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Abstract

We present a novel, Hybrid Aggressive Space Mapping (HASM) optimization algorithm.  HASM

is a hybrid approach exploiting both the Trust Region Aggressive Space Mapping (TRASM) algorithm

and direct optimization.  It does not assume that the final space-mapped design is the true optimal design

and is robust against severe misalignment between the coarse and the fine models.  The algorithm is based

on a novel lemma that enables smooth switching from the TRASM optimization to direct optimization

and vice versa.  The new algorithm has been tested on several microwave filters and transformers.

SUMMARY

Introduction

We present a novel optimization algorithm, Hybrid Aggressive Space Mapping (HASM).  Space

Mapping (SM) optimization [1, 2, 3, 4] assumes that the circuit under consideration can be simulated

using two models: a fine model and a coarse model.  The fine model is accurate but is computationally

intensive, e.g., a full-wave EM simulator.  The coarse model is assumed to be fast but not very accurate.

SM optimization directs most of the optimization computational effort towards the coarse model while
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maintaining the accuracy of the fine model.  The overall computational effort needed is much smaller

than that needed for direct optimization.

The parameter extraction step is a crucial procedure in the Aggressive Space Mapping (ASM)

technique [4].  In this step a coarse model point whose response matches a given fine model response is

obtained.  This is essentially an optimization procedure.  The nonuniqueness of the extracted parameters

may lead to divergence or oscillation of the iterations [2].  To alleviate this problem the TRASM

algorithm was introduced [3].  TRASM integrates a trust region methodology [5] with the ASM

technique.  Also, it utilizes a recursive multi-point parameter extraction in order to improve the

uniqueness of the extraction step.

The design obtained by pure SM optimization in most cases is very near optimal.  However, the

optimality of the final design can not be guaranteed.  This is because the final space-mapped response

matches the optimal coarse model response which may be different from the optimal fine model response

obtained by direct optimization.  The new algorithm is designed to overcome this limitation and handle

severely misaligned cases.

Aggressive Space Mapping: A Brief Review

We refer to the vectors of “fine”  model parameters and “coarse”  model parameters as emx and

xos , respectively.  The first step is to obtain the optimal design of the coarse model os
*x .  ASM aims at

establishing a mapping P between the two spaces [4]

os emx P x= ( )                                                                     (1)

such that

em em os osR x R x( ) ( )− ≤ ε                                                       (2)

where Rem is the vector of fine model responses, Ros is the vector of coarse mode responses and  is a

suitable norm.  We define the error function

f P x x= −( ) *
em os                                                                  (3)

The final fine model design is obtained and the mapping established by solving the nonlinear system
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f(xem) = 0                                                                        (4)

Let x )(i
em  be the ith iterate in the solution of (4).  In the ASM technique, the next iterate x 1)( +i

em  is

found by a quasi-Newton iteration

em
i

em
i i( ) ( ) ( )+ = +1x x h                                                                  (5)

where h )(i  is obtained from

( ) ( ) ( )( )i i
em
iB h f x= −                                                                (6)

and B )(i is an approximation to the Jacobian of the vector f with respect to emx at the ith iteration.  The

matrix B is updated at each iteration using Broyden’s update [6].

Vector f is obtained by evaluating P x( )em , which is done indirectly through parameter extraction.

This optimization process may have more than one minimum, leading to divergence or oscillation of the

ASM technique.  The TRASM algorithm [3] was designed to overcome this problem.  At the ith iteration,

the residual vector xxPf *
os

i
em

i −= )( )()(  defines the difference between the vector of extracted coarse

model parameters  os
i( )x = em

iP x( )( )  and the optimal coarse model design.  The mapping is established by

driving this residual vector to zero.  It follows that the value ( )if can serve as a measure of the

misalignment between the two spaces in the ith iteration.  The ith TRASM iteration is obtained from

fBhIBB )()()()()( )( iTiiiTi  −=+ λ                                                    (7)

where ( )iB  is an approximation to the Jacobian of the coarse model parameters with respect to the fine

model parameters at the ith iteration.  Parameter λ is selected such that the step obtained satisfies

( ) ,ih ≤ δ  where δ  is the size of the trust region.

Space Mapping and Direct Optimization

The HASM algorithm exploits the following novel lemma that allows for smooth switching

between direct optimization and SM.  The proof is omitted here for the sake of brevity.
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Lemma  Assume that xos  corresponds to xem  through a parameter extraction process.  Then the

Jacobian Jem of the fine model responses at xem  and the Jacobian Jos  of the coarse model responses at

xos  are related by

BJJ osem =                                                                                                         (8)

where Jos is the Jacobian of the coarse model responses at the point xos .

Relation (8) shows that by using B and J so we are able to obtain a good estimate of the Jacobian

of the fine model responses without any further fine model simulations.  It follows that when ASM

optimization is not converging we can switch smoothly to direct optimization.  The point reached

becomes a starting point for direct optimization, with corresponding first-order derivatives calculated by

(8).

It follows from (8) that

( ) JJJJB em
T 

osos
T 
os

 - 1=                                                              (9)

Relation (9) assumes that the J so is  full rank and m ≥ n, where n is the number of parameters and m is the

number of responses .  It is used for switching back from direct optimization to SM optimization.

The HASM Algorithm

The HASM algorithm exploits SM when effective, otherwise it defaults to direct optimization.

The objective function of the TRASM algorithm is

xxPf * 2

2

2
2 )( osem −=                                                            (10)

while the objective function for direct optimization is

)()( * 2

2

2
2 xRxRg ososemem −=                                                      (11)

While the SM objective (10) aims at matching the optimal coarse model parameters with the

extracted coarse model parameters in the parameter space, objective function (11) aims at matching the

same points mapped through the appropriate responses in the response space.  Solving the matching
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problem may be easier in one of these two spaces depending on the functional behavior of the coarse and

fine models.

The HASM algorithm consists of two phases: the first phase follows the TRASM strategy while

the second exploits direct optimization.  It utilizes (8) and (9) for switching between phases as dictated by

the smoothness of convergence.

The main objective of the HASM algorithm is to minimize (11).  In the ith iteration we assume

the existence of trusted extracted coarse model parameters )( )()( xPx i
em

i
os    = .  The step taken in this iteration

is given by (7) where .)()()1( hxx ii
em

i
em  +=+   Single-point parameter extraction is then applied at the point

x )1( +i
em to get .)( *)1(1)( xxPf os

i
em

+i −= +

The new point is accepted and the first phase resumes in two different cases.  The first case

occurs if this point satisfies certain success criteria with respect to the reductions in both objective

functions (10) and (11).  B )(i is then updated.  The second case occurs if this point satisfies the success

criterion for the objective function (11) but does not satisfy the success criterion for (10).  However, the

vector of extracted parameters obtained by multi-point parameter extraction approaches a limit that

satisfies the success criterion for (10).

Switching to the second phase takes place in two different cases.  The first case is that the success

criterion of (11) is not satisfied which means that we have to reject the new point x )1( +i
em .  The Jacobian of

the fine model responses at the point  i
emx )( is then evaluated.  This is done by first evaluating the Jacobian

of the coarse model responses J )(i
os  at the previously extracted coarse model point x )(i

os = )( )(xP i
em .  J )(i

em  is

then approximated using (8).  Both  i
emx )(  and J )(i

em  are then supplied to the second phase.

The second case occurs when the new point x )1( +i
em  satisfies the success criterion of (11) but does

not satisfy the success criterion of (10).  In this case the point x )1( +i
em  is better than the previous point  i

emx )(

and is accepted.  As the vector of extracted parameters does not satisfy the success criterion of (10), the

vector f 1)( +i can not be trusted.  In order to trust this vector, recursive multi-point parameter extraction is
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applied at the point x )1( +i
em  until either f 1)( +i approaches a limiting value or the number of additional points

used for multi-point parameter extraction reaches n.  If f 1)( +i approaches a limit that does not satisfy the

success criterion of (10), B 1)( +i  is updated, J 1)( +i
os at the extracted coarse model point x 1)( +i

os = )( 1)(xP +i
em  is

evaluated and J 1)( +i
em  is then approximated using (8).  Otherwise, J )1( +i

em  is approximated using the n+1 fine

model points used for multi-point parameter extraction.  The second phase is then supplied by the point

x )1( +i
em  and the Jacobian estimate J )1( +i

em , which is either calculated using (8) or through finite differences.

The second phase utilizes the first-order derivatives supplied by SM to carry out a number of

successful iterations.  By a successful iteration we mean an iteration that satisfies the success criterion of

(11).  At the end of each successful iteration parameter extraction is applied at the new iterate x )(k
em  and is

used to check whether the success criterion of (10) is satisfied.  If it is satisfied J )(k
os  is evaluated at the

point x )(k
os = )( )(xP k

em , B is reevaluated using (9) and the algorithm switches back to the first phase.  The

superscript k is used as an index for the successful iterates of the direct optimization phase.  If the success

criterion of (10) is not satisfied phase 2 continues.  Fig. 1 illustrates the switching between SM

optimization and direct optimization.  A flow chart of the HASM algorithm is shown in Fig. 2.

The objective function (11) aims at matching the fine model response to the optimal coarse model

response but this does not ensure the optimality of the space-mapped solution if the optimal coarse model

response is different from the optimal fine model response.  This motivates the suggestion that if the

second phase has reached a point where no more improvement in the objective function (11) is possible,

direct optimization is used to solve the original design problem in the fine model space using a minimax

optimizer [7].  The starting point for the minimax problem is the final design obtained by the two phases.

This ensures minimax optimality of the design.  The current implementation of the HASM algorithm is in

MATLAB [8].

Three-Section Waveguide Transformer

We consider the design of a three-section waveguide transformer [9].  The design constraints are
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vswr ≤ 1.04  for 5.7 GHz ≤ f ≤ 7.2 GHz                                          (12)

The designable parameters are the heights of the waveguide sections b1, b2 and b3 and the lengths of

waveguide sections L1, L2 and L3.  The fine model exploits HP HFSS [10] through HP Empipe3D [11].

The coarse analytical model, optimized first, does not take into account the junction discontinuity effects

[9].  See the second column of Table I.

The optimal coarse model design is taken as the initial fine model design (Fig. 3).  The HASM

algorithm switched to the second phase after two iterations of the TRASM algorithm, which required 4

fine model simulations.  The fine model design at the end of the first phase is given in the third column of

Table I.  The corresponding response is shown in Fig. 4.  The second phase carries out only one iteration

which required 2 fine model simulations.  The fine model design obtained at the end of the second phase

is given in the fourth column of Table I.  The corresponding fine model response is shown in Fig. 5.

To ensure optimality a minimax optimizer is applied to the original design problem (12), starting

from the design obtained at the end of the second phase.  The optimal fine mode design is given in the

fifth column of Table I.  The optimal fine model response is shown in Fig. 6.

Six-Section H-Plane Waveguide Filter

We consider a six-section H-plane waveguide filter [12, 13].  Design specifications are taken as

|S11| ≤ 0.16  for   5.4 GHz ≤ f ≤ 9.0 GHz                                          (13)

|S11| ≥ 0.85  for f ≤ 5.2 GHz  and |S11| ≥ 0.5  for 9.5 GHz ≤ f                             (14)

A waveguide with a cross-section of 1.372 inches by 0.622 inches (3.485 cm by 1.58 cm) is used.  The six

sections are separated by seven H-plane septa, which have a finite thickness of 0.02 inches (0.508 mm).

The filter is shown in Fig. 7.

The optimizable parameters are the four septa widths W1, W2, W3 and W4 and the three

waveguide-section lengths L1, L2 and L3.  The coarse model consists of lumped inductances and dispersive

transmission line sections.  The coarse model is simulated using OSA90/hope [14].  There are various

approaches to calculate the equivalent inductive susceptance corresponding to an H-plane septum.  We
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utilize a simplified version of a formula due to Marcuvitz [15] in evaluating the inductances.  The coarse

model is shown in Fig. 8.  The fine model exploits HP HFSS [10] through HP Empipe3D [11].

The coarse model is first optimized using the minimax optimizer available in OSA90/hope.  The

optimal coarse model design is given in the second column of Table II.  The optimal coarse model

response is taken as the initial fine model design.  The fine model response at the starting point is shown

in Fig. 9.  This figure shows that the design specifications are violated at the initial fine model design.

The algorithm required 4 iterations to reach the final space-mapped design.  A total of 5 fine model

simulations were needed to obtain the final design.  The final space-mapped design obtained at the end of

the second phase is given in the third column of Table II.  The corresponding fine model response is

shown in Fig. 10.

To ensure optimality the minimax optimizer is applied to the fine model.  The starting point for

the minimax optimizer is the final space-mapped design.  The optimal fine model design is given in the

fourth column of Table II.  The optimal fine model response is shown in Fig. 11.

Conclusions

We present a novel, Hybrid Aggressive Space Mapping (HASM) optimization algorithm.  This

algorithm enables smooth switching from Space Mapping (SM) optimization to direct optimization if SM

fails.  The direct optimization phase utilizes all the available information accumulated by SM in direct

optimization.  The algorithm also enables smooth switching from direct optimization to space mapping if

SM is converging smoothly.  The connection between SM and direct optimization is based on a novel

lemma.  A number of examples successfully demonstrate the technique.
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TABLE I
THE OPTIMAL COARSE MODEL DESIGN AND THE DESIGNS

OBTAINED DURING DIFFERENT PHASES OF THE HASM ALGORITHM FOR
 THE THREE-SECTION WAVEGUIDE TRANSFORMER

Parameter x*
os First Phase Design Second Phase Design x*

em

b1 0.90318 0.90331 0.90114 0.90549
b2 1.37093 1.36436 1.35687 1.35777
b3 1.73609 1.73208 1.72470 1.71866
L1 1.54879 1.46991 1.47203 1.47008
L2 1.58375 1.56402 1.56521 1.57587
L3 1.64590 1.79666 1.77744 1.78286

All values are in cm

TABLE II
THE OPTIMAL COARSE MODEL DESIGN, THE FINAL SPACE-MAPPED

 AND THE OPTIMAL FINE MODEL DESIGNS FOR THE
SIX-SECTION H-PLANE WAVEGUIDE FILTER

Parameter x*
os xem x*

em

W1 0.48583 0.51326 0.51344
W2 0.43494 0.47379 0.47396
W3 0.40433 0.45091 0.45100
W4 0.39796 0.44675 0.44664
L1 0.65585 0.63701 0.63695
L2 0.65923 0.63954 0.63977
L3 0.67666 0.65704 0.65694

All values are in inches
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Fig. 1.  Illustration of the connection between space mapping and direct optimization.

Space Mapping
x, f, B

Direct Optimization
x, Jem

( ) JJJJB em
T 

osos
T 
os

 - 1=

BJJ osem =
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Fig. 2.  A flow chart of the first phase of the HASM algorithm.
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                    Optimal coarse Model response and initial fine model response
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Fig. 3. The optimal coarse model response () and the fine model response (ο) at the
optimal coarse model design for the three-section waveguide transformer.
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Fig. 4. The optimal coarse model response () and the fine model response (ο) obtained at
the end of the first phase of the HASM algorithm for the three-section waveguide
transformer.
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Fig. 5. The optimal coarse model response () and the fine model response (ο) obtained at
the end of the second phase of the HASM algorithm for the three-section waveguide
transformer.
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Fig. 6. The optimal coarse model response () and the minimax optimal fine model
response (ο) for the three-section waveguide transformer.
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Fig. 7.  The fine model of the six-section waveguide filter [12, 13].

Fig. 8.  The coarse model of the six-section waveguide filter [15].

Fig. 9. The optimal coarse model response () and the fine model response (ο) at the optimal coarse
model design for the six-section waveguide filter.
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Fig. 10. The optimal coarse model response () and the fine model response (ο) at the end of the second
phase of the HASM algorithm for the six-section waveguide filter.

Fig. 11. The optimal coarse model response () and the optimal minimax fine model response (ο) for
the six-section waveguide filter.
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