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The Aim of Space Mapping (SM)
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Artificial Neural Networks (ANN)
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Neural Space Mapping
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Space M apping Neuromodeling (SM N) Concept
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where N contains the internal parameters of the neural network (weights,
bias, etc.) selected as optimization variables, | is the total nhumber of

learning samples, and g is the error vector given by
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Three-dimensional Star Distribution for the Learning Base
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Frequency Dependent Space M apping Neuromodeling
(FDSM N) Concept
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Frequency Space M apping Neuromodeling (FSM N) Concept
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SM Based Neuromodels of a Microstrip Right Angle Bend
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SMN Model for the Right Angle Bend (3L P: 3-6-3)
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FDSMN Model for the Right Angle Bend (3L P:4-7-3)
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FSMN Model for the Right Angle Bend (3L P:4-8-4)
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Classical Neuromodel for the Right Angle Bend (3L P:4-15-4)
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Conclusions

we present novel applications of Space Mapping technology to the
neuromodeling of microwave circuits

three powerful techniques to generate SM based neuromodels are
described and illustrated: Space-Mapped Neuromodeling (SMN),
Frequency-Dependent Space-M apped Neuromodeling (FDSMN) and
Frequency Space-Mapped Neuromodeling (FSMN)

the SM based neuromodeling techniques exploit the vast set of empirical
models already available, decrease the number of fine model evaluations
needed for training, improve generalization ability and reduce the
complexity of the ANN topology w.r.t. the classical neuromodeling
approach

frequency-sensitive neuromapping (FDSMN and FSMN) is
demonstrated to be a clever strategy to expand the usefulness of
empirical models that were developed using quasi-static analysis

more research will be carried out to extend the SM based neuromodeling
concepts to the iterative construction of the neuromapping for efficient

el ectromagnetic optimization and statistical design of microwave circuits
and components
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