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Abstract
A robust new algorithm for EM optimization of microwave circuits is presented. The algorithm

integrates a trust region methodology with the aggressive space mapping (ASM). The trust region
ensures that each iteration results in improved alignment between the coarse and fine models needed to
execute ASM. The parameter extraction step isacrucial part of the ASM technique. The nonuniqueness
of this step may result in the divergence of the technique. To improve the uniqueness of the extraction
phase we developed a recursive multi-point parameter extraction. This suggested step exploits al the
available electromagnetic (EM) simulations for improving the uniqueness of parameter extraction. The
new algorithm was successfully used to design a number of microwave circuits. Examples include the
EM optimization of a double-folded stub filter and of an HTS filter using Soneet's The proposed
algorithm was also used to design two-section, three-section and seven-section waveguide transformers
exploiting Maxwell Eminence. The design of a three-section waveguide transformer with rounded
corners was carried out using HP HFSS. We show how the mapping can be used to carry out Monte

Carlo analysis using only coarse model simulations.
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I.INTRODUCTION

A novel agorithm for aggressive space mapping (ASM) optimization [1] is introduced. Space
mapping aims at aligning two different simulation models: a “coarse” model, typically an empirical
circuit simulation and a “fine” model, typically a full wave EM simulation. The technique combines the
accuracy of the fine model with the speed of the coarse model. Parameter extraction is a crucial part of
the technique. In this step the parameters of the coarse model whose responses match the fine model
responses are obtained. The extracted parameters may not be unique, causing the technique to fail to
converge.

Recently, a multi-point parameter extraction concept was proposed [2] to enhance the uniqueness
of the extraction step at the expense of an increased number of fine model simulations. The selection of
points was arbitrary, not automated and no information about the mapping between the two spaces was
taken into account.

Our proposed ASM algorithm automates the selection of fine model points used for the multi-
point parameter extraction process. In the multi-point parameter extraction, an iterative approach utilizes
all the fine model points simulated since the last successful iteration. Also, the current approximation to
the mapping between the two spaces is integrated into the parameter extraction step. The space mapping
step at each iteration is constrained by a suitable trust region [3].

The new algorithm was applied to a number of examples. The EM swivg§4] was used
successfully to optimize the design of an HTS filter and a double-folded stub filter. Maxwell Eminence
[5] through Empipe3D [6] was used as a fine model to design two-section, three-section and seven-
sections waveguide transformers. HP HFSS [7] was used to carry out the optimization of a three-section
waveguide transformer with rounded corners. The coarse models for these examples exploited either a
coarse grid EM model or circuit-theoretic/analytical models. The different types of models used

illustrate the flexibility of selection of coarse and fine models.



The required number of fine model simulations to obtain the final design, as demonstrated by the
examples, is of the order of the problem dimension. Such designs would otherwise be obtained by
computationally very expensive direct optimizations of the fine models.

The agorithm also establishes a mapping between the two spaces, the fine model space and the
coarse model space. This mapping is updated at each iteration of the algorithm. The final mapping can
be used to carry out a space-mapped Monte Carlo analysis of the fine model exploiting only coarse model
simulations. We demonstrate this approach by performing a statistical analysis of the three-section

waveguide transformer with rounded corners simulated by HP HFSS.

Il. THE AGGRESSIVE SPACE MAPPING TECHNIQUE
It is assumed that the circuit under consideration can be simulated using two models: a fine
model and a coarse model. The fine model is accurate but is computationally intensive. This model can,
for example, be a finite element model. We refer to the vector of parameters of this model as Xem. The
coarse model is a fast model but it is less accurate than the fine model. This model can be a circuit-

theoretic empirical model. The vector of parameters of this model isreferred to as xos -

The first step of the technique is to obtain the optimal design of the coarse model Xos. The

technigue aims at establishing a mapping P between the two spaces [1]

Xos = P (Xem) D
such that
|Rem(Xem) = Ros(xos)| < & 2
where Rqy is the vector of fine model responses, Ry is the vector of coarse mode responses and || || isa
suitable norm. The error function
f =P (Xem) ~ Xos 3



isfirst defined. The final fine model design is obtained and the mapping is established if a solution for
the system of nonlinear equations
f(Xem) =0 (4)
isfound.
Let x&) be the ith iterate in the solution of (4). The next iterate x{:Y is found by a quasi-
Newton iteration
x&n? = x&h+h0 ©)
where h) is obtained from
BOhY =—1(x&) (6)
and B is an approximation to the Jacobian of the vector f with respect to Xemat the ith iteration. The

matrix B is updated at each iteration using Broyden'’s update [8].

It is clear from (1)-(3) that the vector functibns obtained by evaluatin®(x.n). This can be

achieved through the process of parameter extraction. This extraction step involves solving a subsidiary

optimization problem. The parameter extraction step is discussed in more detail in Hection

[Il. THE PARAMETER EXTRACTION STEP

In the parameter extraction step the parameters of the coarse model whose response matches the

fine model response are obtained. It can be formulated as

mini mize“ Rem(X(eir%) - Ros(Xos)

os

The extracted parameters may not be unique, causing the technique to fail to converge.

(7)

A multi-point parameter extraction concept was proposed [2] to enhance the uniqueness of

parameter extraction at the expense of an increased number of fine model simulations. This extraction

step is given by



minimize “Ros(Xos"' AX ) = Rem(Xem* AX )H1 8
Xos

simultaneously for a set of perturbations Ax . Thus the two models are matched at a number of points.
In[2], there were no guidelines regarding the selection as well as the number of points used for the multi-
point parameter extraction. Also, there is one important drawback in the multi-point parameter
extraction procedure suggested in [2]. It was assumed that the perturbation Ax is identical in both spaces.
This is not reliable since the relation between the perturbations in the two spaces is determined by the
matrix B, which is an approximation of the Jacobian of the coarse model parameters with respect to the
fine model parameters, not by the identity matrix. Our new algorithm, automates the selection of fine
model points used for the multi-point parameter extraction. This new agorithm is presented in the next

section.

IV.THE NEW ALGORITHM
At the ith iteration, the residual vector f V= P (x{2) — x’.. defines the difference between

the vector of extracted coarse model parameters x 1 =P (x4)) and the optimal coarse model design. The
mapping between the two models is established if this residual vector is driven to zero. It follows that
the value H f (i)H can serve as a measure of the misalignment between the two spaces in the ith iteration.
The step taken in theith iteration is obtained from

(B(i)T B(i) + 11 )h(i) - _ B(i)T f (i) (9)
where B" is an approximation to the Jacobian of the coarse model parameters with respect to the fine

model parameters at the ith iteration. The parameter A is selected such that the step obtained satisfies

Hh(‘)” < J, where J isthe size of the trust region. Thisis done utilizing the iterative algorithm suggested
in[3]. The point suggested for the next iteration is x&9 = x&) +h®. Single point parameter extraction

is then applied at the point x4 to get f{™=P(x{#D) - x&. The subscript of the vector f is used to



denote the number of points used in the parameter extraction. The absence of a subscript is used to
denote a trusted value for that vector. The point x4 is accepted and the matrix B® is updated using
Broyden’s formula [8] if a success criterion related to the reduction in/imerm of the vectof is
satisfied. In our implementation, this success criterion is given by

Jr-fr¢) oo -+ o @

The success criterion (10) ensures that the ratio between the actual reductiof, imottme of the vector

f and the predicted reduction is greater than a certain.vdlileerwise, the validity of the extraction
process leading tb{*? at the suggested poind;” is suspect. The residual vectbf ™ is then used to
construct a candidate point from the poidt” by using (9). This candidate point is then added to the
set of points employed for simultaneous parameter extraction at thexdgtht a new value forf Ejll’ is

obtained by solving

minimize ‘ Ros(Xos+ B(i) (Xem—XQ";l) ) - Rem(Xem)”! (11)

XOS
simultaneously for allxen [V, whereV is the set of fine model points used for multi-point parameter
extraction. This multi-point parameter extraction step differs from (8) in one important aspect. A

perturbation in the fine model space X« corresponds to a perturbation in the coarse model space of

B Axen. This is logical since the matriB®" represents the most up-to-date approximation to the
mapping between the two spaces. Thus, the available information about the mapping between the two
spaces is exploited.

The new extracted coarse model parameters either satisfy the success criterion (10) or they are
used to obtain another candidate point which is then added to Marséthe whole process is repeated.
See Fig. 1. This recursive multi-point parameter extraction process is expected to improve the
uniqueness of the extraction step. This may lead to the satisfaction of the success criterion (10) or the

step is declared a failure. Failure is declared in one of two cases: either the vector of extracted



parameters approaches a limiting value with the success criterion not satisfied, or the number of fine

model simulations since the last successful iteration has reached n+1. In the first case, the extracted
coarse model parameters are trusted and the accuracy of the linearization used to predict h® is
suspected. Thus, to ensure a successful step from the current point x4, the trust region size is shrunk

and a new suggested point x4:?is obtained. In the latter case, sufficient information is available to

obtain an estimate for the Jacobian of the fine model responses with respect to the fine model parameters.

Thisis done by solving the system of linear equations
_ _ i i\ T
E{xg%—xgﬁl))% E{g(')—g(' Y) E
() — (DT Oqh_qm' 0
E(Xem .Xt ) EJT:D(Q (ON ) 0 (12)
@( . % 0 : 0
Goxo'S Rgo-gr
where x¥is the kth candidate point used for multi-point parameter extraction gfidis the
corresponding error between the fine model response and the optimal coarse model response. This

matrix is then used to obtain a ste}) in the parameter space by solving the system of equations
(373 +A)h® =-37g", (13)
varying the parametet until||h(‘)|| < 0. If there is no reduction in thé, norm of the vector functiog,

the trust region is shrunk and (13) is resolved. This is repeated until either the size of the trust region has
shrunk significantly and hence the algorithm terminates or a successful step isTthkesuccessful step
is then used instead of the step obtained by (9).
At the end of each iteration, the ratio between the actual reduction i3 tleem of the vectof
and the predicted reduction using linearization is used to check the accuracy of the linearization. The

criterion

Jzosofj 0|10+ 50 1 as

(AR



was used to check how accurate the linearization is. If (14) is satisfied then we exploit the accuracy of

the linearization and increase the size of the trust region.
In the initialization phase we assign x9 = x4 and B =1 , the identity matrix. Also, we assign
values to the two parameters or and & These two parameters are used to determine the termination

condition of the algorithm

Asthereis no iteration prior to the first iteration we are not able to compare the norm of f with a
previous value to ensure the uniqueness of the step. To ensure the uniqueness of f(?, the multi-point

parameter extraction at the first point is repeated for an increasing number of points in the set V until it
approaches alimiting value. This limiting value can then be trusted and the algorithm proceeds. For any
iteration i = 0, the basic steps taken are as follows.

Algorithm

Sep0  Given x@, fO,BOandg® . Setg ™V =50,
Sepl Obtain h by solving (9) with =52 | Let 5D =||h(”||2-

Sep2 If 57V < ¢ stop elseevaluate x{: using (5) , set V ={x{V} and k =1.
Comment Kk isthe number points used for parameter extraction.
Sep3  Apply multi-point parameter extraction using the pointsin the set V to obtain f E*l’.

Sep4  If the success criterion (10) is satisfied go to Step 9.

Sep5 If kisequal to onegoto Step 8.

Sep6 I | £ - 1)

‘s g; shrink thetrust region size ¢ (*? and go to Step 1.

Sep7 If kisequa to n obtain an approximation for the Jacobian of the fine model responses,

evaluate a new step h® by solving (13) with =0 *? for a suitable value of A that results in

the reduction in the ¢, norm of the vector g, shrink the trust region size (*? and go to Step 2.



Comment The trust region is shrunk after obtaining the step h to enable the algorithm to proceed with
asmaller trust region size if this step fails.
Sep8  Obtain atemporary point xX using x&?, U™ and 5 (Y by solving
(B(i)T B(i) + A1 ) h{( - _ B(i)T fg+l) ,
where ||h‘t<|| <5V and xk = x{D + he. Add this point to the set V, set k=k+1and go to Step 3.
Sep9  Set = (") and update the matrix B to B@*? using Broyden’s formula [8].
Comment The vectorf {*¥ is trusted and is used to update the mdrix
Sep10  If [Ren(xEi") ~ Rem(x&)] < & stop.
Sep 11 Increase the trust region siaé*? if (14) is satisfied.

Sep 12 Leti=i+1. Goto Step 0.

The algorithm terminates if the size of the trust regwh* has shrunk below a certain
threshold or if there is no significant change in the fine model responses in two consecutive iterations.
The algorithm produces two main results. These results are the final fine model dgsignl the

matrix B which represents the mapping between the two spaces.
In our implementation, proper scaling is applied to the optimizable parameters to make them of

the same order. The initial trust region size is taken as 2% to 10% df.thmorm of the vector of

scaled parameters.



V.THE CURRENT IMPLEMENTATION
A MATLAB [9] program was written that implements the algorithm discussed in Section V.
This program requires that a settings data file be generated first. The data fileis a MATLAB data file
(-mat) and is used to describe the important details of the problem under consideration. It contains the
following variables:
n isthe number of designable parameters
mis the number of responses generated for the fine model and the coarse model. It also represents
the number of responses used to match the fine model response and the coarse model response in

the parameter extraction step

Xos opt 1S the optimal coarse model design
xem iStheinitial fine model response and is set to be equal t0 Xos opt -
Ros opt 1Sthe coarse model response corresponding to xos opt

Rem 1S the fine model response corresponding to xegm

B istheinitial approximation to the Jacobian matrix of the coarse model parameters with respect to
the fine model parameters. Itisinitilaized by the identity matrix.
etta is atermination condition for the trust region
The first step in the MATLAB program is to load this data file to setup the problem. The
algorithm then proceeds. Each time afine model simulation is needed the MATLAB program generates
atext file (ssmulate.dat) containing the values of the different fine model parameters. The MATLAB
program then switches to the keyboard mode. This enables MATLAB to stop the execution of the
algorithm until the fine model simulation is done.
In our current implementation we use OSA90/hope as a platform for obtaining the fine model
responses and the results of the parameter extraction step. Two OSA90/hope input files are generated for

the problem under consideration. The fine model parameters sent by MATLAB in the file (simulate.dat)

10



is pasted into that first file which calls the fine model smulator. The Report feature available in
OSA90/hope is then used to save the fine model simulation results into a text file (simulate.m) that can
be loaded into the MATLAB program. The MATLAB program then switches from the keyboard mode
to the normal mode to process the received fine model responses A typical file that is used for generating
the fine model responsesis given in Appendix A.

The second file is used to carry out the multi-point parameter extraction. When a multi-point
parameter extraction is needed, the MATLAB program generates a text file (extract.dat) containing three
matrices. Thefirst of these matricesisthe matrix V of size (n+1)xn. Each row in this matrix corresponds
to one of the points used for the parameter extraction step. The first row contains the center point of the
multi-point parameter extraction. The second matrix is of dimension (n+1)xm. Each row of this matrix
contain the fine model responses corresponding to the points in the rows of the first matrix. The third
matrix represents the current approximation to the Jacobian of the coarse model parameters with respect
to the fine model parameters. These three matrices are pasted into the second OSA90/hope input file.
The second file then invokes the coarse model simulator and the result of the parameter extraction is
saved in atext file (extract.m). This result is then loaded into the MATLAB program. A typica file

used for the multi-point extraction is given in Appendix B.

V.EXAMPLES
A Two-Section 10:1 quarter wave transfor mer
The proposed algorithm is used for the design of a two-section 10:1 quarter wave transformer.
The designable parameters for this problem are the electrical lengths of the two transmission lines at f
=1.0 GHz. The design constraints for this problem are [1S;;['< 0.50 in the frequency range 0.5 GHz < f
<1.5 GHz. Theideal transmission line model supplied by OSA90/hope [6] is used in the coarse model.
Figs. 1 and 2 show the coarse model and the fine model of the filter, respectively. The fine model

includes some parasitic capacitances which exist usually in practice. The values of the characteristic
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impedances of both linesare givenin Table I. The values of the parasitic capacitances are given in Table
.

The coarse model is first optimized using the minimax optimizer. It turned out that the quarter
wave length is the optimal design for the coarse model for both lines. The minimax contours for the
coarse model problem are shownin Fig. 3. Theinitial design of the fine model is taken to be the optimal
design of the coarse model. The fine model responses at the starting point are shown in Fig. 4. Also, the
minimax contours for the fine model problem are shown in Fig. 5. The number of required iterationsis
only two iterations. These two iterations required only four fine model simulations. Tablelll shows the
obtained fine model design at each iteration. The optimal fine model responses are shown in Fig. 6.
Also, the contours of the parameter extraction objective function for the first iteration are shown in Fig. 7
with atrace of the step. The change in the norm of the vector f for each iteration is shown in Fig.

It is clear from the contours of the parameter extraction step shown in Fig. 8 that the step is a
well-behaved one. The smooth and fast convergence of this problem suggests that the mapping between
the two spaces is close to the initial identity mapping. The fast convergence of the algorithm can also be

noticed in Fig. 9, which shows the change in the ¢, norm of the vector f for each iteration.

A Three-Section 3:1 microstrip transformer

The proposed algorithm is used to obtain an optimal design for a three-section 3:1 microstrip
transformer [10], [11]. Thefilter isshown in Fig. 10. The design constraints for this problem are [0S, [
0.11 in the frequency range 5 GHz < f <15 GHz. The designable parameters are the width and length of
each microstrip section. The coarse model utilizes the ideal transmission line model supplied by
OSA90/hope [6]. The fine model utilizes the microstrip and microstrip steps supplied by the same
simulator.

The coarse model is first optimized using the minimax optimizer. The optimal coarse model

solution is taken as the initial guess for the fine model design. The responses of the fine model at the

12



starting point are shown in Fig. 11. The final solution for this problem is obtained in only two iteration.
However, atotal of six fine model simulations were needed. Most of these simulations were required to
shrink the trust region to the required accuracy to ensure the optimality of the final point. Table IV
shows the initial and final designs of the fine model. The optimal fine model responses are shown in Fig.
12. Fig. 13 showsthe change in the ¢, norm of the vector f at each iteration.

Double-folded Stub Filter

We consider the design of the double-folded stub (DFS) microstrip structure shown in Fig. 14
(Bandler et al. [12]). Folding the stubs reduces the filter area w.r.t. the conventional double stub
structure (Rautio [13]). The filter is characterized by five parameters: Wy , W, , S L1 and L, (see Fig.

14). L4, Ly and S are chosen as optimization variables. W; and W, are fixed at 4.8 mil. The design
specifications are given by [0S -3 dB in the passband andJSy1 [k -30 dB in the stopband, where the
passband includes frequencies below 9.5 GHz and above 16.5 GHz and the stopband lies in the range [12
GHz, 14 GHz]. The structure is simulated by Sonretid4] through Empipe [6]. The coarse model is
a coarse-gricem model with cell size 4.8 mil by 4.8 mil. The fine model is a fine-gndmodel with
cell size 1.6 mil by 1.6 mil. Other parameters are summarized in Table V.

Fig. 15 shows the response along with the fine mealetesponse evaluated using the optimal
coarse model parameters. The time needed to simulate the structure (coarse model) at a single frequency
is only 5 CPU seconds on a Sun SPARCstation 10. This includes the automatic response interpolation
carried out to accommodate off-grid geometries.

It is clear from Fig. 15 that the fine model response violates the design specifications at the
starting point. The new ASM algorithm required only two iterations to reach the final design . The
algorithm’s progress is shown in Table VI. The number of fine model points needed is 5. Linear
response interpolation was enabled to simulate the off-grid fine model points. The response of the fine
model at the final design is shown in Fig. 16. The CPU time needed for the fine model is approximately

70 seconds per frequency point.
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HTSFilter

We consider optimization of a high-temperature superconducting (HTS) filter [1,14]. Thisfilter
is illustrated in Fig. 17. The specifications arel 1S 0.95 in the passband and [0Sk 0.05 in the
stopband, where the stopband includes frequencies below 3.967 GHz and above 4.099 GHz and the
passhand lies in the range [4.008 GHz, 4.058 GHZz]. The design variables for this problem are Ly, Lo, L3,
S, S and S3. Wetake Lo = 50 mil and W=7 mil. The coarse model exploits the empirical models of
microstrip lines, coupled lines and open stubs available in OSA90/hope. The fine model employs a fine-
grid em simulation. The material and physical parameters values used in both OSA90/hope and in em
are shown in Table VII. The coarse model is first optimized using the OSA 90/hope minimax optimizer.
The fine model response at the optima coarse model design is shown in Fig. 18. The parameter
extraction for this problem has several solutions. Fig. 19 shows how two of the extracted coarse model
parameters changed with the number of points used for parameter extraction in the first iteration. The
first point (1) is obtained using normal parameter extraction. These extracted values would have caused
the origina ASM technique to diverge. The new technique automatically generates a candidate point
which is then used together with the original point to carry out a two-point parameter extraction and the
second point (2) is obtained. To confirm that this point is the required one a third candidate point is
automatically generated and the extraction is repeated using the three points to obtain the third extracted
point (3). The second and third extracted points show that the extracted vector of coarse model
parameters is approaching a limiting value and can thus be trusted. The coarse model responses
corresponding to the three extracted points of Fig. 19 are shown in Fig. 20.

For the remaining iterations, single point parameter extraction worked well. The fine model
responses and the coarse model responses for the corresponding extracted points are shown in Fig. 21.
The final fine model design was abtained in 5 iterations which required 8 fine model simulations. The
final fine model design is given in Table VIII. The fine model response at this design is shown in Fig.

22. The passband ripples are shown in Fig. 23.
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In the original space mapping approaches [1,14] this example required significant manual
intervention to successfully complete the parameter extraction phase. Furthermore, without such
intervention the previous approaches would not work.

Waveguide Transformers

Three designs, of two, three and seven-section waveguide transformers were considered. The
two-section waveguide transformer is shown in Fig. 24. These examples are classical microwave circuit
design problems [15]. Two different sets of models were used. The first set exploits two empirical
models: an “ideal” analytical model which neglects the junction discontinuity and a more accurate
“nonideal” analytical model which includes the junction discontinuity effects [15]. The second set uses
the ideal analytical model of the first set as the coarse model while Maxwell Eminence [5] is used as the
fine model. The designable parameters for these design problems are the height and length of each
waveguide section.

The two-section transformer is optimized using the two analytical models. The optimum ideal
model response is shown in Fig. 25 along with the nonideal model response at the same point. Our
algorithm terminated in three iterations, requiring 5 fine model simulations. The final nonideal model
design is given in Table IX. The corresponding nonideal model response is shown in Fig. 26. This
example is known to have more than one minimum for the parameter extraction step [2]. However, our
new algorithm converged successfully. The number of simulations needed to align the two models is
smaller than that reported in [2]. The same transformer is then optimized using Maxwell Eminence and
the ideal analytical model. Nine adaptive passes were allowed for Maxwell Eminence with allowable
delta S set to 0.0001. The initial fine model response is shown in Fig. 27. The final design was obtained
in three iterations which required five Maxwell Eminence fine model simulations. This is one half the
number of fine model simulations reported in [2]. The Maxwell Eminence fine model design is shown in

Table X and the corresponding fine model response is shown in Fig. 28.
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The previous steps were repeated for the three-section waveguide transformer. The initia fine
model response is shown in Fig. 29. Using the two analytical models the final design was obtained in
four iterations which required six fine model simulations. This final design is shown in Table XI. The
corresponding fine model response is indistinguishable from the optimal coarse model response as shown
inFig. 30.

The design of the three-section transformer is then repeated using Maxwell Eminence and the
ideal analytical model. We allowed only five adaptive passes with the same value of alowable delta S as
before. The initial Maxwell Eminence fine model response is shown in Fig. 31. The agorithm
terminated in two iterations with a total number of nine fine model smulations. Most of these fine model
simulations were used to shrink the trust region around the final design. The final design is shown in
Table X1l. The corresponding Maxwell Eminence fine model response is shown in Fig. 32.

The design of a seven-section waveguide transformer was also considered. The designable
parameters for this problem are the height and length of each waveguide section. Using the two
analytical models, the final design was obtained in three iterations which required six fine model
simulations. The initial fine model response is shown in Fig. 33. The fine model response corresponding
to the final design is amost identical to the optimal coarse model response as shown in Fig. 34. Table
X111 shows the final fine model design.

Finally, the design of the seven-section transformer was carried out using Maxwell Eminence
and an ideal analytical model. We allowed ten refinement passes with alowable delta S of 0.001. The
algorithm terminated in three iterations which required eleven Maxwell Eminence fine model
simulations. The initial Maxwell Eminence response is shown in Fig. 35. The final fine model response
isshownin Fig. 36. Table XIV shows the corresponding Maxwell Eminence fine model design.

A Three-section Waveguide Transformer with Rounded Corners[16]
In this example we considered the design of a three-section transformer with rounded corners.

The designable parameters for this problem are the height and length of each waveguide section. The
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specifications are [1S;1[k -30 dB for arange of frequencies extending from 9.5 GHz to 15 GHz. Thefine
model of this circuit exploits HP HFSS [7]. The coarse model exploits an ideal empirical model that
does not take into account the rounding of the corners. One quadrant of the transformer is shown in Fig.
37. We exploited the geometrical symmetry of the problem to reduce the required CPU time of HP
HFSS.

Each time a new HP HFSS simulation is requested by the algorithm a new project is created
using the new values for the length and height of each section. To facilitate this process, a MATLAB [9]
program was developed that converts the values of the designable parameters into the corresponding HP
HFSS drawing commands with the appropriate values. This approach accelerates the generation of new
HP HFSS projects and eliminates the possibility of wrong dimensions.

The initial response of the fine model at the optimal coarse model design is shown in Fig. 38.
Clearly, the specifications are slightly violated at this point. Only one iteration was needed to reach the
final fine model design. The required number of HP HFSS simulations is seven. The first three of these
simulations were needed to trust the parameter extraction at the first point. The other fine model points
were needed to contract the size of the trust region to the termination size. The final HP HFSS fine

model designisgivenin Table XV. The corresponding fine model response is shown in Fig. 39.

VI.MONTE CARLO ANALYSISUSING SPACE MAPPING [12]
The final B matrix obtained by the algorithm represents the best available information about the

mapping between the two spaces. A perturbation of A xem in the fine model space is mapped to a
perturbation of A Xosin the coarse model space by

A Xos = BA Xem (15
The perturbations in the coarse model space and fine model space are with respect to Xosand Xem,

respectively. The established mapping can be used to perform a space-mapped Monte Carlo analysis
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[12] for the problem under consideration. The random points generated in the fine model space are
mapped to the coarse model space using (15). Coarse model simulations are then used instead of the
CPU intensive fine model points. This statistical analysis should enjoy the speed of the coarse model and
the accuracy of the fine model.

To demonstrate this approach we carried out a Monte Carlo analysis of the three-section
waveguide transformer with rounded corners. The fine model parameters were assumed to be uniformly
distributed with tolerances of 1%, 2% and 5%. The corresponding responses are shown in Figs. 28, 29

and 30. The estimated yields for these tolerances are 39%, 4% and 0%.
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TABLE
THE CHARACTERISTIC IMPEDANCES OF BOTH LINES FOR
THE TWO-SECTION TRANSFORMER

Impedance Vaue
Z; 2.23615
Z, 4.47230

al values arein ohm

TABLEII
PARASITIC CAPACITANCES OF FINE MODEL FOR
THE TWO-SECTION TRANSFORMER

Capacitance Vaue
C: 25
G, 25
Cs 2.5

al valuesarein pF

TABLE I
FINE MODEL DESIGNS AT EACH ITERATION FOR
THE TWO-SECTION TRANSFORMER

Parameter x9 x$ x2
L, 90.0000 88.25264 88.19323
L, 90.0000 88.99598 88.93862

al values are in degrees
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TABLE IV
THE INITIAL AND FINAL DESIGNS OF THE FINE MODEL FOR
THE THREE-SECTION 3:1 MICROSTRIP TRANSFORMER

Parameter x& X2
W, 0.38100 0.38868
L, 2.98820 2.82103
W, 0.15240 0.15512
L, 3.07176 2.99830
Ws 0.04480 0.04312
Ls 3.14610 3.06224

al valuesarein mm

TABLEV
MATERIAL AND PHYSICAL PARAMETERS FOR THE COARSE
AND FINE em MODELS OF THE DFSFILTER

Model Parameter Value
substrate dielectric constant 9.9
substrate thickness (mil) 5
shielding cover height (mil) 00
conducting material thickness 3.0E-6
substrate dielectric loss tangent 2.0E-3
resistivity of metal (Qm) 1.72E-8
magnetic |oss tangent 0
surface reactance (Q/sq) 0
lower frequency limit (GHz) 5
upper frequency limit (GHz) 20
freguency increment size (GHz) 0.25

TABLE VI

VALUES OF OPTIMIZABLE PARAMETERS AT EACH ITERATION
FOR THE DFSFILTER

Parameter X Xh &
Ly 88.8 89.5 94.3
L, 84.1 84.6 85.4
S 3.9 47 47

al valuesarein mils
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TABLEVII
MATERIAL AND PHYSICAL PARAMETERS FOR THE HTSFILTER

Model Parameter OSA90/hope em
substrate dielectric constant 23.425 23.425
substrate thickness (mil) 19.9516 19.9516
shielding cover height (mil) 00 250
conducting material thickness 1.968E-2 0
substrate dielectric loss tangent 3.0E-5 3.0E-5
resistivity of metal (Qm) 0 4.032E-8
surface roughness of metal 0 O
magnetic |oss tangent O 0
surface reactance (Q/sq) O 0
x-grid cell size (mil) O 1.00
y-grid cell size (mil) O 175

TABLE VIII
THE INITIAL AND FINAL DESIGNS OF THE FINE MODEL
FOR THE HTSFILTER

Parameter X e
L 188.33 181.43
L, 197.98 200.51
Ls 18858 180.49
S 21.97 19.44
S 99.12 80.52
S 111.67 83.41

al valuesarein mils

TABLE IX
VALUES OF OPTIMIZABLE PARAMETERS AT EACH ITERATION OF THE NEW
ASM TECHNIQUE FOR THE TWO-SECTION WAVEGUIDE TRANSFORMER
USING TWO ANALYTICAL MODELS

Parameter X9 X3 X2 x$)
by 0.712 0.715 0.716 0.716
b, 1.395 1.400 1.402 1.402
L1 1.657 1.591 1.560 1.560
Lo 1.590 1.541 1.518 1.518

al valuesarein cm
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TABLE X
VALUES OF OPTIMIZABLE PARAMETERSAT EACH ITERATION OF THE NEW ASM
TECHNIQUE FOR THE TWO-SECTION WAVEGUIDE TRANSFORMER USING
MAXWELL EMINENCE AND AN IDEAL ANALYTICAL MODEL

Parameter X9, X3 X2 x$)
by 0.712 0.713 0.719 0.716
b, 1.395 1.397 1.408 1.402
L1 1.657 1.595 1.565 1.567
Lo 1.590 1.535 1.517 1.517

al valuesarein cm

TABLE XI
VALUES OF OPTIMIZABLE PARAMETERS AT EACH ITERATION OF THE NEW
ASM TECHNIQUE FOR THE THREE-SECTION WAVEGUIDE
TRANSFORMER USING TWO ANALYTICAL MODELS

>~
)
>~
&

Parameter x9, X&h Ve X Xem
by 0.903 0.905 0.881 0.891 0.892
b, 1.371 1.363 1.208 1.325 1.325
bs 1.736 1.718 1.692 1.701 1.702
L1 1.549 1.500 1.500 1.489 1.489
L2 1.584 1575 1575 1575 1.577
Ls 1.646 1.768 1.880 1.853 1.850

al valuesarein cm
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TABLE XII
VALUES OF OPTIMIZABLE PARAMETERS AT EACH ITERATION OF THE NEW ASM
TECHNIQUE FOR THE THREE-SECTION WAV EGUIDE TRANSFORMER
USING MAXWELL EMINENCE AND AN IDEAL ANALYTICAL MODEL

Parameter X X&h Xé
by 0.903 0.898 0.893
b, 1.371 1.340 1.327
bs 1.736 1.707 1.703
L1 1.549 1.514 1.495
L2 1.584 1.566 1.568
Ls 1.646 1.810 1.848

al valuesarein cm

TABLE XIII
VALUES OF OPTIMIZABLE PARAMETERS AT THE INITIAL AND FINAL
DESIGN FOR THE SEVEN-SECTION WAVEGUIDE TRANSFORMER
USING TWO ANALYTICAL MODELS

Parameter x9 xS
by 7.86732 7.87152
b, 6.61888 6.64855
bs 4.68540 4.74039
bs 2.91987 2.96613
bs 1.81412 1.83659
be 1.27658 1.28401
b, 1.06847 1.06967
Ly 7.10588 7.24590
Lo 7.12201 7.08753
L3 7.11760 6.91817
La 7.12331 6.90979
Ls 7.12815 6.98383
Lg 7.12154 7.03845
L, 7.12945 7.07431

al vauesareincm
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TABLE XIV
VALUES OF OPTIMIZABLE PARAMETERS AT THE INITIAL AND FINAL DESIGN
FOR THE SEVEN-SECTION WAV EGUIDE TRANSFORMER USING
MAXWELL EMINENCE AND AN IDEAL ANALYTICAL MODEL

Parameter X X
by 7.86732 7.87494
by 6.61888 6.65247
b3 4.68540 4.74347
ba 2.91987 2.97030
bs 1.81412 1.84134
bs 1.27658 1.28891
by 1.06847 1.07201
Ly 7.10588 7.18744
Lo 7.12201 7.03537
L3 7.11760 6.89166
La 7.12331 6.89697
Ls 7.12815 6.98825
Ls 7.12154 7.05869
L7 7.12945 7.12572

al valuesarein cm

TABLE XV
VALUES OF OPTIMIZABLE PARAMETERS AT EACH ITERATION OF THE NEW ASM
TECHNIQUE FOR THE THREE-SECTION WAVEGUIDE TRANSFORMER WITH ROUND
CORNERS USING HPHFSS AND AN IDEAL ANALAYTICAL MODEL

Parameter x9 X$h
b 0.33276 0.32971
by 0.26551 0.26396
bs 0.21186 0.20978
L1 0.32556 0.33208
L2 0.32640 0.32335
Ls 0.32556 0.32192

al valuesareininch
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Xem
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Xem,1 Xos,1

the current state at the ith iteration
A Xern,2 A Xos,2
X o P(Xit

trust region Yen1 Xos1

initial parameter extraction at the suggested point xi:

1 .
A Xem?2 Xt  atemporary point 4 Xos2

P (Xem
[ ]

Xos,l

Xem1

»
» >
>

parameter extraction fails; an additional point X; isobtained and multi-point parameter
extraction is carried out to sharpen the solution

Fig. 1. lllustration of the automated multi-point parameter extraction.
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Fig. 2. The coarse model of the two-section transformer.
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Fig. 3. Thefine model of the two-section transformer.
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Fig. 4. The minimax contours of the coarse model problem for the two-section transformer
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Fig. 5. The optimal coarse model response (O ) and the fine model response (0)
at the starting point for the two-section transformer .
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Fig. 6. The minimax contours of the fine model problem for
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Fig. 7. The optimal coarse model response (L1 ) and the final fine model
response (0) for the two-section transformer.
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Fig. 8. The contours of the parameter extraction step for the two-section
transformer at the first iteration.
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Fig. 9. The change of the /, norm of the vector f with the number of iterations
for the two-section transformer.
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Fig. 11. The optimal coarse model response (O ) and the fine model response (0)

Fig. 10. Thethree-section 3:1 microstrip transformer.

freauency (GHZz)

at the starting point for the three-section microstrip transformer.
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Fig. 12. The optimal coarse model response ([J ) and the final fine model
response (0) for the three-section microstrip transformer.
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Fig. 13. The change of the ¢, norm of the vector f with the number of iterations
for the three-section microstrip transformer.
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Fig. 14. The DFSfilter [9].
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Fig. 15. The optimal coarse model response ([J ) and the fine model response (0)
at the starting point for the DFSfilter .
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Fig. 16. The optimal coarse model response (O ) and the final fine model
response (0) for the DFSfilter.
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Fig. 17. The structure of the HTSfilter [1,11].
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Fig. 18. The optimal coarse model response (O ) and the fine model response (0)
at the starting point for the HTSfilter.
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Fig. 19. The variation of two of the extracted coarse model parameters in the first iteration with the
number of points used for parameter extraction where (1) is obtained using a single fine model
point, (2) is obtained using two fine model points and (3) is obtained using three fine model

points.
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Fig. 20. The coarse model response ([J ) and the fine model response (0) corresponding to the three
extracted pointsin Fig. 7 where (a) is obtained using a single fine model, (b) is obtained using
two fine model points and (c) is obtained using three fine model points.
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Fig. 21. The coarse model response (1 ) at the extracted point and the fine model response (0)
corresponding to the second, third, fourth and fifth iterations.
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Fig. 22. The optimal coarse model response ([J ) and the final fine model
response (0) for the HT Sfilter.
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Fig. 23. The optimal coarse model response ([J ) and the final fine model
response (0) for the HTSfilter in the passband.
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Fig. 24. A typica two-section waveguide transformer.
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Fig. 25. The optimal response of the ideal anaytica model (O) and the response of the nonideal
analytical model (o) at the starting point for the two-section waveguide transformer.
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Fig. 26. The optimal response of the ideal analytical model ([ ) and the final response of the nonideal
analytical model (o) for the two-section waveguide transformer.
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Fig. 27. The optimal response of the ideal analytical model ([ ) and the response of Maxwell

Eminence (0) at the starting point for the two-section waveguide transformer.
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Fig. 28. The optimal response of the ideal analytical model (O ) and the fina Maxwell

Eminence response (0) for the two-section waveguide transformer.
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Fig. 29. The optima response of the ideal analytica model (O0) and the response of the

nonideal analytical model (0) at the starting point for the three-section waveguide

transformer.
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Fig. 30. The optimal response of the ideal analytical model ({1 ) and the final response of the

nonideal analytical model (0) for the three-section waveguide transformer.
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Fig. 31. The optimal response of the ideal analytical model (O ) and the response of Maxwell

Eminence (0) at the starting point for the three-section waveguide transformer.
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Fig. 32. The optimal response of the ideal analytical model (O ) and the fina Maxwell

Eminence response (0) for the three-section waveguide transformer.
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Fig. 33. The optimal ideal analytical model response () and the response of the nonideal

analytical model (0) at the starting point for the seven-section waveguide

transformer.
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Fig. 34. The optimal response of the ideal analytical model ({0 ) and the final response of the

nonideal analytical model (o) for the seven-section waveguide transformer.
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Fig. 35. The optimal response of the ideal analytical model (O ) and the response of Maxwell

Eminence (0) at the starting point for the seven-section waveguide transformer.
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Fig. 36. The optimal response of the ideal analytical model () and the fina Maxwell

Eminence response (0) for the seven-section waveguide transformer.



Fig. 37. The simulated part of the three-section waveguide transformer with rounded corners[13].

frequency (GHz)

Fig. 38. The optimal response of the ideal analytical model (O ) and the response of HP

HFSS (o) at the starting point for the three-section waveguide transformer with

rounded corners.
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response (0) for the three-section waveguide transformer with rounded corners.
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Fig. 40. Monte Carlo analysis for the three-section waveguide transformer with rounded

corners assuming 1% uniformly distributed parameters.
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Fig. 41. Monte Carlo analysis for the three-section waveguide transformer with rounded
corners assuming 2% uniformly distributed parameters.

frequency (GHz)

Fig. 42. Monte Carlo analysis for the three-section waveguide transformer with rounded
corners assuming 5% uniformly distributed parameters.
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APPENDIX A

! The OSA90/hope input file used for generating the fine model responses

Model

#i ncl ude "wg7_osa/wg7.inc";
Xen{ 14] = ; I fine nodel paraneters are pasted in here
Bos_opt[7] =[ 7.86732 6.61888 4.6854 2.91987 1.81412 1.27658 1.06847];
Los opt[7] = [ 7.10588 7.12201 7.1176 7.12331 7.12815 7.12154 7.12945];
Xos_opt[14] = [Bos_opt Los_opt];
I CONS = 0;
i deal : 0;
M 7;
M =M+ 2;

Al M2] = 16.51;
B1[ M2] = [8. 255 Bos_opt 1.016];
L1[M2] = [0 Los_opt 0];
Dat api pe: SIMD FI LE="si mngd"
N INPUT=(3 * M2 + 4)
INPUT=(M A, Bl, L1, ICONS, ideal, FREQ
N _QUTPUT=1 OUTPUT=(VSWR ideal); ! A Call to the coarse nodel

WG7_H 1= 0.5*Xen{ 1] ;
WG7_H_2= 0. 5*Xeni 2] ;
WG7_H_3= 0. 5*Xeni 3] ;
WG7_H_4= 0. 5*Xeni 4] ;
WG7_H_5= 0. 5*Xeni 5] ;
WG7_H_6= 0. 5*Xen( 6] ;
WG7_H_7= 0.5*Xeni 7] ;
WG7_L_1= Xeni8];

WG7_L_2= Xenf9];

WG7_L_3= Xeni 10];
WG7_L_4= Xenf11];
WG7_L_5= Xenf12];
WG7_L_6= Xenf13];
WG7_L_7= Xenf 14];
2 0 nodel =0

Wer 1
H1=(Ws7 H1 * 1cnm) H2=(Ws7_H 2 * 1cm
H3=(Ws7 H3 * 1cm) H4=(Ws7_H 4 * 1cm
H5=(Ws7 H5 * 1cm) H6=(Ws7_H 6 * 1cm
H7=(Ws7 H7 * 1cm) L_1=(Ws7_L_1 * 1cm
L 2=(Ws7_L_ 2 * 1cm) L _3=(W&7_L_3 * 1cm
L 4=(Ws7_ L 4 * 1cm) L 5=(WG7_L_ 5 * 1cm
L 6=(WG7_L 6 * 1cm L 7=(WG7_L_7 * 1lcm); ! fine nodel paranmeter settings
PORTS 1 0 2 0;
Cl RCUIT;
VSWR _non_i deal =( 1+M511) / (1- Ms11);
end
Sweep

AC. FREQ from 1.04GH to 1.84GHz step=0.04CGHz Vsw _non_i deal VSWR_ i deal
{XSVEEP title="VSWR and Spec" X=FREQ Xmi n=1.0 Xmax=1.9 Nxticks=9
Y=Vswr _non_i deal . white.circl e&SWR i deal .white
Ym n=1. 0 Yrmax=1.05 Nyticks=5};
end
report
$942.9f$ R= [${ $VSWR non_ideal$ }$ ] ! The fine nodel response is saved using the
report feature
end
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APPENDI X B

! The paraneter extraction file used for nmultiplt paraneter extraction
I for the seven section wavegui de transforner

Model
I CONS = 0; I This is the coarse nodel bl ock
i deal: O; I It sinulates the coarse nodel point given by the vector Xos
ML 7,
M = M + 2;
Bos[ 7] = [ Xos[1l] Xos[2] Xos[3] Xos[4] Xos[5] Xos[6] Xos[7]];
Los[7] = [ Xos[8] Xos[9] Xos[10] Xos[11] Xos[12] Xos[13] Xos[14]];
Al M2] = 16.51;
B1[M2] = [8.255 Bos 1.016];
Li[M] = [0 Los 0];

Dat api pe: SIMD FI LE="si mngd"
N INPUT=(3 * M2 + 4)
I NPUT=(ML, A, B1l, L1, ICONS, ideal, FREQ
N _OUTPUT=1 OUTPUT=( VSWR i deal );
End
expressi on
i:1;
n=14;
m21;
N_Poi nt s=1
Kx: ((freg-1.04)/0.04)+1;
j =ni nt (Kx) ;
Bos_opt [ 7] [ 7.86732 6.61888 4.6854 2.91987 1.81412 1.27658 1.06847];
Los_opt [ 7] [ 7.10588 7.12201 7.1176 7.12331 7.12815 7.12154 7.12945];
Xos_opt[14] = [Bos_opt Los_opt];
Xos_Matrix[1,n]=[ ?7.86793? ?6.61983? ?4.68604? ?2.92004? ?1.81394? ?1.276257
?1.06831? ?7.10616? ?7.12059? ?7.11628? ?7.12305? ?7.127567
?7.1196?  ?7.12973? ];

X fine_Matrix[(n+l),n]= ; ! Paste the matrix of fine nodel points in here

X fine_Responses[(n+l), M= ; ! Paste the matrix of fine nobdel responses in here
B[n,n]= ; | Paste the current B matrix in here

X fine[1l:n]l=rowm X _fine_Matrix,i);

X fine_1[1:n]l=row X _fine_Matrix, 1);

X _coarsel[ 1:n] =row Xos_Matrix, 1);
X fine_Difference[1l:n]=X_fine-X fine_1;
X _coarse_Difference[ 1: n] =product (B, X fine_Difference);
Xos[ 1: n] =X_coar se_Di ff erence+X _coar sel;
end
specification
i: from1l to N points step 1
freq: from1.04 to 1.84 step=0.04
VSWR i deal =X _fi ne_Responses[i,j];
end
sweep
freq: from1.04 to 1.84 step=0.04
VSWR i deal X fine_Responses[1,j] {Xsweep Y=VSWR i deal . white&
X fine_Responses[1,j].white.circle Ym n=1 Ymax=1.05 Nyticks=5
xm n=1. 0 xmax=1.9 Nxticks=9} ;
end
Contr ol
Opti m zer =Huber ;
N iterati ons=99;
Huber _t hreshol d=0. 01;
accuracy=1. Oe- 6;
two_si ded_j acobi an;
end
report
$%42.9f$ P =] $ Xos_matrix[1,1]$
$ Xos_matrix[1,2]%
$Xos_matrix[1,3]$
$Xos_matrix[1,4]$
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$Xos_matrix[1,5]%
$Xos_matrix[1,6]%
$Xos_matrix[1,7]%
$Xos_matrix[1,8]%
$Xos_matrix[1,9]%
$Xos_matrix[1,10]%
$Xos_matrix[1,11]$
$Xos_matrix[1,12]$
$Xos_matrix[1,13]$
$Xos_matri x[ 1, 14] $]

end



