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ABSTRACT

For the first time, this paper reveals and discusses the theoretical foundation of the
Geometry Capture technique. Geometry Capture facilitates user-parameterization, through
graphical means, of arbitrary 2D and 3D geometrical structures. This makes it possible to
optimize the shape and dimensions of geometrical objects in an automated electromagnetic
design process by adjusting the user-defined parameters subject to explicit numerical
bounds and implicit geometrical constraints.
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I. INTRODUCTION
The most significant features of EM simulators include their unsurpassed accuracy, extended
validity ranges, and the capability of handling fairly arbitrary geometrical structures. In order to
take full advantage of these features the structures may need to be simulated in their entirety. This
means that the microwave designer expects to be able to optimize increasingly more complex
structures. This paper addresses the critical issue of parameterization of arbitrary geometrical
structures [1-3] for the purpose of layout-based design, in particular automated EM optimization.
Automated EM optimization has raised a number of challenges. Some have already been
successfully addressed [4-6] including geometrical interpolation and modeling, reconciling and
exploiting the discrete nature of numerical EM solvers with the requirement of continuous variables
and gradients by the optimizers, as well as parallel computation combined with efficient data base
handling. Techniques, such as Space Mapping [7,8] play a pivotal role in effective utilization of
EM design tools. Advances in computer hardware make automated EM optimization feasible,
though still very CPU intensive. The potential and importance of EM-based optimal design have
been fully endorsed by a panel session [9] and workshop [10] and we expect widespread use of this
approach in the future. The number of reported applications is growing rapidly (e.g., [11,12]).
As the optimization process proceeds, revised structures must be automatically generated.
Moreover, each such structure must be physically meaningful and should follow the designer’s
intention w.r.t. allowable modifications and possible limits. It is, therefore, of utmost importance
to leave the parameterization process to the user. In our earlier work (Empipe Version 1.0, 1992)
[13] we created a library of predefined elements (lines, junctions, bends, gaps, etc.), that were
already parameterized and ready for optimization. The applicability of that approach is, however,
limited to structures that are decomposable into the available library elements. Even a
comprehensive library would not satisfy all microwave designers, simply because of their creativity
in devising new structures. Moreover, the library approach inherently omits possible proximity
couplings between the elements since they are individually simulated by an EM solver and

connected by a circuit-level simulator.



To provide a tool for parameterizing arbitrary structures, we created the user-friendly
Geometry Capture™ technique (Empipe Version 2.0, 1994) [2,13]. Here, we examine theoretical and

implementational concepts and present the mathematical foundation of that technique.

II. THEORY

Mathematical Description of Geometrical Objects

Every structure to be simulated by an EM solver consists of a number of 2D or 3D objects. Each
object must be uniquely defined by its attributes and a finite ordered set of numerical values. The
attributes determine the class of objects into which a particular object falls (for example, a polygon
or a polytope) as well as how the numerical values are interpreted by the specific EM solver. These
numerical values typically represent absolute coordinates of points which form a defining set for
the object. For example, a specific polygon can be defined by a sequence of its vertices, with the
assumption that each pair of consecutive vertices determines an edge, i.e., they are connected by
a line segment (with the last vertex connected to the first one). In contrast, a purely mathematical
description of objects such as defining its boundary by a (possibly implicit) function may not be
quite practical, could limit available shapes, etc.

It is possible for some of the numerical values defining an object to represent parameters
such as the length or width of a rectangle, or the angle or radius of a radial stub. Such parameters
are of direct interest to the designer. If all numerical values represented such parameters and if
they were readily available then there would be no need for parameterization. However, some of
the values (if not all) must represent absolute geometrical coordinates for the simple reason of
indicating relative placement of an individual object w.r.t. to all other objects, as required to handle
arbitrary structures. Therefore, in the following discussion we concentrate on those absolute
coordinates only, assuming for simplicity that they represent vertices.

Consider an ordered set of vertices of an object as described by

Xp1s Xygs o - o5 Xy (1)

where m is the total number of vertices and each x,; is the vector of vertex coordinates. Depending



on the object, x,; is either a two- or three-dimensional vector. All the vertices can be conveniently
represented by a single vector

X = [xvlT xva. .. xv,,,T ¥ 2)
which combines all the coordinates in an ordered manner. The space of all vectors x will be

denoted by X (it can be either R%™ or R%™),

Implicitly Constrained Coordinate System
Considering x in (2) as a vector of unconstrained optimization variables can easily lead to
unacceptable results. This is illustrated by Fig. 1. Starting from the object shown in Fig. 1(a) it
is possible for the optimizer to suggest the values leading to the situation depicted in Fig. 1(b).
This may pose serious difficulties - the best an EM solver can do is to employ a sophisticated rule
checker and to dismiss the suggested values. Such a rule checker will not be normally available to
the optimizer.
In order to impose constraints on the movement of the vertices we consider a function T
mapping certain designable or optimizable parameters ¢ into X as
x = T(9) (3)
and assume that the parameters are allowed to vary within an orthotope specified by
Gimin < b € Fimao =1,2,..,n (4)
There will normally be very few parameters ¢ as compared with the number of vertices (n << m).
The process of parameterizing an object consists of selecting the parameters ¢, defining and
determining the function 7', and establishing the constraints (4). Finally, discretization of the

parameters ¢ needs to be considered.

Defining Structure Parameters and Object Evolution
As already mentioned, defining the parameters ¢ should be left to the designer who knows best
what changes to the object are desired and allowable. Although this process is quite intuitive, a

few rules should be followed. First, there should be as few parameters as possible. Secondly, the



parameters must be consistent. In other words, if independently changed, they must not contradict
each other. For example, attempting to define all partial lengths as well as the total length as
independent variables is incorrect. A clear understanding of how the object evolves when a
parameter is varied is crucial. The limits to be specified by (4) are particularly important in
preserving the physical meaning of the object. It is worth emphasizing that the parameter values,
as seen by the optimizer, are intermediate to the process of generating actual layouts. Therefore,
parameter transformations such as scaling or normalization can be used to link those optimizable
parameters with the actual layout design parameters.

Object evolution and defining the parameters are illustrated by Fig. 2. Assuming that the
location of the left edge is fixed, the evolution of the object can be described by just one
parameter in all cases. However, its definition and impact on the location of the vertices will be
different. One may select the overall length, the distance between the slit and the left edge, or the
distance between the slit and the right edge in the case of Fig. 2(b), (c), or (d), respectively. The
importance of the limits (4) is particularly evident in the case of Fig. 2(c): the distance between the
slit and the left edge must not exceed the overall length. Another example is shown in Fig. 3

where one parameter controls the length of the right edge in a symmetric manner.

Defining the Mapping
The mapping (3) will be defined w.r.t. to the starting, or nominal, object x°

X = T(¢" (5)

where ¢° represents the nominal values of the parameters ¢. In other words, we consider the
following form of T

T(¢) = T(¢°) + F(¢-4°) (6)
As long as the vectors x° and ¢° are known (specified by the designer), only the function F in (6)

needs to be identified. The movement of individual vertices w.r.t. the nominal object is then

x; = x,°+ f(¢-4°) (7



where f;, i = 1, 2, ..., m, are the subvectors of F such that
F=1T 7. 677 ®)
A principal assumption we make about the mapping is that the functions f,-T are additive
w.r.t. the contributions due to incremental changes in individual parameters. This is expressed
mathematically as
f(8-8% = T fy(4;-4°) )
The case of two parameters is illustrated in Fig. 4. Under this assumption, defining the mapping
(3) can be carried out by identifying the functions i in (9). Each such function determines the
trajectory of the movement of a specific vertex due to a change in one parameter alone. An
example of such a trajectory is shown in Fig. 5. An important consequence of (9) is that F in 6)
can be expressed as
F$-¢°) = T Ff¢1-4]) (10)
where each term on the RHS indicates the evolution of the whole object due to a change in one
parameter alone. This means that the process can be split into steps in which the user characterizes

the evolution of the whole structure in response to changes in one parameter at a time.

Specific Forms of the Mapping

Mathematically speaking, each function fij in (9) is a parametric description of the ith vertex
trajectory corresponding to changes in ¢j when all other parameters are kept at their nominal values.
Theoretically, any form of f,-j can be handled. From the implementational point of view, however,
we may want to limit the available forms to some predefined functions. One also needs to make
a decision whether an analytical (through some coefficients) or numerical (through some function
values) description is to be entered. An important consideration in limiting the available forms is
to understand how much arbitrariness in the overall structure evolution we may loose. Finally, it
is strongly desirable to keep the functions as simple as possible.

The latter consideration turns our attention to linear functions f; of the form

1§46 = (48" (11)



where a; is a fixed two- or three-dimensional vector. Correspondingly, the ith vertex trajectory
is a straight line. To use this form we need either to enter a; directly, or to specify another point
on the line in addition to the already defined nominal point.

The next choice could be a polynomial form

[{97-8%) = T (8- (12)
where o, k = 1, 2, ..., N, are fixed two- or three-dimensional vectors, and N is the polynomial
degree. To use this form we need either to provide directly N vectors ay, or to specify another
N points on the trajectory (in addition to the already defined nominal point). If the defining data
is entered using those additional points then two (or three) corresponding systems of N simultaneous
linear equations need to be solved to determine the vectors ay.

Trigonometric functions could be useful in defining circular trajectories. For example, if
¢j = § is the angle of a radial planar stub then the movement of the ith vertex of this stub can be
described by

f,-](o-a“) = o - acos(8-6°) + a;tsin(6-6°) (13)
where a; = [¢;; @;,] is a fixed two-dimensional vector, and ot = [e; -;;]7. Here, either g is
entered directly, or two additional non-colinear (w.r.t. the nominal point) points on the trajectory
need to be specified.

From the foregoing discussion one can have an impression that we need a variety of specific
forms of the functions f,~j in order to accommodate most of the practical situations. Even so, such
forms do not have to be directly included as an integral part of capturing the object evolution
provided that an expression processor is available to pre-process the object parameters ¢. This can
be illustrated by an alternative approach to (13). Let 6 be the parameter of interest to the designer.
Instead of defining (13) directly we may introduce two intermediate variables, say ¢, and ¢,. Using
just the linear function form (11) we can then define two functions f;; and f;, simply as

f1(61-6.%) = (-6, 11 01" (14)
fi)(b3-85") = ($y-8,7) [0 117 (15)

To enforce the vertex trajectory the variables ¢, and ¢, are not permitted to be independent.



Rather, they are both controlled by 6 through pre-processing as
¢
2

After adding both functions f;; and f;, according to (9) the effect of 6 on the vertex movement is

6% + oy - 0;,c05(6-0°) + aypsin(6-6°) (16)

6,0 + qjp - apco5(9-6°) - oy sin(8-6°) (17)

identical to that described by (13).

We believe that the linear mapping (11), occasionally supported by an expression pre-
processor, should be adequate for the majority of arbitrary structures that microwave designers may
want to consider. Note, that all the cases of Figs. 2 and 3 can be handled by (11) without any need

for pre-processing. Further examples are given in Section III.

Discretization of Structure Parameters

Discretization of structure parameters may or may not be enforced by the EM simulator. In any
case it is advantageous to use it or at least to have the option to use it. There exist techniques
facilitating significant improvement of efficiency when the parameters are discretized. These
techniques include the utilization of a data base of already simulated structures in conjunction with
efficient interpolation and modeling [4-6]. The benefits of these techniques include efficient
gradient evaluation, handling of tolerances, efficient model evaluation in Monte Carlo analysis and
yield-driven design.

In cases when parameter discretization is not enforced by the EM simulator we have total
flexibility in setting the discretization grid. The only factor to consider is the trade-off between
the accuracy of interpolation and the CPU time saving. Actual EM simulations are invoked on an
as needed basis at the on-grid parameter values only. Their results are stored in a data base for
future reference. For off-grid values the structure responses are interpolated from the results of
the neighbouring on-grid simulations.

Parameter discretization may be enforced by the EM simulator if it is a fixed grid solver.
If this is the case, all the (user-defined) parameters must be discretized in such a manner that for

on-grid parameter values the mapped vertices are also on the grid. More precisely, we need to deal



with two grids. The first one is the already mentioned parameter grid created in the space of the
parameters ¢ by their discretization. The second one, due to meshing, is imposed on the structure
by the EM solver. We call it the layout grid.

We concentrate our discussion on the simplest and prevailing case of a rectangular uniform
layout grid, which is assumed to be fixed when the structure evolves. The vertices (1) of any
object have to be on this grid which can be mathematically expressed as

x; = [ky Ax;  kyp Ax,  kig Axg 1T (18)
where k;, k;, and k;g are some positive integers, and Ax,, Ax, and Axg are the grid sizes in the
respective dimensions. When an attempt is made to supply a vertex x,; which does not satisfy (18)
then it will normally be automatically snapped to the nearest grid point.

It is clear from (3) that when the optimizer changes the parameters ¢ then the vertices X,;
are likely to be off the layout grid. Thus, snapping may occur for various settings of the
parameters ¢ making the structure responses severely discontinuous (constant over certain regions
with sudden jumps between the regions). Here, interpolation has to be applied to circumvent this
problem.

Since the optimizer deals with the parameters ¢ only, both grids need to be consistent,
namely for on-grid parameters ¢ the corresponding vertices, determined according to (3), have to
be on the layout grid. This is simply required because no snapping error should be allowed in EM
simulations for on-grid values of ¢. To reconcile both grids is not trivial and, in general, may not
be feasible. This is perhaps theoretically the most limiting aspect of the whole process of structure

parameterization.

Grid Reconciliation: General Case

Fortunately, subject to some limitations, reconciliation of both grids can be assured in an intuitive
way if a graphical editor is used to define the mapping (3). In defining the functions F; in (10)
one simply needs to provide a number of points such that the corresponding structures are drawn

on the grid, which is quite natural. Consider the parameter ¢j and a set of its values



= (4" ¢ . ¢V (19)
We assume that each of the corresponding N;+1 structures is drawn on the grid. An underlying
assumption is that only ¢j is varied while all other parameters are kept at their nominal values.
Also consider one of the coordinates of the vertex x,. The N;+1 locations of the vertex
corresponding to the parameter values (19) establish a set of the coordinate values, which, by
definition, can be expressed as
X = Klax, 1=0,1,.., N (20)
The vertex and coordinate indices are dropped for simplicity. The mapping is constructed to satisfy
X - x0 = fi4l-4", 1=1, .., N 2D
Of course, the form of each function f;j in (9) must be capable of accommodating (21), e.g., cubic
splines, or a polynomial of the Njth degree. Then we can formulate the following lemma.
Lemma
For any point in the Cartesian product of all the sets (19)
¢ € JxJyx - xJ, (22)
the corresponding structure defined by any mapping (3) satisfying (5)-(10), (20) and (21) is on the
grid, i.e., each vertex of the structure can be expressed as in (18).

The proof of the lemma follows immediately from (20) by noticing that, when the partial
results of the form of the RHS of (21) are combined together through (9) and (7) for all parameters
and each coordinate, Ax is coordinate specific and common for all the terms. Thus the resulting
x,; can be expressed as in (18) and, therefore, is on the layout grid. This is true for all the vertices,
which shows that the two grids are indeed reconciled.

It is worth pointing out that since the user of the EM simulator may have control over
initially setting the grid sizes Ax,, Ax, and Ax, the limitation of drawing the perturbed structures
on the grid is not severe.

Note that, by definition, the grid (22) is finite. The lemma can be extended to other points

in the parameter space if they are mapped to on-grid structures. However, there may not exist

such points simply because a vertex trajectory, once determined according to (19)-(21), may never
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pass through the layout grid points other than those implied by (20). If this is the case, the selected
structures need to be drawn in the region of the expected solution since extrapolation outside of
the region determined by (22) may lack sufficient accuracy. Also note that the user needs to supply
IN; perturbed structures, in addition to the nominal one. In the case of a large number of defining

points (19) this might be tedious, and for practical reasons may limit the applicability of the lemma.

Grid Reconciliation: The Linear Case
The possible limitations of the general case can be avoided if the linear mapping (11) is used. First,
we only need to assure that the direction of the straight line trajectory is such that it passes through
some of the layout grid points. It will then pass repeatedly through some other layout grid points,
thus extending the parameter grid infinitely. Secondly, only one perturbed on-grid structure
(drawing) needs to be specified for each parameter (Nj = 1). Specifically, if the values of the
parameter ¢j corresponding to the nominal and perturbed structures are denoted by ¢j° and ¢]P‘”
then ¢]~ can be discretized as

¢ = ¢j° + mjAg; (23)
where m; is an integer number (positive, zero or negative),

Ag = (B - 40/M (24)
and M-1 is the number of additional layout grid points on the trajectory between the two vertex
locations xvi0 and x, /" corresponding to ¢j° and ¢]P‘”, respectively. The expression (24) establishes
an n-dimensional unbounded uniform rectangular grid in the space of the parameters ¢.

Again, considering one of the coordinates of the vertex x,; at the nominal and perturbed
locations (x,,° and x,7°"), denoted by x® and xP* we have, by construction
x? = KkPAx (25)
and
X = kf’e”Ax (26)
Since the layout grid is rectangular and uniform the number of grid sizes Ax in the difference

x"-x° must an integer multiple of M, i.e., kf’“”-kjo = KM. K is a vertex/coordinate/parameter

11



specific non-zero integer. It can then be shown that the corresponding component of the mapping
(11) can be expressed as
x-x = (4 - $0KAx/AY 27)
Therefore, if ¢j is on the (parameter) grid, i.e., represented as in (23), then, from (27) and (25), x
can be expressed as
X = (k}-0 + mj-K)Ax (28)
Clearly, (28) takes the form of (18) although some safeguards may need to be applied to ensure a
positive value of the coefficient. As in the general case, the partial results of the form of (28) are
combined together through (9) and (7) for all parameters and each coordinate, and through (8) for

all vertices, leading to an on-grid structure.

III. EXAMPLES
The Double Folded Stub Microstrip Filter
Consider the double folded stub microstrip filter (see for example [4]) shown in Fig. 6. We consider
changing the overall length of the filter, the length of the folded segments of the stubs, the spacing
of the folded segments of the stubs, and the width of the main line and of the stubs as allowable
modifications to the structure. This can be controlled by the parameters Ly, Ly, S, W, and W,
marked in the diagram. Here, the parameterization process is implemented by Empipe [13] and
xgeom [14]. First, a nominal structure is fully characterized using xgeom, as shown in Fig. 7. This
includes drawing, specifying the grid, box, substrate, etc., and entering all material constants.
Then, the structure is sequentially edited to reflect changes w.r.t. to each optimizable parameter.
Every such modified structure needs to be fully characterized. Fig. 8 shows the structures
corresponding to S=4.8 mil and to S=11.2 mil, respectively.

Similar structures reflecting modifications due to the remaining parameters need to be
drawn. Then Empipe’s Geometry Capture tool captures the absolute coordinates of all the vertices
for the nominal and modified structures. Finally, Empipe prompts the user to provide the values

of parameters (4.8 mil and 11.2 mil in the case of Figs. 8(a) and 8(b)) corresponding to all drawings,
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as well as certain data needed for discretization. As a result, after performing all mathematical
calculations, Empipe generates a new optimization-ready library element that can be stored and

reused.

Independent and Interdependent Parameters

This example illustrates various options in selecting structure parameters. In Fig. 9(a), the
incremental changes represent two separate and independent parameters, namely L/ and L2. Fig.
9(b), however, implies that the parameters L1 and L2 are strongly correlated: an increase in L]
implies a decrease in L2 and vice versa. This is necessary in order to maintain the overall length
(L1 + L2) constant, which is a commonly encountered constraint in layout within a fixed enclosure.
In fact, for the structure depicted in Fig. 9(b), there is really only one degree of freedom, and

therefore it will suffice to define just one parameter (L1 or L2).

The WR-75 Waveguide Two-Section Mitered Bend

Consider the waveguide two-section mitered bend depicted in Fig. 10. Optimization of this
structure is reported in [15]. The miter consists of two sections, symmetrically placed as shown in
Fig. 11. The allowable change to the miter is the location of the edge connecting the two sections:
along the dashed line in Fig. 11. This can be controlled by the parameter d, also shown in Fig. 11.
Note, that the trajectories of vertex movement are straight lines (though not parallel to any axes)
so the linear form of mapping is suitable to handle this case.

Here, the parameterization process is implemented by Empipe3D [13] and the 3D Solid
Modeler of Maxwell Eminence [16] (the 3D Solid Modeler of HESS [17] could be used as well).
First, a nominal structure is fully characterized using Maxwell Eminence, as shown in Fig. 12.
Maxwell Eminence allows exploitation of geometrical symmetry to reduce computation time. For
the waveguide bend structure, we can set up a "Perfect H Boundary" so that only half of the
structure needs to be analyzed by the 3D solver. In Fig. 12, the waveguide appears to have a

square cross section, since the solid model is one half of the actual structure. The actual waveguide

13



dimension is 0.75 x 0.375 inch, as illustrated in Fig. 10.

In order to parameterize the bend, we need to create a perturbed project representing an
incremental change in d. Fig. 13 shows the cross-section of the bend for two values: d = 0.1 inch
and d = 0.05 inch. Then Empipe3D’s Geometry Capture tool captures the information necessary
for translating parameter values to a corresponding solid model. Similarly to the first example,

Empipe3D generates a new optimization-ready library element that can be stored and reused.

IV. CONCLUSIONS
We have examined theoretical concepts and formulations relevant to parameterization of arbitrary
geometrical structures for automated layout-based optimization using EM tools. This is to facilitate
friendly user-parameterization of geometrical objects. Once a structure has been parameterized
with user-defined parameters controlling its dimensions (size as well as shape), it becomes available
for automated optimization. Significantly, the structure can be saved and reused, thus augmenting
a customized library of elements.

Our theoretical derivations are not bound by any particular EM solver. Certain assumptions
have been made to keep the technique simple and manageable. We expect that our innovations will
become widely used in optimization-oriented layout-based applications, including MMIC design,

VLSI design, high-speed interconnect design, particularly in conjunction with EM simulators.
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(@) (b)

Fig. 1. Arbitrary movement of vertices of a polygon: (a) the initial geometry, and (b) an unwanted
result due to an arbitrary and independent movement of vertices.

(@) (b)

() (d)

Fig. 2. Various evolutions of a microstrip line with a slit: (a) the initial geometry, (b) proportional
expansion of the whole structure along the x axis, (c) only the location of the slit in the
fixed line is allowed to change, and (d) only the segment to the right of the slit is allowed
to expand.
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(@) (b)

Fig. 3. Evolution of a rectangle (a) to a tapered line (b).

Fig. 4. Additiveness of the vertex movement w.r.t. the changes in individual parameters.
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Fig. 5. Possible trajectory of the movement of a vertex with a change in a parameter.
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Fig. 6. Double folded stub filter.
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Fig. 7. Parameterization of the double folded stub filter: the nominal geometry.
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Fig. 8. Parameterization of the double folded stub filter: (a) the filter structure for S=4.8 mil, and
(b) the filter structure for S=11.2 mil.
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Fig. 9. The parameters L1 and L2 are (a) independent, and (b) interdependent.
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Fig. 10. The WR-75 waveguide two-section mitered bend.

Fig. 11. The optimizable parameter d for the two-section mitered bend.

23



= 3D Solid Modeler "bend20~ [read—-only] 1
‘g‘ File Global Window Define

Retrieving bend2
Retrieving wgins
Retrieving wgouts
Done

Fig. 12. Solid model for the waveguide two-section mitered bend.
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project for d = 0.1 inch project for d = 0.05 inch

Fig. 13. Cross-section of the waveguide mitered bend for two distinct values of the parameter
d.
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