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Abstract

A novel Aggressive Parameter Extraction (APE) algorithm is presented.  Our APE algorithm

addresses the optimal selection of parameter perturbations used to increase trust in parameter extraction

uniqueness.  We establish an appropriate criterion for the generation of these perturbations.  The APE

algorithm classifies possible solutions for the parameter extraction problem.  Two different approaches

for obtaining subsequent perturbations are utilized based on a classification of the extracted parameters.

The algorithm terminates if the extracted parameters can be trusted.  It is illustrated using full-wave

electromagnetic simulations of microwave transformers and filters.  The APE algorithm is successfully

applied to parameter extraction of an HTS filter.

SUMMARY

Introduction

Parameter extraction is important in device modeling and characterization.  It also plays a crucial

role in the Space Mapping (SM) technology [1, 2, 3].  Optimization approaches to parameter extraction

often yield nonunique solutions.  In SM optimization this nonuniqueness may lead to divergence or

oscillatory behavior.
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We present an “aggressive” approach to parameter extraction.  While generally applicable, the

new algorithm is discussed here in the context of SM technology.  We assume the existence of a “fine”

model that generates the target responses and a “coarse”  model whose parameters are to be extracted.

Several authors have addressed nonuniqueness in parameter extraction.  For example, Bandler et

al. [4] proposed the idea of making unknown perturbations to a certain system whose parameters are to be

extracted.  Later Bandler et al. [5] suggested that a multi-point parameter extraction be used to match the

first-order derivatives of the two models to ensure a global minimum.  The perturbations used in that

approach are predefined and arbitrary.  The optimality of the selection of those perturbations was not

addressed.  Recently, a recursive multi-point parameter extraction technique was suggested by Bakr et al.

[3].  This approach employs a mapping between the two models to enhance uniqueness.

Our new algorithm aims at minimizing the number of perturbations used in a multi-point

parameter extraction process by utilizing the best possible perturbation during each iteration.

Consequently, we designate this as an Aggressive Parameter Extraction (APE) algorithm.  Each

perturbation requires an additional circuit simulation which could be very CPU intensive.  We classify the

different solutions returned by the multi-point extraction process and, based on this classification, a new

perturbation that is likely to sharpen the result is suggested.

Parameter Extraction

The objective of parameter extraction is to find a set of parameters of a model whose responses

match a given set of measurements.  It can be formulated as
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where Rm is the vector of given measurements, Ros is the vector of circuit responses and xe
os is the vector

of extracted parameters.  In the context of SM the fine model response Rem, typically from an

electromagnetic simulator, at a certain point xem  supplies the target response Rm.  Bakr et al. [3] suggested

a procedure in which the vector of extracted parameters should satisfy
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approximates the mapping between the two spaces.  It follows that the set V of fine model points utilized

for the multi-point parameter extraction is { } { }V  V p
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Classification of Extracted Parameters

It follows from (2) that the vector of coarse model responses R used to match the two models is

given by
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The dimensionality of R is mp, where mp=(Np+1)m and m is the dimensionality of both Ros and Rem.

Vector xe
os  is labeled locally unique [6] if there exists an open neighborhood of xe

os containing no other

point xos such that )()( xRxR e
osos = .  Otherwise, it is labeled locally nonunique.  It was shown in [6] that

the local uniqueness condition is equivalent to the condition that the Jacobian of the vector of matched

responses R has rank n.

The Locally Nonunique Case

Assume that a locally nonunique minimum was obtained and that the rank of the Jacobian J of R

at xe
os  is k where k < n.  We suggest a perturbation x∆ that attempts to increase the rank of J at this

minimum by at least one.  This is achieved by imposing the condition that the gradients of n−k of the

coarse model responses generated by the new coarse model point xe
os + x∆  be normal to a linearly
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independent set of gradients of cardinality k of the responses in the vector R at the point xx e
osos = .  It can

be shown that the perturbation x∆ satisfying this condition can be obtained by solving the system

cxA −=∆T                                                               (4)

where the matrix A is given by

[ ]gGgGgGA )()((1))((1)1)( knnk  . . . . . .  . +=                                          (5)

and the vector c is given by
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Here g )(i , i = 1, . ., k is the set of linearly independent gradients and g )(i , i = k+1, . ., n is the set of

gradients of n−k of the newly simulated responses at the point xe
os + .x∆   G )(i , i = k+1, . ., n is the set of

Hessians of the corresponding responses at the point xe
os .  The proof of (4) is omitted here for brevity.

The Locally Unique Case

If the minimum obtained by the multi-point parameter extraction is a locally unique minimum we

still have to ensure that this is the true solution to the extraction problem.  Assume that there exist two

locally unique minima x ,1e
os and x 2,e

os  for the multi-point parameter extraction problem obtained using a set

of perturbations Vp.  Assume also that a perturbation of x∆  is sought.  This perturbation results in

deviations of the coarse model responses at the two minima

xxJR ∆=∆ )( 1,
1

e
osos    and   xxJR ∆=∆ )( 2,

2
e
osos                                        (7)

where )( 1,xJ e
osos  and )( 2,xJ e

osos  are the Jacobians of the coarse model responses at the two points x ,1e
os and

x 2,e
os , respectively.  We impose the condition that the difference between the l2 norms of these two

response deviations be maximized subject to a certain trust region size.  It can be shown that the

perturbation x∆  is obtained by solving the eigenvalue problem
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This perturbation aims at maximizing the increase in the l2  objective function of the parameter extraction

problem at false minima and thus weaken these points as possible solutions to the multi-point parameter

extraction problem.  The perturbation formula (8) is not suitable for practical implementation.  Once a

locally unique minimum is reached the Jacobian of the coarse model responses can be readily obtained at

this point.  However, there is no available information about the Jacobian of the coarse model responses

at other locally unique minima that may exist.  In such a case, the only reasonable assumption that can be

made about the other minima is that the matrix )()( 2,2, xJxJ e
osos

e
osos

T  in (8) is the identity.  This implies that

no a priori assumption is made about the curvature at the other minimum.  It follows that x∆ should be an

eigenvector of the matrix )()( 1,1, xJxJ e
osos

e
osos

T .

The perturbation determined by (4) or (8) is a suggested perturbation in the coarse model space.

The new fine model point that should be added to the set of fine model points used for the multi-point

parameter extraction is obtained by mapping the perturbation obtained in the coarse model space back to

the fine model space using the matrix B, which is assumed to be given.  This matrix is taken to be the

identity if no information is available about the mapping between the two spaces.

The APE Algorithm

In each iteration of the APE algorithm multi-point parameter extraction is applied using the

current set of fine model points.  The Jacobian J at xe
os  is then evaluated.  The rank of J is then checked

to determine whether the solution is locally unique or not.  If it is locally nonunique the perturbation

given by (4) is evaluated.  Otherwise, the perturbation given by (8) is evaluated.  Once the perturbation is

determined in the coarse model space it is mapped to the fine model space and a new fine model point is

added to the set of points used for parameter extraction and multi-point parameter extraction is repeated

using the augmented set of points.  The algorithm terminates when the vector of extracted coarse model
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parameters does not change significantly in two consecutive iterations.  A MATLAB [7] implementation

of the algorithm is currently used.

A 10:1 Impedance Transformer [8]

Designable parameters are taken as the characteristic impedances of the two transmission lines

while the two lengths of the transmission lines are kept fixed at their optimal values (quarter wavelength).

The coarse model utilizes nonscaled parameters while a synthetic “fine”  model scales each of the two

impedances by a factor of 1.6.  We use OSA90/hope [9] for all simulations.

We applied the APE algorithm to extract coarse model parameters corresponding to the fine

model responses evaluated at [2.26277   4.52592]T.  This point is the optimal coarse model design

according to the specifications in [8].  The responses used are the reflection coefficients calculated at 11

equally spaced frequencies in the range 0.5 GHz ≤ f ≤ 1.5 GHz.  First, we applied single point parameter

extraction.  The responses are shown in Fig. 1.  The corresponding contours of the l2  objective function

of the parameter extraction problem are shown in Fig. 1(b).  We note three locally unique minima for the

extraction problem.  The APE algorithm generates a new perturbation using (8).  The set of fine model

points utilized in the two-point parameter extraction is

[ ] [ ]{ }76634.449975.1,52592.426277.2 T T  V =                                   (9)

The fine model response for each point in the set V in (9) and the response at the corresponding extracted

coarse model point are shown in Fig. 2.  The corresponding l2  contours of the two-point parameter

extraction problem are shown in Fig. 2(c).  We note two locally unique minima.  The algorithm generates

a third perturbation using (8).  The set of fine model points utilized in the three-point parameter extraction

is

[ ] [ ] [ ]{ }26855.402024.3,76634.449975.1,52592.426277.2 TT T  V =                 (10)

The fine model response for each point in the set V in (10) and the response at the corresponding

extracted coarse model point are shown in Fig. 3.  The corresponding contours of the l2  objective

function of the three-point parameter extraction are shown in Fig. 3(d).  This figure shows that the false
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minimum is weakened.  The vector of extracted coarse model parameters approaches a limit and thus the

APE algorithm terminates.  The variation in extracted parameters is given in Table I.

The HTS Filter [10]

The fine model for HTS filter (Fig. 4) is simulated as a whole using Sonnet’s em [11].  The

“coarse”  model is a decomposed Sonnet version of the fine model.  This model exploits a coarser grid

than that used for the fine model.  The physical parameters of the coarse and fine models are given in

Table II.

It is required to extract the coarse model parameters corresponding to the fine model parameters

given in Table III.  The values in this table are the optimal coarse model design obtained using the

minimax optimizer in OSA90/hope according to specifications given in [10].  We utilized the responses at

15 discrete frequencies in the range [3.967 GHz, 4.099 GHz] in the parameter extraction process.

The algorithm first started by applying single point parameter extraction.  The set V contains only

the point given in the second column of Table IV.  The extracted coarse model parameters are given in the

second column of Table V.  Fig. 5 shows the fine model response at the given fine model point and the

response at the extracted coarse model point.

The algorithm detected that this extracted point is a locally unique minimum.  A new fine model

point is then generated by solving the eigenvalue problem (8).  A two-point parameter extraction step is

then carried out.  The points utilized are given in the second and third columns of Table IV.  The

extracted coarse model parameters are given in the third column of Table V.  Fig. 6 shows the fine model

response at the two utilized fine model points and the corresponding responses at the extracted coarse

model points, respectively.  Again the algorithm detected that the extracted coarse model point is locally

unique and a new fine model point is generated and added to the set of points.  The same steps were then

repeated for three-point and four point parameter extraction.  The points utilized are given in Table IV.

The results are shown in the fourth and fifth columns of Table V.  It is clear that the extracted parameters

are approaching a limit.  The fine model responses and the responses at the corresponding extracted

coarse model points for the last two iterations are shown in Figs. 7 and 8, respectively.  Fig. 8(a)
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demonstrates that a good match between the responses of both models over a wider range of frequencies

than that used for parameter extraction is achieved.

Conclusions

An Aggressive Parameter Extraction (APE) algorithm is proposed.  Our APE algorithm addresses

the optimal selection of parameter perturbations used to improve the sharpness of a multi-point parameter

extraction procedure.  New parameter perturbations are generated based on the nature of the minimum

reached in the previous iteration.  We consider possibly locally unique and locally nonunique minima.

The APE algorithm continues until the extracted coarse model parameters can be trusted.



9

References

[1] J.W. Bandler, R.M. Biernacki, S.H. Chen, P.A. Grobelny and R.H. Hemmers, “Space mapping
technique for electromagnetic optimization,” IEEE Trans. Microwave Theory Tech., vol. 42,
1994, pp. 2536-2544.

[2] J.W. Bandler, R.M. Biernacki, S.H. Chen, R.H. Hemmers and K. Madsen, “Electromagnetic
optimization exploiting aggressive space mapping,” IEEE Trans. Microwave Theory Tech., vol.
43, 1995, pp. 2874-2882.

[3] M.H. Bakr, J.W. Bandler, R.M. Biernacki, S.H. Chen and K. Madsen, “A trust region aggressive
space mapping algorithm for EM optimization,” IEEE MTT-S Int. Microwave Symp. Dig.
(Baltimore, MD), 1998, pp. 1759-1762.

[4] J.W. Bandler, S.H. Chen and S. Daijavad, “Microwave device modeling using
efficient l1 optimization: a novel approach,” IEEE Trans. Microwave Theory Tech., vol. MTT-34,
1986, pp. 1282-1293.

[5] J.W. Bandler, R.M. Biernacki and S.H. Chen, “Fully automated space mapping optimization of
3D structures,” IEEE MTT-S Int. Microwave Symp. Dig. (San Francisco, CA), 1996, pp. 753-756.

[6] J.W. Bandler and A.E. Salama, “Fault diagnosis of analog circuits,” Proc. IEEE, vol. 73, pp.
1279-1325, 1985.

[7] MATLAB Version 5.0, The Math. Works, Inc., 24 Prime Park Way, Natick, MA 01760, 1997.

[8] J.W. Bandler, “Optimization methods for computer-aided design,” IEEE Trans. Microwave
Theory Tech., vol. MTT-17, 1969, pp. 533-552.

[9] OSA90/hope Version 4.0, formerly Optimization Systems Associates Inc., P.O. Box 8083,
Dundas, ON, Canada, L9H 5E7, 1997, now HP EEsof Division, 1400 Fountaingrove Parkway,
Santa Rosa, CA 95403-1799.

[10] J.W. Bandler, R.M. Biernacki, S.H. Chen, W.J. Gestinger, P.A. Grobelny, C. Moskowitz and S.H.
Talisa, “Electromagnetic design of high-temperature superconducting filters,” Int. J. Microwave
and Millimeter-Wave Computer-Aided Engineering, vol. 5, 1995, pp. 331-343.

[11] em , Sonnet Software, Inc., 1020 Seventh North Street, Suite 210, Liverpool, NY 13088, 1997.



10

TABLE I
THE VARIATION IN THE EXTRACTED PARAMETERS

FOR THE 10:1 IMPEDANCE TRANSFORMER

Number of Points xeos,1 xeos 2,

1 3.62043 7.24147
2 3.47160 7.43214
3 3.60357 7.35052

TABLE II
MATERIAL AND PHYSICAL PARAMETERS

FOR THE COARSE AND FINE MODELS OF THE HTS FILTER

Model Parameter Coarse Model Fine Model

substrate dielectric constant 23.425 23.425
substrate thickness (mil) 19.9516 19.9516
shielding cover height (mil) 100 250
conducting material thickness 0 0
substrate dielectric loss tangent 0 0
resistivity of metal (Ωm) 0 0
magnetic loss tangent 0 0
surface reactance (Ω/sq) 0 0
x-grid cell size (mil) 2.00 1.00
y-grid cell size (mil) 1.75 1.75

TABLE III
THE OPTIMAL COARSE MODEL DESIGN

FOR THE HTS FILTER

Parameter Value

L1 181.00
L2 201.59

L3 180.97

S1 20.12

S2 67.89

S3 66.85

all values are in mils
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TABLE IV
THE FINE MODEL POINTS USED IN THE APE

ALGORITHM FOR THE HTS FILTER

Parameter x f
)1( x f )2( x f )3( x f )4(

L1 181.00 182.55 181.34 179.86
L2 201.59 205.64 205.38 197.74
L3 180.97 183.36 184.20 178.08
S1 20.12 20.05 20.07 20.46
S2 67.89 68.40 68.08 67.35
S3 66.85 67.25 66.98 66.46

all values are in mils

TABLE V
THE VARIATION IN THE EXTRACTED PARAMETERS

FOR THE HTS FILTER

Parameter 1 2 3 4

L1 188.31 179.99 176.67 178.50

L2 197.69 204.52 208.52 206.78

L3 189.72 181.230 178.00 179.09
S1 19.34 17.13 17.21 18.99
S2 52.67 63.44 56.52 57.99
S2 52.67 63.44 56.52 57.99
S3 52.06 53.18 53.47  56.77

all values are in mils
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(a) (b)

Fig. 1.  Results for single point parameter extraction for the 10:1 transformer, (a) the responses at the
fine model point (ο) and the response (−) at the corresponding coarse model point, and (b) the
corresponding contours of the l2  objective function.

                                           (a)                                                                                      (b)

    (c)

Fig. 2. Results for two-point parameter extraction for the 10:1 transformer, (a) and (b) the responses at
the first and second fine model points (ο) and the responses (−) at the corresponding coarse
model points, and (c) the corresponding contours of the l2  objective function.
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                                   (a)                                                                                           (b)

                                (c)                                                                                        (d)

Fig. 3. Results for three-point parameter extraction for the 10:1 transformer, (a), (b) and (c) the
responses at the first, second and third fine model points (ο) and the responses (−) at the
corresponding coarse model points, and (d) the corresponding contours of the l2  objective
function.

Fig. 4.  The HTS filter [10].
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(a)

Fig. 5. The fine model response (ο) and the corresponding coarse model response (−) at the point
utilized for single point extraction for the HTS filter.  Note that only points in the range 3.967
GHz to 4.099 GHz were actually used.

(a) (b)

Fig. 6. The fine model response (ο) and the corresponding coarse model response (−), (a) at the first
point, and (b) at the second point utilized in the two-point parameter extraction for the HTS
filter.  Note that only points in the range 3.967 GHz to 4.099 GHz were actually used.
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(a) (b)

(c)

Fig. 7. The fine model response (ο) and the corresponding coarse model response (−), (a) at the first
point, (b) at the second point, and (c) at the third point utilized in the three-point parameter
extraction for the HTS filter.  Note that only points in the range 3.967 GHz to 4.099 GHz were
actually used.
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(a) (b)

(c) (d)

Fig. 8. The fine model response (ο) and the corresponding coarse model response (−), (a) at the first
point, (b) at the second point, (c) at the third point, and (d) at the fourth point utilized in the four-
point parameter extraction for the HTS filter.  Note that only points in the range 3.967 GHz to
4.099 GHz were actually used.
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