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Abstract  The Aggressive Space Mapping (ASM) algorithm employing multiple point parameter

extraction is illustrated in this report, making use of two analytical Rosenbrock functions as fine and

coarse models. The aggressive Space Mapping concept is reviewed.  The improvement in the uniqueness

of the parameter extraction due to multiple point matching is graphically illustrated.  The ASM algorithm

is shown in a step by step fashion.  The corresponding space mapped solution is obtained and verified

with the direct fine solution.

I.  INTRODUCTION

Space Mapping (SM) is a novel concept for circuit design and optimization that combines the

computational efficiency of coarse models with the accuracy of fine models.  The coarse models are

typically empirical circuit-equivalent engineering models, which are computationally very efficient but

often have a limited validity range for its parameters, beyond which the simulation results become very

coarse.  On the other hand, the fine models may be provided by an electromagnetic simulator, or even by

direct lab measurements; they are very accurate but demand considerable resources. 

The SM technique establishes a mathematical link between the coarse and the fine models, and
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directs the bulk of CPU intensive optimization to the coarse model, while preserving the accuracy and

confidence offered by the fine model.  The SM technique was originally developed by Bandler et al. [1].

The Aggressive Space Mapping (ASM) algorithm using multiple point parameter extraction is

illustrated in this report making use of two analytical Rosenbrock functions.  The original Rosenbrock

function is taken as the coarse model, and a perturbed Rosenbrock function as the fine model. The

aggressive Space Mapping concept is reviewed.  The improvement in the uniqueness of parameter

extraction due to multiple point matching is graphically illustrated.  The ASM algorithm is shown in a

step by step fashion.  The corresponding space mapped solution is obtained and verified with the direct

fine solution.

II.  AGGRESSIVE SPACE MAPPING ALGORITHM

Let the vectors xc  and x f  represent the design parameters of the coarse and fine models,

respectively, and R xc c( )  and R xf f( )  the corresponding model responses.  Rc is much faster to

calculate but less accurate than R f . 

SM optimization consists in the generation of an appropriate mapping, P, from the fine model

parameter space x f  to the coarse model parameter space xc

)( fc xPx = (1)

such that

)())(( fffc xRxPR ≈ (2)

The mapping is established iteratively.  In the original work [1], the initial mapping is established

by performing upfront fine model analysis at a number of base points.  The aggressive SM strategy

minimizes the upfront effort by targeting every fine simulation at optimizing the design and progressively

refining the mapping [2].

The aggressive SM concept can be illustrated by the use of the diagram in Fig. 1.  We initially
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perform conventional optimization using the coarse model to obtain the optimal coarse solution xc
* .

Assuming that x f  and xc have the same dimension, we choose the coarse optimal solution as a starting

point for the fine model

*
cf xx = (3)

and calculate the corresponding fine response )( ff xR .  Then we perform parameter extraction to find

the optimal value of the coarse model parameters xc , such that the coarse response sufficiently match the

fine response calculated, 

R x R xc c f f( ) ( )≈ (4)

If the extracted parameters xc  are approximately the same as the optimal coarse solution xc
* ,

then we have the space-mapped solution fx  and the optimization ends, otherwise, a new value of x f  is

generated using Broyden’s formula, the mapping is updated, and the optimization continues by

calculating the corresponding new fine response (see Fig. 1).  To find the space-mapped solution fx

means to find the fine model parameters x f  whose response R xf f( )  matches the optimal coarse

response )( *
cc xR .

Following [2], the ASM algorithm can be implemented as follows

Step 0. Initialize *)1(
cf xx = , 1B =)1( , 1=j .

Step 1. Evaluate )( )1(
ff xR .

Step 2. Extract )1(
cx  such that )()( )1()1(

ffcc xRxR ≈ .

Step 3. Evaluate *)1()1(
cc xxf −= .  Stop if η≤)1(f .

Step 4. Solve )()()( jjj fhB −=  for )( jh .
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Step 5. Set )()()1( jj
f

j
f hxx +=+ .

Step 6. Evaluate )( )1( +j
ff xR .

Step 7. Extract )1( +j
cx  such that )()( )1()1( ++ ≈ j

ff
j

cc xRxR .

Step 8. Evaluate *)1()1(
c

j
c

j xxf −= ++ .  Stop if η≤+ )1( jf .

Step 9. Update 
)()(

)()1(
)()1(

jTj

Tjj
jj

hh

hfBB
+

+ += .

Step 10. Set 1+= jj ; go to Step 4.

It is clear that the matrix )( jB  obtained from Broyden’s formula represents the most up-to-date

approximation to the mapping between the two spaces around the optimal coarse solution xc
* .  That is

)()( *)()()1()(
c

j
c

j
f

j
f

j xxxxB −−=−+ (5)

Thus, when the space-mapped solution is reached, f
j

f xx =+ )1( , the mapping can be obtained

from (5) using the final value of B , as follows

*)()( cfffc xxxBxPx +−== (6)

Using (6) the fine model could be replaced by the coarse model for fast response evaluations.

III.  COARSE AND FINE MODELS

Consider a Rosenbrock function as a coarse model, )(xcR , given by

2
1

22
12 )1()(100)( xxxRc −+−=x (7)

where 





=

2

1

x
x

x  are the design parameters.  The-3-D plot and the contours of the coarse model )(xcR

are illustrated in Fig. 2, which were obtained using MatLab  [3].  The well-known coarse optimal

solution is at point 





=
1
1*

cx  and the coarse optimal value is .0)( ** == cc RR xc
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A perturbed Rosenbrock function will be considered as a fine model, )(xfR , given by

2
1

22
12 )1()(100)( uuuR f −+−=x (8)

where  






+
−

+=





=

2.0
2.0

2

1 xu
u
u

.  The 3-D plot and the corresponding contours of the fine model are

illustrated in Fig. 3.

IV.  MULTIPLE POINT PARAMETER EXTRACTION

According to the step 2 of the ASM algorithm previously described, we want to extract the

corresponding parameters for the coarse model, x, such that )()( *
cfc RR xx ≈ .  Instead of minimizing

pcfc RR )()( *xx − (9)

we will perform a multiple point parameter extraction to obtain a sharper objective function and improve

the uniqueness of the parameter extraction, at the expense of more fine model evaluations.  The multiple

point parameter extraction approach was introduced by Bandler et al.  [4].  The new objective function

considering five matching points is

picfi
j

c RR )?()?( *)( xxxBx +−+ (10)

where 





=∆
0
0

1x , 





=∆

5.0
0

2x , 





=∆

0
5.0

3x , 






−

=∆
5.0

5.0
4x  and 







−
−

=∆
5.0
5.0

5x were chosen arbitrary.

The points ici xxp ?* +=  in the fine parameter space are being indicated in Fig. 3b.  We are

considering that, at the jth iteration of the ASM algorithm, a perturbation in the fine parameter space ix∆

corresponds to a perturbation i
j xB ?)(  in the coarse parameter space, as proposed in [5].

Since the matrix 1B =)( j  for the first parameter extraction optimization, the corresponding five

error functions Ei are given by

)?()?( *
icfici RRE xxxx +−+= (11)
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If we consider only 1l and 2l  norms, the corresponding objective functions are

nn EEEABS +++= K21
(12)

and

22
2

2
1 )()()( nn EEESQR +++= K (13)

The 1l  objective functions for the single point parameter extraction problem ( 1ABS ) and for the

multiple point parameter extraction problem taking four additional points ( 5ABS ) are illustrated in Fig.

4, from where it can clearly be noticed the improvement in the uniqueness of the parameter extraction

solution.  A similar result is illustrated in Fig. 5 for the 2l  objective functions 1SQR  and 5SQR .  It can be

visualized from the plots of 5ABS  and 5SQR  that the solution for the parameter extraction problem is







=

2.1
8.0

x .  It can also be verified that

4.31)?()?
2.1
8.0

( 1
*

1 =+=+







xxx cfc RR ,

4.112)?()?
2.1
8.0

( 2
*

2 =+=+







xxx cfc RR ,

1.24)?()?
2.1
8.0

( 3
*

3 =+=+







xxx cfc RR  ,

1.98)?()?
2.1
8.0

( 4
*

4 =+=+







xxx cfc RR ,  and

7.37)?()?
2.1
8.0

( 5
*

5 =+=+







xxx cfc RR  .

(14a-e)

V.  SPACE MAPPED SOLUTION

Now we will apply the ASM algorithm described in Section II to the coarse and fine models

defined in Section III.
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Step 0. 





=
1
1)1(

fx , 1B =)1( , 1=j

Step 1. From (14a), 4.31)( )1( =ffR x

Step 2. From Figs. 4 and 5, when 





=

2.1
8.0)1(

cx , )()( )1()1(
ffcc RR xx =

Step 3. 





−=






−






=

2.0
2.0

1
1

2.1
8.0)1(f

Step 4. Since 1B =)1( , 






−

=
2.0

2.0)1(h

Step 5. Set 





=







−

+





=

8.0
2.1

2.0
2.0

1
1)2(

fx

Step 6. 0)( )2( =ffR x

Step 7. 





=
1
1)2(

cx , because we know 0)( )2( =ccR x

Step 8. Since 





=−=
0
0*)2()2(

cc xxf , the algorithm ends, and 





==

8.0
2.1)2(

ff xx .

For this particular problem, which involves two optimization variables, the Aggressive Space

Mapping algorithm takes only one iteration.  It can be verified that the space-mapped solution obtained is

equal to the exact fine solution (see Fig. 3b). 

The mapping between the coarse and the fine parameter spaces can be obtained using (6) as

follows







−+=






+






−






==

2.0
2.0

1
1

)
8.0
2.1

(
10
01

)( fffc xxxPx , (15)

which corresponds to the original perturbation that relates the coarse and the fine models (8).  Therefore,

the mapping obtained is valid for the whole range of parameter values.
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VI.  CONCLUSIONS

The Aggressive Space Mapping (ASM) algorithm with multiple point parameter extraction was

illustrated in this report making use of two analytical Rosenbrock functions.  The original Rosenbrock

function was taken as the coarse model, and a perturbed Rosenbrock function as the fine model.  The

improvement in the uniqueness of the parameter extraction due to multiple point matching was

graphically illustrated.  The ASM algorithm was executed in a step by step fashion, and the

corresponding space mapped solution was accomplished after only one iteration.  The mapping

calculated by the ASM algorithm is equal to the original linear mapping between both parameter spaces.
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Choose the coarse optimal
solution as a starting point

for the fine model

x xf c= *

Calculate the fine
response

( )R xf f

PARAMETER EXTRACTION:
Find the optimal value of

such that

COARSE OPTIMIZATION:
Find the optimal response

using the coarse model

( )R xc c
*

( ) ( )R x R xc c f f≈
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End

?

x xc c≈ *

Yes

Update

using Broyden's formula

No

x f

Fig. 1.  Space Mapping concept.
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Fig. 2.  Original Rosenbrock function or coarse response, Rc:  (a) surface plot;
        (b) contours for levels 0.0001, 0.7, 7, 70, 200, 350, 550, 700.
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Fig. 3.  Perturbed Rosenbrock function or fine response, Rf:  (a) surface plot;
         (b) contours for levels 0.0001, 0.7, 7, 70, 200, 350, 550, 700.
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Fig. 4.  l1 objective function for the parameter extraction problem: (a) single point parameter
         extraction; (b) multiple point parameter extraction (with 4 additional points).
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Fig. 4.  l2 objective function for the parameter extraction problem: (a) single point parameter
         extraction; (b) multiple point parameter extraction (with 4 additional points).


