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Abstract

In this work we present a novel algorithm for the aggressive space mapping of microwave

circuits.  This algorithm exploits a hybrid approach between the trust region aggressive space mapping

(TRASM) and direct optimization.  Space mapping is very efficient in terms of the needed fine model

simulations.  The final space-mapped design may not be the optimal fine model design.  Severe

misalignment between the coarse model and the fine model is likely to cause space mapping not to work.

To overcome this a hybrid algorithm that connects space mapping and direct optimization is presented.

This connection is based on a novel theorem that enables a smooth switching from space mapping to

direct optimization and vice versa.  We tested the new algorithm using a number of examples and the

results are encouraging.
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I. INTRODUCTION

In this work we present a novel hybrid space mapping algorithm.  Space mapping is an

interesting concept.  It aims at directing most of the optimization computational effort towards a fast

coarse model while maintaining the accuracy of a fine model.  The computational effort needed is much

smaller than that needed for direct optimization.

In the first introduced space mapping algorithm [1] a set of fine model points is needed to

establish the initial mapping between the two spaces.  In each other iteration, only one fine model point is

required to make a new iterate and update the mapping.  The aggressive space mapping (ASM) technique

[2] was later introduced to eliminate this overhead.  No initial set of points is needed and only one fine

model simulation is needed for every iteration.

The parameter extraction step is a crucial procedure in the space mapping technique [3].  In this

step a coarse model point whose response matches a given fine model response is obtained.  This

procedure is essentially an optimization procedure.  The nonuniqueness of the extracted parameters may

lead to the divergence or oscillation of the iterations [3].

To overcome this problem the TRASM algorithm was introduced [4].  This algorithm integrates

a trust region methodology [5] with the aggressive space mapping.  Also, the algorithm utilizes a

recursive multi-point parameter extraction with the aim of improving the uniqueness of the extraction

step.  The available information about the mapping between the two spaces is also utilized in this step.

The design obtained by space mapping in most cases is an optimal or near optimal design.

However, the optimality of the final design can not be guaranteed.  This is because the final space-

mapped response matches the optimal coarse model response which may be different from the optimal

fine model response obtained by direct optimization.

Space mapping also assumes that the coarse model is not severely different from the fine model.

If the coarse model is not good enough space mapping is unlikely to converge.
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In this work we present a novel algorithm that aims at solving these problems.  The algorithm is a

hybrid one between space mapping and direct optimization.  The final design obtained by this algorithm

is the optimal fine model design.  The algorithm is based on a novel theorem that enables switching

between space mapping and direct optimization in a smooth way.  The algorithm defaults to direct

optimization if space mapping fails.  It defaults to space mapping if space mapping is converging

smoothly.  The algorithm also utilizes all the information available from space mapping in direct

optimization and vice versa.

We start by giving a brief review of space mapping in Section II.  In Section III we discuss the

motivation behind the new algorithm.  A novel theorem that enables switching between space mapping

and direct optimization is presented in Section IV.  The new algorithm is explained in Section V.  The

algorithm was successfully applied to a number of examples.  The obtained results are given in Section

VI.  Finally, the conclusions are given in Section VII.

II. SPACE MAPPING: A BRIEF REVIEW

It is assumed that the circuit under consideration can be simulated using two models: a fine

model and a coarse model.  The fine model is accurate but is computationally intensive.  This model can,

for example, be a finite element model.  We refer to the vector of parameters of this model as emx .  The

coarse model is a fast model but it is less accurate than the fine model.  This model can be a circuit-

theoretic empirical model.  The vector of parameters of this model is referred to as osx .

The first step of the technique is to obtain the optimal design of the coarse model os
*x .  The

technique aims at establishing a mapping P between the two spaces [2]

os emx P x= ( )                                                                     (1)

such that

em em os osR x R x( ) ( )− ≤ε                                                       (2)
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where Rem is the vector of fine model responses, Ros is the vector of coarse mode responses and  is a

suitable norm.  The error function

f P x x= −( ) *
em os                                                                  (3)

is first defined.  The final fine model design is obtained and the mapping is established if a solution for

the system of nonlinear equations

f(xem) = 0                                                                        (4)

is found.

Let em
i( )x be the ith iterate in the solution of (4).  In the ASM technique, the next iterate em

i+( 1)x  is

found by a quasi-Newton iteration

em
i

em
i i( ) ( ) ( )+ = +1x x h                                                                  (5)

where ( )ih  is obtained from

( ) ( ) ( )( )i i
em
iB h f x= −                                                                (6)

and ( )iB is an approximation to the Jacobian of the vector f with respect to emx at the ith iteration.  The

matrix B is updated at each iteration using Broyden’s update [6].

It is clear from (1)-(3) that the vector function f is obtained by evaluating P x( )em .  This can be

achieved through the process of parameter extraction.  This process involves solving another

optimization problem.  This optimization problem may have more than one minimum and this may lead

to the divergence of the ASM technique.

To overcome the nonuniqueness of the parameter extraction problem, the TRASM algorithm [4]

was introduced.  At the ith iteration, the residual vector ( ) ( )( )i
em
i

os
*f P x x= −  defines the difference

between the vector of extracted coarse model parameters  os
i( )x = em

iP x( )( ) and the optimal coarse model

design.  The mapping between the two models is established if this residual vector is driven to zero.  It
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follows that the value ( )if can serve as a measure of the misalignment between the two spaces in the ith

iteration.  The step taken in the ith iteration is obtained from

( ) ( ) ( ) ( ) ( )( )i T i i i T i B B I h B f+ = −λ                                                    (7)

where ( )iB  is an approximation to the Jacobian of the coarse model parameters with respect to the fine

model parameters at the ith iteration.  The parameter λ is selected such that the step obtained satisfies

( ) ,ih ≤δ where δ  is the size of the trust region.  This is done by utilizing the iterative algorithm

suggested in [5].  Solving (7) corresponds to minimizing  
2

2( ) ( ) ( )i i if B h+  subject to 
2

( )ih ≤δ.

Single-point parameter extraction is then applied to the new fine model point.  This point is

accepted if it satisfies a certain success criterion with respect to the reduction in the 2l norm of the

vector f .  Otherwise, the uniqueness of the parameter extraction process is suspect.  To improve the

uniqueness of the step, a future point is generated and is added to the set of fine model points used for the

multi-point parameter extraction.  This is repeated until either the extracted coarse model parameters

approach a limit or the number of accumulated fine model points reaches n+1.  If the vector of extracted

parameters approaches a limit without satisfying the success criterion we trust the parameter extraction

process.  In this case, the failure of the step is attributed to the large trust region size.  The trust region

size is then shrunk and (7) is resolved.  If the number of accumulated fine model points reaches n+1

sufficient information is available to obtain an estimate for the Jacobian of the fine model responses with

respect to the fine model parameters.  This Jacobian matrix is used to predict an alternative step to that

predicted by (7).

III. LIMITATIONS OF SPACE MAPPING

The ASM technique and the TRASM algorithm are extremely efficient algorithms.  The number

of fine model simulations needed to obtain the space-mapped design is of the order of the problem
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dimensionality.  However, it should be noted that both algorithms depend on the existence of a coarse

model that is fast and has enough accuracy.

If the coarse model is a bad one (i.e., extremely different from the fine model) space mapping

might not work.  To illustrate this we consider the Rosenbrock function [7].  We form an artificial

problem in which the coarse model is given by

)1()(100 1
22

12
2 xxx Ros −+−=                                                                 (8)

The fine model is another Rosenbrock function but with the parameters x1 and x2 shifted by two shifts

α1 and α 2 , respectively.  It follows that the fine model is given by

))(1())()((100 11
2

11
2

22
2 ααα +−++−+= xxx R f                                               (9)

The optimal solution of the coarse model is os
*x =[1.0   1.0]T while the optimal fine model solution is

given by x*
f =[(1− α1 )   (1− α 2 )]T.  The misalignment between the two models is given by the two shifts

α1 andα 2 .  First, we consider the case when α1 =− 0.1 andα 2 =− 0.1.  The coarse model in this case is a

good one.  The contours of f 2

2
 are shown in Fig. 1.  These contours were obtained analytically using

two-point parameter extraction.  It is clear that f 2

2
 has a single minimum which is the minimum that

would be obtained if direct optimization is applied to the fine model.  Starting from the point os
*x the

TRASM algorithm is guaranteed to converge to the optimal fine model design.  The corresponding

contours of Rf are shown in Fig. 2.  Next, we increase the misalignment between the two models by

making α1 =− 0.9 and α 2 =− 0.9.  The contours of f 2

2
 are shown in Fig. 3.  It is clear that f 2

2
 still has a

minimum at the optimal fine model design ([1.9   1.9]T).  However, other minima of f 2

2
 exist.  It

follows that applying the TRASM algorithm starting from the point os
*x may not converge to the optimal

fine model solution.  The corresponding contours of Rf  are shown in Fig. 4.
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Finally, we make the misalignment between the two models severe by assigning α1 =− 1.5 and

α 2 =− 1.5.  For this case, the contours of f 2

2
 are shown in Fig. 5.  In this case, the TRASM algorithm

will certainly converge to a minimum other than the optimal fine model solution.  The corresponding

contours of Rf  are shown in Fig. 6.

This example shows that space mapping may fail if the coarse model is severely different from

the fine model.  One other thing that should be noted is that in many problems the optimal coarse model

response is not equal to the optimal fine model response.  For example, consider the coarse model

ε+−+−= )1()(100 1
22

12
2 xxx Ros                                                      (10)

where ε > 0.  Assume also that the fine model is given by

)1()(100 1
22

12
2 xxx Rem −+−=                                                         (11)

It is clear from (10) that the optimal coarse model response is ε while the optimal fine model response is

zero.  It follows that in such a case, even if space mapping converges, the space-mapped fine model

design may not be the optimal fine model design.

The discussed limitations of space mapping suggest that a hybrid technique be used.  This

technique exploits the efficiency of space mapping and defaults to direct optimization when space

mapping fails.  We discuss the proposed hybrid algorithm in Section V.  But before introducing the new

algorithm we present a novel theorem relating space mapping to direct optimization.

IV. SPACE MAPPING AND DIRECT OPTIMIZATION

In this section we introduce a very interesting theorem that allows for smooth switching between

direct optimization and space mapping.

Lemma 1.

Assume that the two points xos and xem are two corresponding points in the coarse model space

and fine model space, respectively and that the mapping between the two spaces at these two
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corresponding points is given by the matrix B.  It follows that the Jacobian of the fine model responses at

the point xem is given by

BJJ osem =                                                                                                         (12)

where Jos is the Jacobian of the coarse model responses at the point xos .

Proof

As the points xem and xos correspond to each other, it follows that their corresponding responses

match, i.e.,

)()( xRxR ososemem =                                                                                          (13)

Now define a new fine model point xxx ememn ∆+=  where xem∆ is a small perturbation.  The response

at this new point is perturbed from the response at the point xem  by

xJR emem ∆=∆                                                                                                     (14)

The point xn corresponds to a coarse model point xx osos ∆+  which satisfies

xJxJR ososemem ∆=∆=∆                                                                                    (15)

Also, the two perturbations xem∆ and xos∆ are related by

xxB osem ∆=∆                                                                                                 (16)

multiplying both sides of (16) by Jos we get

xJxBJ ososemos ∆=∆                                                                                       (17)

Comparing (17) with (15) we conclude that

BJJ osem =                                                                                                    (18)

Relation (18) is interesting.  It shows that by having the matrix B and the coarse model Jacobian J so we

are able to obtain a good estimate of the Jacobian of the fine model responses without any further fine

model simulations.  It follows that when the space mapping is not converging smoothly we can switch to

direct optimization and supply it with available first order derivatives given by (18).
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Another interesting relationship which can be easily obtained from (18) is

( ) JJJJB em
T 

osos
T 
os

 - 1=                                                              (19)

Relation (19) assumes that the matrix J so is a full rank matrix and m > n, where n is the number of

parameters and m is the number of responses .  It shows that the matrix B can be obtained by multiplying

the Jacobian of the fine model responses with the pseudoinverse of the matrix J so .  A similar formula

can be obtained using SVD if the matrix J so is not full rank.

The relation (19) is used to switch back from direct optimization to space mapping.  At the end

of the iterations carried out using direct optimization the Jacobian of the fine model responses is

available.  Parameter extraction can be applied at this point to get the corresponding coarse model point.

The Jacobian of the coarse model responses J so  at this coarse model point can be easily obtained.

Relation (19) can then be used to regenerate the matrix B and the space mapping algorithm can resume

normally.  Fig. 7 illustrates the connection between space mapping and direct optimization.

To illustrate the theorem we consider the following one-dimensional example.  The fine model is

given by Rf =sin(x)  for 0 ≤ x ≤ π  and the coarse model is given by Ros= π/x  for 0 ≤ x ≤ π as shown in

Fig. 8.  Clearly, the two subset 0 ≤ x ≤ π/2 and π/2 ≤ x ≤ π in the fine model space can be mapped to the

subset 0 ≤ x ≤ π in the coarse model space.  Thus we have two different mappings for these two different

subsets of the fine model space.  We first consider the point xf  =π/4 which belongs to the first set of the

fine model space.  The fine model response at this point is Rf  = 0.707.  To get the coarse model point that

matches the same response parameter extraction is applied.  The corresponding coarse model point is

found to be xos=2.2211.  To estimate the matrix B (a scalar in this case) we evaluate the fine model

response at the point xf  =π/4+0.05 and parameter extraction is then applied to get the corresponding

coarse model point which is found to be xos=2.3296.  It follows that the matrix B can be approximated by

17.2
05.0

2211.23296.2 =−=
∆
∆≈

x
x

f

osB                                                 (20)
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The coarse model has a linear equation and thus constant derivative.  It follows that the derivative of the

coarse model at the point xos=2.2211 is J so =1/π.  From (18) the derivative of the fine model at the point

xf  =[π/4] is

6907.0
17.2 ==
πJem                                                             (21)

Which is almost identical to the actual value of the derivative of the fine model (0.707).  Using smaller

perturbation than 0.05 would result in a better approximation to the matrix B and thus to a better

approximation to the Jacobian matrix J em .

The same steps applied to the first set of fine model points is repeated for the second set of

points.  We selected the point x f = 7π/8.  The corresponding point in the coarse model space is found to

be xos=1.202235.  A neighboring fine model point x f = 7π/8+0.02 is selected.  It is found that the

corresponding coarse model point is xos=1.14394.  It follows that the matrix B can be approximated by

9142.2
02.0

202235.114394.1 −=−=
∆
∆≈

x
x

f

osB                                              (22)

It follows that the Jacobian of the fine model responses is given by

9276.0
9142.2 −=−=
πJem                                                           (23)

The exact value for the Jacobian of the fine model response is J em =− 0.9238 which is almost identical to

the one estimated in (23).

This one dimensional example shows clearly that the accuracy of the fine model Jacobian

estimated using (18) depends on the accuracy of the matrix B.

To further illustrate the theorem we discuss a two-dimensional problem.  The fine model is given

by

)9.01.0()1.09.0( 21
2

21
2 xxxxR f +++=                                                  (24)

and the coarse model is given by
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xxRos
2
2

2
1 +=                                                                       (25)

We consider the fine model point ]0.1.02[     T
f =x .  The fine model response at this point is Rf  = 4.82

The corresponding coarse model point is obtained by applying multi-point parameter extraction [3] and is

found to be ]19404.184064.1[     T
os =x .  Five fine model points were utilized in the multi-point extraction

to ensure the uniqueness of the extraction phase.  The Jacobian of the coarse model at this extracted point

is given by

[ ]38808.268128.3=J os                                                          (26)

Using (24) and (25) we see that the mapping is given by







=

9.01.0
1.09.0

B                                                                  (27)

Using (18) the Jacobian of the fine model at the point ]0.1.02[     T
f =x is approximated by

[ ] [ ]5174.255196.3
9.01.0
1.09.0

38808.268128.3 =





=  emJ                            (28)

The exact fine model Jacobian is [ ]36.264.3=J em .  The difference between the exact Jacobian and the

estimated one is attributed mainly to the accuracy of the multi-point parameter extraction.  The exact

solution for the parameter extraction is [1.90    1.10]T.  The Jacobian of the coarse model at the exact

solution of parameter extraction is

 [ ]2.28.3=J os                                                                  (29)

The corresponding Jacobian estimate for this case is given by

[ ] [ ]36.264.3
9.01.0
1.09.0

2.28.3 =





=  emJ                                         (30)

which is the exact  Jacobian of the fine model.

The two discussed examples show clearly that the theorem can effectively obtain good

approximate for the Jacobian of the fine model responses using the matrix B and the Jacobian of the
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coarse model responses J so .  Also these examples show that the accuracy of the obtained estimate for the

Jacobian of the fine model responses depends on the accuracy of the matrix B and on the accuracy of the

parameter extraction problem.

V. THE NEW ALGORITHM

The new algorithm exploits the efficiency of space mapping when this is possible and defaults to

direct optimization when space mapping fails to make any progress.  The objective function of the

TRASM algorithm is

xxPf * 2

2

2

2
)( osem −=                                                            (31)

The objective function for direct optimization is

)()( * 2

2

2

2 xRxRg ososemem −=                                                      (32)

The main target of the hybrid algorithm is to minimize the objective function (32).  In the ith

iteration we assume the existence of a trusted extracted coarse model parameters  em
iP x( )( ) .  The step

taken in this iteration is given by (7) where em
i

em
i i ( ) ( ) ( ) .+ = +1x x h   Single-point parameter extraction is then

applied at the point em
i( )+ 1x to get .)( *)1(1)( xxPf os

i
em

+i −= +   We accept this point if it satisfies a certain

success criteria with respect to the reductions in both objective functions (31) and (32).  The matrix

( )iB is then updated using Broyden’s formula [6] and space mapping resumes.  Otherwise, a switch to the

phase (direct optimization) takes place.

There are two forms of failure of the space mapping iteration that may occur.  The first form is

that the success criterion of (32) is not satisfied which means that we have to reject the new point x )1( +i
em .

The Jacobian of the fine model responses at the point  i
emx )( is then evaluated.  This is done by first

evaluating the Jacobian of the coarse model responses J )(i
os at the point  os

i( )x = em
iP x( )( ) .  The matrix J )(i

em  is

then evaluated using BJJ )()()( ii
os

i
em = .  Both  i

emx )( and J )(i
em  are then supplied to the second phase.
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The second form of failure of space mapping which may occur is that the new point x )1( +i
em

satisfies the success criterion of (32) but does not satisfy the success criterion of (31).  In this case the

point x )1( +i
em  is better than the previous point  i

emx )( and is accepted.  As the vector of extracted parameters

does not satisfy the success criterion of (31), the vector f 1)( +i can not be trusted.  In order to trust this

vector, recursive multi-point parameter extraction is applied at the point x )1( +i
em  until either it approaches a

limiting value or the number of additional points used for multi-point parameter extraction reaches n.  If

f 1)( +i approaches a limit that satisfies the success criterion of (31) space mapping resumes and the

matrix B is updated.  If f 1)( +i approaches a limit that does not satisfy the success criterion of (31) the

matrix B 1)( +i  is update using the Broyden’s formula, the matrix J 1)( +i
os at the point x 1)( +i

os = )( 1)(xP +i
em  is

evaluated and the matrix J 1)( +i
em  is then evaluated using BJJ 1)(1)(1)( +++ = ii

os
i

em .  Otherwise, the matrix J )1( +i
em

is approximated using the fine model points used for multi-point parameter extraction.  In both cases,

both the point x )1( +i
em  and the matrix J )1( +i

em  are supplied to the second phase.

The second phase utilizes the first order derivatives supplied by space mapping to carry out a

number of successful iterations.  By a successful iteration we mean an iteration that satisfies the success

criterion of (32).  At the end of each successful iteration parameter extraction is applied at the new iterate

x )(k
em  and is used to check whether the success criterion of (31) is satisfied.  If it is satisfied the coarse

model Jacobian matrix J )(k
os  at the point x )(k

os = )( )(xP k
em  is evaluated, the matrix B is reevaluated using

( ) JJJJB )()()( 1- k
em

Tk
os

k
os

(k)T
os

 =  and the algorithm switches back to phase 1.  The superscript k is used as an

index for the successful iterates of the direct optimization phase.  If the success criterion of (31) is not

satisfied phase 2 continues.

The objective function (32) aims at matching the fine model response to the optimal coarse

model response but this does not ensure the optimality of the space-mapped solution if the optimal coarse

model response is different from the optimal fine model response.  This motivates the suggestion that if
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the second phase has reached a point where no more improvement in the objective function (32) is

possible, direct optimization solves the original design problem in the fine model space using a minimax

optimizer [8].  The objective function of the minimax optimizer is

ekk
max                                                                                (33)

where

ek = Rem,k− Su,k            if  k∈Ku                                                                                              (34)

ek = Sl,k − Rem,k                     if  k∈Kl                                                                                              (35)

where Su,k is the kth upper constraint and Sl,k is the kth lower constraint and the sets Ku and Kl are sets of

indices for upper and lower constraints, respectively.  The starting point for this minimax problem is the

final design of the second phase obtained using the objective function (32).  This part is mainly added to

ensure the optimality of the obtained designs.

For any iteration i ≥ 0, the two phases are given by the following steps.

Phase 1

Step 0 Given em
i( )x , ( )if , ( )iB and  i( )δ .  Set  i+( )1δ =  i( )δ .

Step 1 Obtain ( )ih by solving (7) with δ =  i( + )1δ .  Let ( )
2

( )i i+ =1δ h .

Step 2 Evaluate em
i( +1)x using (5) and set V em

i= +{ }( 1)x .

Step 3 Apply multi-point parameter extraction using the points in the set V to obtain ( )i+1f .

Step 4 If the success criteria of (31) and (32) are satisfied update the matrix ( )iB to ( )i + 1B using

Broyden’s formula [8] and update δ.  Go to Step 10.

Comment  The trust region size δ is updated based on how the predicted reduction in f
2

 agrees with

the actual reduction.

Step 5 If the success criterion of (32) is not satisfied obtain J )(i
os and from which evaluate

BJJ )()()( ii
os

i
em = .  Switch to the second phase.  Go to Step 10
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Comment  The second phase takes as arguments  i
emx )( and J )(i

em  and returns x )(k
em , B )(k and f )(k .  It should

be clear that several iterations might be executed in the second phase before switching back to

phase 1.

Step 6 If V  is equal to one go to Step 9.

Comment  V  denotes the cardinality of the set V.

Step 7 Compare ( )i + 1f obtained using V  fine model points with that previously obtained using V − 1

fine model points.  If ( )i + 1f  is approaching a limiting value update the matrix B )(i to get B 1)( +i ,

obtain J 1)( +i
os

, evaluate BJJ 1)(1)(1)( +++ = ii
os

i
em and switch to phase 2.  Go to Step 10.

Step 8 If V  is equal to n, obtain the matrix J )1( +i
em  using the fine model points in the set V.  Switch to

phase 2.  Go to step 10.

Step 9 Obtain a temporary point using em
i( )+ 1x , ( )i + 1f and  i( )+ 1δ .  Add this point to the set V and go to

Step 3.

Step 10 Let i=i+1.  Go to Step 0.

The second phase can be summarized in the following steps

Phase 2

Step 0 Given the current iterate of the space mapping technique  i
emx )( and the corresponding fine model

responses Jacobian matrix J )(i
em .

Step 1 Obtain a successful iterate x )(k
em  by solving

gJxIJJ Ti
em

i
em

Ti
em

)()()( )( −=∆+ λ .

For a suitable value of λ that satisfies the success criterion for the objective function (32).

Step 2 Apply parameter extraction at this point to get .)(f k 
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Comment  Multi-point parameter extraction is used at this step to ensure the uniqueness of the extracted

parameters.

Step 3 If the success criterion of (31) is satisfied obtain J )(k
os

at the point x )(k
os = )( )(xP k

em , evaluate the

matrix ( ) JJJJB )()()( -1 k
em

Tk
os

k
os

(k)T
os=  and switch to phase 1.

Step 4 If the termination condition is satisfied invoke the minimax optimizer else go to Step 1.

The solution obtained from this algorithm is the optimal fine model design.  Also, the technique

still generates the information about the mapping between the two spaces presented by the matrix B.  A

flowchart for the first phase of the proposed algorithm is shown in Fig. 9.

VI. EXAMPLES

An HTS Filter.

A Balanced Microstrip Filter.

VII. CONCLUSIONS

In this paper we presented a hybrid algorithm of space mapping.  This algorithm enables smooth

switching from space mapping to direct optimization if space mapping fails.  It utilizes all the available

information accumulated by space mapping in direct optimization.  The algorithm also enables smooth

switching from direct optimization to space mapping if space mapping is converging smoothly.  The

connection between space mapping and direct optimization is based on a novel theory that was presented.

A number of examples were solved using the suggested algorithm and the results are encouraging.
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Fig. 1.  The contours of the function f
2

 for the case α1 =− 0.1 and α 2 =− 0.1.

Fig. 2.  The contours of the Rosenbrock function for the case α1 =− 0.1 and α 2 =− 0.1.
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Fig. 3.  The contours of the function f
2

 for the case α1 =− 0.9 and α 2 =− 0.9.

Fig. 4.  The contours of the Rosenbrock function for the case α1 =− 0.9 and α 2 =− 0.9.
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Fig. 5.  The contours of the function f
2

 for the case α1 =− 1.5 and α 2 =− 1.5.

Fig. 6.  The contours of the Rosenbrock function for the case α1 =− 1.5 and α 2 =− 1.5.
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Fig. 7.  Illustration of the connection between space mapping and direct optimization.

Fig. 8.  The coarse and fine model responses for the first illustration of theorem I
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Fig. 9.  A flow chart of the first phase of the proposed algorithm.
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