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Classification of the Solution of Parameter Extraction

a solution xe
os  of the parameter extraction problem is labeled

locally unique if there exists an open neighborhood of xe
os

containing no other point xos such that )()( xRxR e
osos = , where R

is the vector of matched coarse model responses

it can be shown that the local uniqueness condition is equivalent
to the condition that the Jacobian of the vector of matched
coarse model responses R has a rank n, where n is the number of
optimizable parameters. 

        (a) non locally unique                        b) locally unique
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Problem Definition

assume that multi-point parameter extraction is carried out at the
fine model point xem using Ne fine model points

it follows that the vector of matched coarse model responses R
is given by
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where V p
i ∈∆x )( ; the set of utilized perturbations

it is required to find the perturbation x∆  that can be added to the
set VP and maximizes the improvement of the uniqueness of the
extraction step
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Problem Assumptions

the coarse model is assumed to be much faster than the fine
model

few extra coarse model simulations add negligible overhead to
the computational time of the problem

it is also assumed that first and second order derivatives of the
coarse model responses can be obtained

in the absence of information about the mapping between the
two spaces we take B=I

the mapping B can be easily integrated with the suggested
algorithm if it is available
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A Suggested Method: the Non Locally Unique Case

assume that the rank of the Jacobian of matched coarse model
responses at the point xe

os  is k < n

we impose the condition that the gradients of (n− k) of the
responses generated by the new coarse model point xe

os + x∆  be
normal to the gradients of a linearly independent set of gradients
of cardinality k of the responses in the vector R

define the set of linearly independent gradients by

{ }gg )((1) ,. k., .  S =

the gradient of each of the (n− k) selected responses can be
approximated by

xGgg ∆+= )()()( iii
a ,  i=k+1, . ., n

where g )(i is the gradient of the ith response at the point xe
os  and

G )(i is the corresponding Hessian

the perturbation x∆  that satisfies the orthogonality condition is
obtained by solving
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Suggested Method: the Non Locally Unique Case

cxA −=∆T

where

[ ]gGgGgGA )()((1))((1)1)( knnk  . . . . . .  .  +=
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this system of linear equations may be under-determined, over-
determined or well-determined

the pseudoinverse of the matrix AT is used to find the solution of
minimum length in all cases

the perturbation x∆  is rescaled to satisfy a certain trust region
condition

rescaling implies that the gradients might not be orthogonal but
the independency property is retained
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A Suggested Method: the Locally Unique Case

assume that a solution for the multi-point parameter extraction
xe

os,1 was obtained and that the rank of the Jacobian of matched
coarse model responses is k=n

a perturbation x∆  is sought that distinguishes this locally unique
minimum from other minima that may exist

assume the presence of another locally unique minimum xe
os 2,

the quadratic models for the objective function in the
neighborhood of these two minima are given by, respectively

xHxx ∆∆+=∆ 111 5.0)( Tfq
and

xHxx ∆∆+=∆ 222 5.0)( Tfq

where f 1  and f 2 are the values of the objective function at the
points xe

os,1 and xe
os 2, , respectively and H1 and H2 are the

corresponding Hessian matrices

it can be shown that the direction that maximizes the difference
between the two quadratic models is an eigenvector for the
matrix (H1 – H2)
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Suggested Method: the Locally Unique Case

the matrix H2 is assumed to be the identity as there is no
available information about the other minima that may exist

it follows that the direction of x∆  is an eigenvector for the
matrix H1

the obtained direction of x∆  supplies a direction with a high rate
of change of the coarse model responses and is a characteristic
of the minimum xe

os,1

proper scaling is applied to the obtained perturbation x∆  to
satisfy a certain trust region condition

a scheme was developed to select one of the eigenvectors of the
matrix H1 on a sequential basis

if all the perturbations with certain trust region size are
exhausted the size of the trust region is increased
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An Alternative Perturbation for the Locally Unique Case
without Using Second Order Derivatives

a perturbation of x∆  results in a perturbation of the coarse
model responses at the two minima by

xxJR ∆=∆ )( ,11
e
osos

and
xxJR ∆=∆ )( 2,2

e
osos

we impose the condition that the difference between the
l2 norms of these two response perturbations be maximized
subject to certain trust region size

it follows that the following Lagrangian can be formed
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it can be shown that the perturbation x∆  is an eigenvector for
the matrix )()()()( 2,2,1,1, xJxJxJxJ e

osos
e
osos

Te
osos

e
osos

T −

the perturbation is then scaled to satisfy the length condition

again we make the assumption that IxJxJ =)()( 2,2,
e
osos

e
osos

T

because of the lack of information about other minima
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The Algorithm Flowchart

Given xem , δ  and n.
Initialize { }xemV =

and i=1

J( xe
os ) has

rank n ?

No

Obtain a new perturbation
x∆ using first method and

add the point xx ∆+me to
the set V.  Set i=i+1.

Is V =1?

Yes

No

Is xe
os  approaching a

limit ?

Obtain a new perturbation
x∆ using second method and

add the point xx ∆+me to the
set V.  Set i=i+1.

Stop

Yes

No

Yes

Apply multi-point parameter
extraction using the points

in the set V to get xe
os
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Example 1: the Rosenbrock Function

the coarse model is
)1()(100 1

22
12

2
uu  uRos −+−=

the fine model is
))2.0(1())2.0(0.2)((100 1

2
1

2
2

2 −−+−−+= uu  uR f

it is required to extract the vector of coarse model parameters at
the point ]0.10.1[     T

three fine model points were needed for the algorithm to
terminate

the variation of the extracted parameters with the number of fine
model points is shown in the following table

Number of Points xe
os,1 xe

os 2,

1 1.21541 0.91728
2 0.80008 1.20012
3 0.80008 1.20014
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The Contours of the L2 Objective Function for the
Rosenbrock Function

(a) single-point extraction

(b) two-point extraction
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The Contours of the L2 Objective Function for the
Rosenbrock Function

(c) three-point extraction
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Example 2: a Quadratic Function

the coarse model for this problem is given by

xxRos
2
2

2
1 +=

the fine model for this problem is given by

)9.01.0()1.09.0( 21
2

21
2 xxxxRem +++=

it is required in this problem to extract the coarse model
parameters corresponding to the fine model parameters
xem=[2.0    1.0]T

four fine model points were needed to ensure the uniqueness of
the extracted parameters
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The Variation of the Extracted Parameters with the Number
of Fine Model Points for the Quadratic Function

the following table shows the variation of the extracted coarse
model parameters with the number of fine model points used in
the multi-point parameter extraction

Number of Points xos,1 xos 2,

1 1.95724 0.99458
2 2.10283 0.63094
3 1.92787 1.05337
4 1.89571 1.10868

the exact solution for the parameter extraction problem is
]1.19.1[       os =x T
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The Contours of the L2 Objective Function for the Quadratic
Function

(a) single-point extraction

(b) two-point extraction
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The Contours of the L2 Objective Function for the Quadratic
Function

(c) three-point extraction

(d) four-point extraction
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Example 3: the 10:1 Impedance Transformer

the parameters for this problem are the characteristic
impedances of the two transmission lines

the lengths of both lines are kept fixed at their optimal values
(quarter wave length)

the coarse model is an ideal 10:1 impedance transformer

the fine model scales each of the two impedances by 1.6

the responses of both models at 11 different frequencies in the
frequency band  0.5 GHz ≤ f ≤ 1.5 GHz were used to match the
two models

it is required to extract the coarse model parameters
corresponding to the fine model point [2.2628   4.5259]T

three fine model points were needed to improve the uniqueness
of the problem
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The Matched Responses for the 10:1 Transformer (Single-
Point Extraction)

the set of fine model points utilized in parameter extraction is













=

52592.4
26277.2

V

the extracted coarse model parameters are





=

24147.7
62043.3

xe
os

the matched responses are shown in the following figure
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The Contours of the L2 Objective Function for the 10:1
Transformer (Single-Point Extraction)
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The Matched Responses for the 10:1 Transformer (Two-
Point Extraction)

the set of fine model points utilized in parameter extraction is
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the matched responses of every fine model point are shown
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The Contours of the L2 Objective Function for the 10:1
Transformer (Two-Point Extraction)
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The Matched Response for the 10:1 Transformer (Three-
Point Extraction)

the set of used fine model points is
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the matched responses of every fine model point are shown
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The Contours of the L2 Objective Function for the 10:1
Transformer (Three-Point Extraction)
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