry out a two-point parameter extraction and the second point

(2) is obtained.  To confirm that this point is the required one a third candidate point is automatically

generated and the extraction is repeated using the three points to obtain the third extracted point (3).  The

second and third extracted points show that the extracted vector of coarse model parameters is

approaching a limiting value and can thus be trusted.  The coarse model responses corresponding to the

three extracted points of Fig. 7 are shown in Fig. 8.

For the remaining iterations, single point parameter extraction worked well.  The fine model

responses and the coarse model responses for the corresponding extracted points are shown in Fig. 9.

The final fine model design was obtained in 5 iterations which required 8 fine model simulations.  The

final fine model design is given in Table IV.  The fine model response at this design is shown in Fig. 10.

The passband ripples are shown in Fig. 11.

In the original space mapping approaches [1,11] this example required significant manual

intervention to successfully complete the parameter extraction phase.  Furthermore, without such

intervention the previous approaches would not work.
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Waveguide Transformers

Three designs, of two, three and seven-section waveguide transformers were considered.  The

two-section waveguide transformer is shown in Fig. 12.  These examples are classical microwave circuit

design problems [12].  Two different sets of models were used.  The first set exploits two empirical

models: an “ideal” analytical model which neglects the junction discontinuity and a more accurate

“nonideal” analytical model which includes the junction discontinuity effects [12].  The second set uses

the ideal analytical model of the first set as the coarse model while Maxwell Eminence [5] is used as the

fine model.  The designable parameters for these design problems are the height and length of each

waveguide section.

The two-section transformer is optimized using the two analytical models.  The optimum ideal

model response is shown in Fig. 13 along with the nonideal model response at the same point.  Our

algorithm terminated in three iterations, requiring 5 fine model simulations.  The final nonideal model

design is given in Table V.  The corresponding nonideal model response is shown in Fig. 14.  This

example is known to have more than one minimum for the parameter extraction step [2].  However, our

new algorithm converged successfully.  The number of simulations needed to align the two models is

smaller than that reported in [2].  The same transformer is then optimized using Maxwell Eminence and

the ideal analytical  model.  Nine adaptive passes were allowed for Maxwell Eminence with allowable

delta S set to 0.0001.  The initial fine model response is shown in Fig. 15.  The final design was obtained

in three iterations which required five Maxwell Eminence fine model simulations.  This is one half the

number of fine model simulations reported in [2].  The Maxwell Eminence fine model design is shown in

Table VI and the corresponding fine model response is shown in Fig. 16.

The previous steps were repeated for the three-section waveguide transformer.  The initial fine

model response is shown in Fig. 17.  Using the two analytical models the final design was obtained in

four iterations which required six fine model simulations.  This final design is shown in Table VII.  The



13

corresponding fine model response is indistinguishable from the optimal coarse model response as shown

in Fig. 18.

The design of the three-section transformer is then repeated using Maxwell Eminence and the

ideal analytical model.  We allowed only five adaptive passes with the same value of allowable delta S as

before.  The initial Maxwell Eminence fine model response is shown in Fig. 19.  The algorithm

terminated in two iterations with a total number of nine fine model simulations.  Most of these fine model

simulations were used to shrink the trust region around the final design.  The final design is shown in

Table VIII.  The corresponding Maxwell Eminence fine model response is shown in Fig. 20.

The design of a seven-section waveguide transformer was also considered.  The designable

parameters for this problem are the height and length of each waveguide section.  Using the two

analytical models, the final design was obtained in three iterations which required six fine model

simulations.  The initial fine model response is shown in Fig. 21.  The fine model response corresponding

to the final design is almost identical to the optimal coarse model response as shown in Fig. 22.  Table IX

shows the final fine model design.

Finally, the design of the seven-section transformer was carried out using Maxwell Eminence and

an ideal analytical model.  We allowed ten refinement passes with allowable delta S of 0.001.   The

algorithm terminated in three iterations which required eleven Maxwell Eminence fine model

simulations.  The initial Maxwell Eminence response is shown in Fig. 23.  The final fine model response

is shown in Fig. 24.  Table X shows the corresponding Maxwell Eminence fine model design.

A Three-section Waveguide Transformer with Rounded Corners [13]

In this example we considered the design of a three-section transformer with rounded corners.

The designable parameters for this problem are the height and length of each waveguide section. The

specifications are S11≤ -30 dB for a range of frequencies extending from 9.5 GHz to 15 GHz.  The fine

model of this circuit exploits HP HFSS [7].  The coarse model exploits an ideal empirical model that does
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not take into account the rounding of the corners.  One quadrant of the transformer is shown in Fig. 25.

We exploited the geometrical symmetry of the problem to reduce the required CPU time of HP HFSS.

Each time a new HP HFSS simulation is requested by the algorithm a new project is created

using the new values for the length and height of each section.  To facilitate this process, a MATLAB

[14] program was developed that converts the values of the designable parameters into the corresponding

HP HFSS drawing commands with the appropriate values.  This approach accelerates the generation of

new HP HFSS projects and eliminates the possibility of wrong dimensions.

The initial response of the fine model at the optimal coarse model design is shown in Fig. 26.

Clearly, the specifications are slightly violated at this point.  Only one iteration was needed to reach the

final fine model design.  The required number of HP HFSS simulations is seven.  The first three of these

simulations were needed to trust the parameter extraction at the first point.  The other fine model points

were needed to contract the size of the trust region to the termination size.  The final HP HFSS fine

model design is given in Table XI.  The corresponding fine model response is shown in Fig. 27.

VI. MONTE CARLO ANALYSIS USING SPACE MAPPING [9]

The final B matrix obtained by the algorithm represents the best available information about the

mapping between the two spaces.  A perturbation of ∆ emx  in the fine model space is mapped to a

perturbation of ∆ osx in the coarse model space by

∆ ∆os emx B x=                                                                   (15)

The perturbations in the coarse model space and fine model space are with respect to os
*x and emx ,

respectively.  The established mapping can be used to perform a space-mapped Monte Carlo analysis [9]

for  the problem under consideration.  The random points generated in the fine model space are mapped

to the coarse model space using (15).  Coarse model simulations are then used instead of the CPU

intensive fine model points.  This statistical analysis should enjoy the speed of the coarse model and the

accuracy of the fine model.
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To demonstrate this approach we carried out a Monte Carlo analysis of the three-section

waveguide transformer with rounded corners.  The fine model parameters were assumed to be uniformly

distributed with tolerances of 1%, 2% and 5%.  The corresponding responses are shown in Figs. 28, 29

and 30.  The estimated yields for these tolerances are 39%, 4% and 0%.

VII. CONCLUSIONS

A powerful new algorithm implementing the aggressive space mapping technique is introduced.

The new algorithm automatically improves the uniqueness of the parameter extraction step, the most

critical step in the space mapping process, and exploits all available fine model simulations.  Also, the

proposed algorithm integrates the trust region concept with the original ASM technique.  Through

examples which have proved difficult in the past we show that the new ASM algorithm automatically

overcomes the nonuniqueness of the parameter extraction step in a logical way.   The results show that

very few EM simulations are needed to reach the final design.  We showed also how the established

mapping between the two spaces can be used to carry out a space-mapped Monte Carlo analysis of the

fine model.
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TABLE I
MATERIAL AND PHYSICAL PARAMETERS FOR THE COARSE

AND FINE em MODELS OF THE DFS FILTER

Model Parameter Value

substrate dielectric constant 9.9
substrate thickness (mil) 5
shielding cover height (mil) ∞
conducting material thickness 3.0E-6
substrate dielectric loss tangent 2.0E-3
resistivity of metal (Ωm) 1.72E-8
magnetic loss tangent 0
surface reactance (Ω /sq) 0
lower frequency limit (GHz) 5
upper frequency limit (GHz) 20
frequency increment size (GHz) 0.25

TABLE II
VALUES OF OPTIMIZABLE PARAMETERS AT EACH ITERATION

FOR THE DFS FILTER

Parameter em
(0)x em

(1)x em
( )2x

L1 88.8 89.5 94.3

L2 84.1 84.6 85.4

S 3.9 4.7 4.7

all values are in mils
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TABLE III
MATERIAL AND PHYSICAL PARAMETERS

FOR THE HTS FILTER

Model Parameter OSA90/hope em

substrate dielectric constant 23.425 23.425
substrate thickness (mil) 19.9516 19.9516
shielding cover height (mil) ∞ 250
conducting material thickness 1.968E-2 0
substrate dielectric loss tangent 3.0E-5 3.0E-5
resistivity of metal (Ωm) 0 4.032E-8
surface roughness of metal 0 
magnetic loss tangent  0
surface reactance (Ω /sq)  0
x-grid cell size (mil)  1.00
y-grid cell size (mil)  1.75

TABLE IV
THE INITIAL AND FINAL DESIGNS OF THE FINE MODEL

FOR THE HTS FILTER

Parameter em
(0)x em

( )5x

L1 188.33 181.43
L2 197.98 200.51
L3 188.58 180.49
S1 21.97 19.44
S2 99.12 80.52
S3 111.67 83.41

all values are in mils
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TABLE V
VALUES OF OPTIMIZABLE PARAMETERS AT EACH ITERATION OF THE NEW

 ASM TECHNIQUE FOR THE TWO-SECTION WAVEGUIDE TRANSFORMER
 USING TWO ANALYTICAL MODELS

Parameter em
(0)x em

(1)x em
( )2x em

( )3x

b1 0.712 0.715 0.716 0.716

b2 1.395 1.400 1.402 1.402

L1 1.657 1.591 1.560 1.560

L2 1.590 1.541 1.518 1.518
all values are in cm

TABLE VI
VALUES OF OPTIMIZABLE PARAMETERSAT EACH ITERATION OF  THE NEW ASM

TECHNIQUE FOR THE TWO-SECTION WAVEGUIDE TRANSFORMER USING
MAXWELL EMINENCE AND AN IDEAL ANALYTICAL MODEL

Parameter em
(0)x em

(1)x em
( )2x em

( )3x

b1 0.712 0.713 0.719 0.716

b2 1.395 1.397 1.408 1.402

L1 1.657 1.595 1.565 1.567

L2 1.590 1.535 1.517 1.517
all values are in cm

TABLE VII
VALUES OF OPTIMIZABLE PARAMETERS AT EACH ITERATION OF THE NEW

 ASM TECHNIQUE FOR THE THREE-SECTION WAVEGUIDE
TRANSFORMER USING TWO ANALYTICAL MODELS

Parameter em
(0)x em

(1)x em
( )2x em

( )3x em
( )4x

b1 0.903 0.905 0.881 0.891 0.892
b2 1.371 1.363 1.298 1.325 1.325
b3 1.736 1.718 1.692 1.701 1.702
L1 1.549 1.500 1.500 1.489 1.489
L2 1.584 1.575 1.575 1.575 1.577
L3 1.646 1.768 1.880 1.853 1.850

all values are in cm
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TABLE VIII
VALUES OF OPTIMIZABLE PARAMETERS AT EACH ITERATION OF THE NEW ASM

TECHNIQUE FOR THE THREE-SECTION WAVEGUIDE TRANSFORMER
 USING MAXWELL EMINENCE AND AN IDEAL ANALYTICAL MODEL

Parameter em
(0)x em

(1)x em
( )2x

b1 0.903 0.898 0.893
b2 1.371 1.340 1.327
b3 1.736 1.707 1.703
L1 1.549 1.514 1.495
L2 1.584 1.566 1.568
L3 1.646 1.810 1.848

all values are in cm

TABLE IX
VALUES OF OPTIMIZABLE PARAMETERS AT THE INITIAL AND FINAL

DESIGN FOR THE SEVEN-SECTION WAVEGUIDE TRANSFORMER
USING TWO ANALYTICAL MODELS

Parameter em
(0)x em

( )3x

b1 7.86732 7.87152
b2 6.61888 6.64855

b3 4.68540 4.74039

b4 2.91987 2.96613

b5 1.81412 1.83659

b6 1.27658 1.28401

b7 1.06847 1.06967

L1 7.10588 7.24590

L2 7.12201 7.08753

L3 7.11760 6.91817

L4 7.12331 6.90979

L5 7.12815 6.98383

L6 7.12154 7.03845

L7 7.12945 7.07431

all values are in cm
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TABLE X
VALUES OF OPTIMIZABLE PARAMETERS AT THE INITIAL AND FINAL DESIGN

FOR THE SEVEN-SECTION WAVEGUIDE TRANSFORMER USING
 MAXWELL EMINENCE AND AN IDEAL ANALYTICAL MODEL

Parameter em
(0)x em

( )3x

b1 7.86732 7.87494
b2 6.61888 6.65247

b3 4.68540 4.74347

b4 2.91987 2.97030

b5 1.81412 1.84134

b6 1.27658 1.28891

b7 1.06847 1.07201

L1 7.10588 7.18744

L2 7.12201 7.03537

L3 7.11760 6.89166

L4 7.12331 6.89697

L5 7.12815 6.98825

L6 7.12154 7.05869

L7 7.12945 7.12572

all values are in cm

TABLE XI
VALUES OF OPTIMIZABLE PARAMETERS AT EACH ITERATION OF THE  NEW ASM
TECHNIQUE FOR THE THREE-SECTION WAVEGUIDE TRANSFORMER WITH ROUND

CORNERS USING HPHFSS AND AN IDEAL ANALAYTICAL MODEL

Parameter em
(0)x em

(1)x

b1 0.33276 0.32971
b2 0.26551 0.26396
b3 0.21186 0.20978
L1 0.32556 0.33208
L2 0.32640 0.32335
L3 0.32556 0.32192

all values are in inch
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parameter extraction fails; an additional point        is obtained and multi-point parameter
extraction is carried out to sharpen the solution

Fig. 1.  Illustration of the automated multi-point parameter extraction.

xos,1

xos,2

P x( )em
i + 1

xem,1

xem,2

em
ix

em
i + 1x

t
1x

initial parameter extraction at the suggested point

xos,1

xos,2

 xem,1

xem,2

P x( )em
i + 1

em
ix

em
i+ 1x

xos,1

xos,2

P x( )em
i

xem,1

xem,2

em
ix

the current state at the ith iteration

t
1x

em
i+ 1x

trust region

trust region

 a temporary point



23

Fig. 2.  The DFS filter [9].
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Fig. 3.  The optimal coarse model response ( ) and the fine model response (ο)

                                 at the starting point for the DFS filter .
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Fig. 5.  The structure of the HTS filter [1,11].
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Fig. 6.  The optimal coarse model response ( ) and the fine model response (ο)
                                 at the starting point for the HTS filter.
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Fig. 7.  The variation of two of the extracted coarse model parameters in the first iteration with the
number of points used for parameter extraction where (1) is obtained using a  single fine model
point, (2) is obtained using two fine model points and (3) is obtained using three fine model
points.
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Fig. 8.  The coarse model response ( ) and the fine model response (ο) corresponding to the three

extracted points in Fig. 7 where (a) is obtained using a single fine model, (b) is obtained using
two fine model points and (c) is obtained using three fine model points.
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                                       (a)                                                                                  (b)

                                        (c)                                                                                      (d)

Fig. 9.  The coarse model response ( ) at the extracted point and the fine model
                response (ο) corresponding to the second, third, fourth and fifth iterations.
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Fig. 10.  The optimal coarse model response ( ) and the final fine model
response (ο) for the HTS filter.
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Fig. 11.  The optimal coarse model response ( ) and the final fine model
                                         response (ο) for the HTS filter in the passband.
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Fig. 13.  The optimal response of the ideal analytical model ( ) and the response of the nonideal
analytical model (ο) at the starting point for the two-section waveguide transformer.
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Fig. 14.  The optimal response of the ideal analytical model ( ) and the final response of the nonideal
analytical model (ο) for the two-section waveguide transformer.

Fig. 12.  A typical two-section waveguide transformer.
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Fig. 15.  The optimal response of the ideal analytical model ( ) and the response of Maxwell
Eminence (ο) at the starting point for the two-section waveguide transformer.
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Fig. 16.  The optimal response of the ideal analytical model ( ) and the final Maxwell
Eminence response (ο) for the two-section waveguide transformer.
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Fig. 17.  The optimal response of the ideal analytical model ( ) and the response of the
nonideal analytical model (ο) at the starting point for the three-section waveguide
transformer.
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Fig. 18.  The optimal response of the ideal analytical model ( ) and the final response of the
nonideal analytical model (ο) for the three-section waveguide transformer.
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Fig. 19.  The optimal response of the ideal analytical model ( ) and the response of Maxwell
Eminence (ο) at the starting point for the three-section waveguide transformer.
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Fig. 20.  The optimal response of the ideal analytical model ( ) and the final Maxwell
Eminence response (ο) for the three-section waveguide transformer.
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Fig. 21.  The optimal ideal analytical model response ( ) and the response of the nonideal
analytical model (ο) at the starting point for the seven-section waveguide
transformer.
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Fig. 22.  The optimal response of the ideal analytical model ( ) and the final response of the
nonideal analytical model (ο) for the seven-section waveguide transformer.
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Fig. 23.  The optimal response of the ideal analytical model ( ) and the response of Maxwell
Eminence (ο) at the starting point for the seven-section waveguide transformer.

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
1.00

1.01

1.02

1.03

1.04

1.05

frequency (GHz)

Fig. 24.  The optimal response of the ideal analytical model ( ) and the final Maxwell
Eminence response (ο) for the seven-section waveguide transformer.
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Fig. 25.  The simulated part of the three-section waveguide transformer with rounded corners [13].
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Fig. 26.  The optimal response of the ideal analytical model ( ) and the response of HP
HFSS (ο) at the starting point for the three-section waveguide transformer with
rounded corners.
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Fig. 27.  The optimal response of the ideal analytical model ( ) and the final HP HFSS
response (ο) for the three-section waveguide transformer with rounded corners.

9 10 11 12 13 14 15

frequency (GHz)

-70

-60

-50

-40

-30

-20

-10

Fig. 28.  Monte Carlo analysis for the three-section waveguide transformer with rounded
corners assuming 1% uniformly distributed parameters.
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Fig. 29.  Monte Carlo analysis for the three-section waveguide transformer with rounded
corners assuming 2% uniformly distributed parameters.
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Fig. 30.  Monte Carlo analysis for the three-section waveguide transformer with rounded
corners assuming 5% uniformly distributed parameters.
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