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Abstract We propose a novel Hybrid Aggressive Space Mapping (HASM) optimization algorithm.

HASM exploits both the Trust Region Aggressive Space Mapping (TRASM) strategy and direct

optimization.  Severe differences between the coarse and fine models and nonuniqueness of the parameter

extraction procedure may cause the TRASM algorithm to be trapped in local minima.  The HASM

algorithm is based on a novel lemma that enables smooth switching from the TRASM optimization to

direct optimization if the TRASM algorithm is not converging.  It also enables switching back from direct

optimization to the TRASM algorithm in a smooth way.  The uniqueness of the extraction step is

improved by utilizing a good starting point.  The algorithm does not assume that the final space-mapped

design is the true optimal design and is robust against severe misalignment between the coarse and fine

models.  The new algorithm has been tested on designs of several microwave filters and transformers.

The examples include a three-section and a seven-section waveguide transformer as well as the design of

an H-plane waveguide filter and a double-folded stub filter.
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I. INTRODUCTION

In this work a Hybrid Aggressive Space Mapping (HASM) algorithm is presented.  Space

Mapping (SM) optimization [1-4] assumes that the circuit under consideration can be simulated using two

models: a fine model and a coarse model.  The fine model is accurate but is computationally intensive,

e.g., a full-wave EM simulator.  The coarse model is assumed to be fast but not very accurate.  SM

optimization directs most of the optimization computational effort towards the coarse model while

maintaining the accuracy of the fine model.  The overall computational effort needed is much smaller

than that for direct optimization.

Parameter extraction is crucial to the Aggressive Space Mapping (ASM) technique [4].  Here, a

coarse model point whose response matches a given fine model response is obtained.  This is essentially

an optimization problem.  The nonuniqueness of the extracted parameters may lead to divergence or

oscillation of the iterations [2].  To alleviate this problem the TRASM algorithm was introduced [3].

TRASM integrates a trust region methodology [5] with the ASM technique.  Also, it utilizes a recursive

multi-point parameter extraction in order to improve the uniqueness of the extraction step.

In this work we address the convergence behavior of the TRASM algorithm.  We discuss the

effect of a severely misaligned coarse model.  We show that in this case TRASM optimization may be

trapped in local minima.

The design obtained by pure SM optimization in most cases is very near optimal.  However, the

optimality of the final design can not be guaranteed.  This is because the final space-mapped response

matches the optimal coarse model response, which may be different from the optimal fine model response

obtained by solving the original design problem in the fine model space.

Our HASM algorithm is designed to overcome these limitations.  The algorithm switches

smoothly between SM optimization and direct optimization and vice versa.  A novel lemma enables such

a switch.  The algorithm also integrates a novel prediction of the starting point for the parameter

extraction problem to enhance the uniqueness.
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We start by giving a brief review of SM algorithms in Section II.  Some properties of SM

optimization that justify utilizing a hybrid algorithm are discussed in Section III.  The novel lemma and

the prediction approach are introduced in Sections IV and V, respectively.  The HASM algorithm is

presented in Section VI.  The algorithm is applied successfully to the design of microwave transformers

and filters.  The examples include the design of a three-section waveguide transformer, a seven-section

waveguide transformer, an H-plane waveguide filter and a double-folded stub microstrip filter.  These

examples are given in Section VII.  Finally, the conclusions are given in Section VIII.

II. SPACE MAPPING: A BRIEF REVIEW

We refer to the vectors of “fine” model parameters and “coarse” model parameters as xem and

xos , respectively.  The first step in any SM algorithm is to obtain the optimal design of the coarse model

x*
os .  The corresponding response is denoted by R*

os .  ASM aims at establishing a mapping P between

the two spaces [4]

)(xPx emos =                                                                     (1)

such that

ε≤− )()( xRxR ososemem                                                         (2)

where Rem is the vector of fine model response, Ros is the vector of coarse mode response and  is a

suitable norm.  We define the error function

xxPf *)( osem −=                                                                  (3)

The final fine model design is obtained and the mapping is established by solving the nonlinear system

f(xem) = 0                                                                        (4)

Let x )(i
em  be the ith iterate in the solution of (4).  In the ASM technique, the next iterate x 1)( +i

em  is

found by a quasi-Newton iteration

hxx )()()1( ii
em

i
em +=+                                                                  (5)
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where h )(i  is obtained from

)( )()()( xfhB i
em

ii −=                                                                (6)

and B )(i is an approximation to the Jacobian of the vector f with respect to xem  at the ith iteration.  The

matrix B is updated at each iteration using Broyden’s update [6].

Vector f is obtained by evaluating )(xP em , which is done indirectly through parameter extraction.

The nonuniqueness of this problem may lead to divergence or oscillation of the ASM technique.  The

TRASM algorithm [3] was designed to overcome this problem.  At the ith iteration, the residual

vector xxPf *
os

i
em

i −= )( )()(  defines the difference between the vector of extracted coarse model

parameters x )(i
os = )( )(xP i

em  and the optimal coarse model design.  The value f )(i  serves as a measure of

the misalignment between the two spaces in the ith iteration.  The TRASM algorithm aims at minimizing

f )(i .  The ith iteration of the algorithm is given by

fBhIBB )()()()()( )( iTiiiTi  −=+ λ                                                    (7)

Parameter λ is selected such that the step obtained satisfies ,)( δ≤h i  where δ  is the size of the trust

region.

III. SOME PROPERTIES OF SPACE MAPPING

ASM and TRASM are efficient algorithms.  The number of fine model simulations needed to

obtain the space-mapped design is of the order of the problem dimensionality.  However, both algorithms

depend on the existence of a coarse model that is fast and has enough accuracy.

If the coarse model is bad (i.e., very different from the fine model) space mapping might not

work.  To illustrate this we consider the Rosenbrock function [7].  We form an artificial problem in which

the “coarse” model is given by

)1()(100 1
22

12
2 xxx Ros −+−=                                                          (8)



5

and the “fine” model by

))(1())()((100 11
2

11
2

22
2 α+−+α+−α+= xxx Rem                                         (9)

where α1 and α 2  are constant shifts.  The target of the direct optimization problem is to minimize Rem.

Considering (8) and (9) we notice that x*
os  = [1.0   1.0]T and x*

em  = ( x*
os − α ) where α  = [α1    α 2 ]T.  The

misalignment between the two models is thus given by the two shifts α1 and α 2 .

We discuss two sets of values for the shifts.  First, we consider α = [− 0.1   − 0.1]T.  Using (8) and

(9) we notice that the coarse model point whose response matches the fine response at a point xem  is

 osx = ( xem +α ).  It follows that the mapping between the two spaces is given by α+= xxP emem)( .  The

contours of xx *
osem −+ α 2

2
 are shown in Fig. 1(a).  The mapping )(xP em  is then approximated through

multi-point parameter extraction [3].  Only one perturbed fine model point is utilized.  The contours of

xxP * 2

2
)( osem −  obtained in this manner are shown in Fig. 1(b).  Figs. 1(a) and 1(b) show that f 2

2
 has a

single minimum which is the solution that would have been obtained by direct optimization.  The

differences between the two plots are attributed to the nonuniqueness of the parameter extraction process.

Taking the point x*
os  as the initial solution of the fine model, the TRASM algorithm is expected to

converge to x*
em .  The corresponding contours of Rem are shown in Fig. 1(c), whose minimum value is at

[1.1   1.1]T as expected.

The same steps are repeated for the case α  = [− 1.5   − 1.5]T.  The contour plot of xx *
osem −+ α 2

2

is shown in Fig. 2(a).  The contour plot of xxP * 2

2
)( osem −  obtained using parameter extraction is shown in

Fig. 2(b).  Fig. 2(b) illustrates the existence of a minimum of xxP * 2

2
)( osem −  other than x*

em  which is

closer to the starting point of the TRASM algorithm x*
os .  It follows that the TRASM algorithm is

unlikely to converge to x*
em .  The corresponding contours of Rem for this case are shown in Fig. 2(c),

whose minimum value is at [2.5   2.5]T.
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The solution obtained using SM optimization is very near optimal if R*
os  is similar to the optimal

fine model response R*
em .  However, this can not be guaranteed.  For example, consider

)1()(100 1
22

12
2 xxx Rem −+−=                                                      (10)

Assume also that

ε+= RR emos                                                                  (11)

where ε > 0.  It is clear that Ros
*  is equal to ε while Rem

*  is zero.  It follows that space mapping may

converge to a solution other than x*
em .

IV. SPACE MAPPING AND DIRECT OPTIMIZATION

The properties of space mapping suggest that a hybrid algorithm be used.  This algorithm exploits

the efficiency of space mapping and defaults to direct optimization when space mapping fails.  Our

HASM algorithm utilizes a novel lemma that enables smooth switching between the TRASM algorithm

and direct optimization and vice versa.

Lemma Assume that xos  corresponds to xem  through a parameter extraction process.  Then the

Jacobian Jem of the fine model response at xem  and the Jacobian Jos  of the coarse model response at xos

are related by

BJJ osem =                                                                                                         (12)

where B is a valid mapping between the two spaces at xos  and xem .

Proof

As the points xem  and xos correspond to each other, it follows that their responses match, i.e.,

)()( xRxR ososemem =                                                                                          (13)

Now define a new fine model point xxx ememn ∆+=  where xem∆ is a small perturbation.  The response at

this new point is perturbed from the response at the point xem  by
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xJR emem ∆=∆                                                                                                     (14)

The point xn corresponds to a coarse model point xx osos ∆+  that satisfies

xJxJR ososemem ∆=∆=∆                                                                                    (15)

Also, by definition of the mapping B the two perturbations xem∆ and xos∆ are related by

xxB osem ∆=∆                                                                                                    (16)

multiplying both sides of (16) by Jos we get

xJxBJ ososemos ∆=∆                                                                                             (17)

Comparing (17) with (15) we conclude that

BJJ osem =                                                                                                     (18)

Relation (18) is interesting.  It shows that by having the matrix B and the coarse model Jacobian J so we

are able to obtain a good estimate of the Jacobian of the fine model response without any further fine

model simulations.  It follows that when SM optimization is not converging smoothly we can switch to

direct optimization and supply it with the available first order derivatives given by (18).

Another relationship which can be easily obtained from (18) is

( ) JJJJB em
T 

osos
T 
os

 - 1=                                                              (19)

Relation (19) assumes that J so is  full rank and m ≥ n, where n is the number of parameters and m is the

dimensionality of both Rem  and Ros .  It is used for switching back from direct optimization to SM

optimization.  Fig. 3 illustrates the switching between SM optimization and direct optimization.

We illustrate the lemma as follows.  Consider

)9.01.0()1.09.0( 21
2

21
2 xxxxRem +++=                                                  (20)

and

xxRos
2
2

2
1 +=                                                                       (21)
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Take ]0.1.02[     T
em =x .  Here Rem = 4.82.  The solution for the parameter extraction problem is

xos =[1.90    1.10]T.  The Jacobian J so at xos  is

[ ]2.28.3=J os                                                                  (22)

From (20) and (21) it is seen that







=

0.90.1
0.10.9

B                                                                  (23)

It follows that Jem at xem is estimated by

[ ] [ ]36.264.3
9.01.0
1.09.0

2.28.3 =





=  emJ                                         (24)

which is the exact Jacobian of the fine model response.

V. SELECTION OF THE STARTING POINT

The discussion in Section III reveals how the nonuniqueness of the parameter extraction process

can affect the convergence of SM optimization.  The uniqueness of this procedure can be improved by

utilizing a good starting point.  In the first iteration of the algorithm there is no available information

about the mapping between the two spaces.  A reasonable assumption is to take x*
os  as the starting point

for the parameter extraction optimization problem.  As the algorithm proceeds the matrix

B )(i approximates the mapping between the two spaces.  A prediction of the extracted parameters in the

ith iteration is given by

( )xxBxx )(1)()()()( i
em

i
em

ii
os

p
os −+= +                                                   (25)

This predicted point is then taken as a starting point for the parameter extraction optimization problem.  It

supplies a good starting point provided that x )(i
os  is a valid solution to the parameter extraction in the

previous iteration and B )(i approximates the mapping between the two spaces.
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VI. THE HASM ALGORITHM

The HASM algorithm exploits SM when effective, otherwise it defaults to direct optimization.

Two objective functions are utilized by the algorithm.  The first objective function is

xxPf * 2

2

2

2
)( osem −=                                                            (26)

while the second function is

)()( * 2

2

2

2 xRxRg ososemem −=                                                      (27)

While (26) aims at matching the extracted coarse model parameters to x*
os  in the parameter

space, (27) aims at matching the same points mapped through the appropriate responses in the response

space.

The HASM algorithm consists of two phases: the first phase follows the TRASM strategy while

the second phase exploits direct optimization.  It utilizes (18) and (19) for switching between phases as

dictated by the smoothness of convergence.

In the ith iteration we assume the existence of a trusted extracted coarse model parameters

)( )()( xPx i
em

i
os    = .  The step taken in this iteration is given by (7) where .)()()1( hxx ii

em
i

em  +=+   Single-point

parameter extraction is then applied at the point x )1( +i
em to get .)( *)1(1)( xxPf os

i
em

+i −= +

The first phase utilizes two success criteria related to the reduction in (26) and (27).  The SM

success criterion is defined as

( ) ( )hBffff )()()()(1)()( 01.0 i iiii+i +−>−                                        (28)

which indicates that the actual reduction in the objective function (26) should be greater than a certain

fraction of the predicted reduction.  The direct optimization success criterion is

gg )()1( ii <+                                                                    (29)

which implies that the new iterate x )1( +i
em  is a descent iterate of (27).
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The new point x )1( +i
em is accepted and the first phase resumes if this point satisfies both (28) and

(29).  B )(i is then updated.  The vector f )1( +i  satisfying (28) is either obtained through single-point

extraction or through recursive multi-point extraction [3] that approaches a limit satisfying (28).  We

denote by x′em and R′em  the solution obtained at the end of the first phase and the corresponding fine

model response, respectively.

Switching to the second phase takes place in two cases.  The first case is that (29) is not satisfied

which means that we have to reject the new point x )1( +i
em .  The Jacobian of the fine model response at the

point  i
emx )( is then evaluated.  This is done by first evaluating the Jacobian of the coarse model response

J )(i
os  at the previously extracted coarse model point x )(i

os = )( )(xP i
em .  J )(i

em  is then approximated using (18).

The second phase is then supplied by  i
emx )( , J )(i

em  and f )(i .

The second case occurs when the new point x )1( +i
em  satisfies (29) but does not satisfy (28).  In this

case the point x )1( +i
em  is better than the previous point  i

emx )(  and is accepted.  As the vector of extracted

parameters does not satisfy (28), the vector f 1)( +i can not be trusted.  In order to trust this vector,

recursive multi-point parameter extraction is applied at the point x )1( +i
em  until either f 1)( +i approaches a

limiting value or the number of additional points used for multi-point parameter extraction reaches n.

If f 1)(i+ approaches a limit that does not satisfy (28), B 1)( +i  is updated, J 1)( +i
os at the extracted coarse

model point x 1)( +i
os = )( 1)(xP +i

em  is evaluated and J 1)( +i
em  is then approximated using (18).  Otherwise, J )1( +i

em  is

approximated using the n+1 fine model points used for multi-point parameter extraction.  The second

phase is then supplied by the point x )1( +i
em , f 1)( +i

  and the Jacobian estimate J )1( +i
em , which is either

calculated using (18) or through finite differences.

The second phase utilizes the first-order derivatives supplied by SM to carry out a number of

successful iterations.  By a successful iteration we mean an iteration that satisfies the success criterion



11

( ) ( )hJgggg )()()()(1)()( 01.0 kk
em

kk+kk +−>−                                               (30)

which indicates that the actual reduction in the objective function (27) should be greater than a certain

fraction of the predicted reduction.  Notice that the superscript k is used as an index for the successful

iterates of the direct optimization phase.  At the end of each successful iteration parameter extraction is

applied at the new iterate x )(k
em  and is used to check whether a switch back to the first phase can take

place.  The criterion for such a switch is

  kk ff )()1( <+                                                                    (31)

If it is satisfied J )1( +k
os  is evaluated at the point x )1( +k

os = )( )1(xP +k
em , B is reevaluated using (19) and the

algorithm switches back to the first phase.  Otherwise, the second phase continues.  We denote by

x ′′em and R ′′em the solution obtained at the end of the second phase and the corresponding fine model

response, respectively.

For any iteration i ≥ 0, the two phases are given by the following steps.

Phase 1

Step 0 Given x )(i
em , f )(i , B )(i and δ )(i .  Set δ )1( +i =δ )(i .

Comment  δ )(i  is the utilized trust region size.

Step 1 Obtain h )(i by solving (7) with δ =δ )1+(i .  Let h )(
2

)1( ii =+δ .

Step 2 Evaluate x 1)+(i
em using (5) and set }{ 1)(x += i

emV .

Comment  V is the set of fine model points utilized in the multi-point extraction.

Step 3 Apply multi-point parameter extraction using the points in the set V to obtain f )1( +i .

Comment  The prediction given in (25) is used as a starting point for the multi-point parameter extraction.

Step 4 If both (28) and (29) are satisfied update the matrix B )(i to B )1( +i using Broyden’s formula [6]

and update δ.  Go to Step 10.
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Comment  The trust region size δ is updated based on how the predicted reduction in f
2  agrees with

the actual reduction [3].

Step 5 If (29) is not satisfied, obtain J )(i
os  and evaluate BJJ )()()( ii

os
i

em = .  Switch to the second phase.

Comment  The second phase takes as arguments  i
emx )( , f )(i and J )(i

em  and returns x )(k
em , B )(k and f )(k .  It

should be clear that several iterations might be executed in the second phase before switching

back to the first phase at Step 10.

Step 6 If V  is equal to one, go to Step 9.

Comment  V  denotes the cardinality of the set V.

Step 7 Compare f )1( +i obtained using V  fine model points with that previously obtained using

V − 1 fine model points.  If f )1( +i  is approaching a limit, update the matrix B )(i to get B 1)( +i ,

obtain J 1)( +i
os , evaluate BJJ 1)(1)(1)( +++ = ii

os
i

em  and switch to the second phase.

Step 8 If V  is equal to n+1, obtain the matrix J )1( +i
em  by finite differences using the set V.  Switch to

the second phase.

Step 9 Obtain a temporary point x t  = hx t
i

em ++ )1( , where

fBhIBB )1()()()( )( +−=+ iTi
t

iTi  λ

and δ )1( +≤ i
th .  Add this point to the set V and go to Step 3.

Step 10 Let i=i+1.  Go to Step 0.

The second phase can be summarized in the following steps.

Phase 2

Step 0 Given the current iterate of the space mapping technique  k
emx )( , the corresponding Jacobian

matrix J )(k
em  and .

)(f k
 

Step 1 Obtain a successful iterate x 1)( +k
em  by solving
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gJxIJJ )()()()( )( kTk
em

k
em

Tk
em −=∆λ+

for a suitable value of λ that satisfies the direct optimization success criterion.

Step 2 Update J )(k
em  to J )1( +k

em .

Step 3 Apply parameter extraction at x 1)( +k
em  to get .)1(f +k 

Step 4 If (31) is satisfied obtain J )1( +k
os  at the point x )1( +k

os = )( )1(xP +k
em , evaluate the matrix

( ) JJJJB )1()1()1(1 -1 ++++= k
em

Tk
os

k
os

)T(k
os  and switch to the first phase.

Step 5 If the termination condition is satisfied invoke the minimax optimizer else set k=k+1 and go to

Step 1.

A flow chart of the first phase of the HASM algorithm is shown in Fig. 4.

To ensure optimality, direct optimization is used to solve the original design problem using a

minimax optimizer [8] starting from x ′′em .  The current implementation of the HASM algorithm is in

MATLAB [9].

VII. EXAMPLES

Three-Section Waveguide Transformer

We consider the design of a three-section waveguide transformer [10].  The design constraints are

VSWR ≤ 1.04  for 5.7 GHz ≤ f ≤ 7.2 GHz                                          (32)

The designable parameters are the heights of the waveguide sections b1, b2 and b3 and the lengths of

waveguide sections L1, L2 and L3.  The fine model exploits HP HFSS [11] through HP Empipe3D [12].

The coarse analytical model does not take into account the junction discontinuity effects [10].

The vector x*
os  is taken as the initial fine model design (Fig. 5).  The HASM algorithm switched

to the second phase after two iterations of the first phase, which required 4 fine model simulations.  The
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response R′em  is shown in Fig. 6.  The second phase carried out only one iteration which required 2 fine

model simulations.  The response R ′′em is shown in Fig. 7.

Direct minimax optimization is then applied to the original design problem.  The optimal fine

model response R*
em  is shown in Fig. 8.  Figs. 6 and 8 show that in this example R′em  is different from

R*
em .  The designs x*

os , x′em , x ′′em and x*
em are shown in Table I.

Six-Section H-Plane Waveguide Filter

We consider a six-section H-plane waveguide filter [13, 14].  Design specifications are taken as

|S11| ≤ 0.16  for   5.4 GHz ≤ f ≤ 9.0 GHz                                          (33)

|S11| ≥ 0.85  for f ≤ 5.2 GHz  and |S11| ≥ 0.5  for 9.5 GHz ≤ f                             (34)

A waveguide with a cross-section of 1.372 inches by 0.622 inches (3.485 cm by 1.58 cm) is used.  The six

sections are separated by seven H-plane septa, which have a finite thickness of 0.02 inches (0.508 mm).

The filter is shown in Fig. 9.

The optimizable parameters are the four septa widths W1, W2, W3 and W4 and the three

waveguide-section lengths L1, L2 and L3.  The coarse model consists of lumped inductances and

dispersive transmission line sections.  It is simulated using OSA90/hope [15].  There are various

approaches to calculate the equivalent inductive susceptance corresponding to an H-plane septum.  We

utilize a simplified version of a formula due to Marcuvitz [16] in evaluating the inductances.  The coarse

model is shown in Fig. 10.  The fine model exploits HP HFSS [11] through HP Empipe3D [12].

The fine model response at the starting point x*
os  is shown in Fig. 11.  The first phase required 4

iterations to reach the design x′em .  A total of 5 fine model simulations were needed.  The second phase

did not carry out any successful iteration.  The response R ′′em is shown in Fig. 12.
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The response R*
em is obtained through direct minimax optimization (see Fig. 13).  The different

fine model designs are given in Table II.  It is clear that the convergence of the first phase is smooth as

R′em ≈R*
em ≈R*

os .

Seven-Section Waveguide Transformer

The design of a seven-section waveguide transformer is also considered.  The transformer is

shown in Fig. 14.  This example is a classical microwave circuit design problem [10].  The fine model is

simulated using HP HFSS [11] through HP Empipe3D [12].  The coarse model is an analytical model

which neglects the junction discontinuity [10].  The design specifications are taken as

VSWR ≤ 1.01  for  1.06 GHz ≤ f ≤ 1.8 GHz                                               (35)

The designable parameters for this problem are the height and length of each waveguide section.  The

fine model response at x*
os  is shown in Fig. 15.  The first phase executed three successful iterations that

required six fine model simulations.  The response R′em  is shown in Fig. 16.  The second phase executed

four iterations (see Fig. 17).  The response R*
em  is shown in Fig. 18.  Table III shows the different

designs.

Double-Folded Stub Filter

We consider the design of the double-folded stub (DFS) microstrip structure (Bandler et al. [1]).

Folding the stubs reduces the filter area w.r.t. the conventional double stub structure (Rautio [17]).  The

filter is characterized by five parameters : W1, W2, S, L1 and L2 (see Fig. 19).  L1, L2 and S are chosen as

optimization variables.  W1 and W2 are fixed at 4.8 mil.  The design specifications are

S21≥ − 3 dB  for  f ≤ 9.5 GHz  and 16.5 GHz ≤ f                                     (36)

S21≤ − 30 dB  for  12 GHz ≤ f ≤ 14 GHz                                          (37)

The fine model is the structure simulated by HP HFSS [11] through HP Empipe3D [12].  The

coarse model exploits the microstrip line and microstrip T-junction models available in OSA90/hope

[15].  The coupling between the folded stubs and the microstrip line is simulated using equivalent
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capacitors.  The values of these capacitors are determined using Walker’s formulas [18].  Jansen’s

microstrip bend model [19] is used to model the folding effect of the stub.  The coarse model is shown in

Fig. 20.

The fine model response at x*
os  is shown in Fig. 21.  This figure shows a big shift between the

optimal coarse response and the initial fine response.  This signals considerable misalignment between

the two models.

The first phase successfully carried out eight iterations that required twelve fine model

simulations.  The response R′em  is shown in Fig. 22.  Fig. 23 shows a coarse contour plot of f 2

2
 in the

neighborhood of the point of x′em .  It is clear from this figure that the first phase was trapped in a local

minimum.  The mapping established in the first phase is utilized to get a good estimate of Jem  and a

switch to the second phase is carried out.  The response R ′′em  (Fig. 24) shows a significant improvement

in the response.  The design x ′′em  is then taken as the starting point for the minimax optimizer.  The

response R*
em  is shown in Fig. 25.  The designs are given in Table IV.

VIII. CONCLUSIONS

We present a novel Hybrid Aggressive Space Mapping (HASM) optimization algorithm.  The

algorithm is designed to handle severely misaligned cases.  It enables smooth switching from SM

optimization to direct optimization if SM fails.  The direct optimization phase utilizes all the available

information accumulated by SM optimization about the mapping between the coarse and fine model

spaces.  The algorithm also enables switching back from direct optimization to space mapping if SM is

converging smoothly.  The connection between SM and direct optimization is based on a novel lemma.

An original approach for the prediction of the starting point of the parameter extraction optimization

problem is also utilized.  This approach improves the uniqueness of the extraction step and consequently
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enhances the convergence of the algorithm.  The algorithm is successfully demonstrated through the

design of waveguide transformers and filters.
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TABLE I
THE OPTIMAL COARSE MODEL DESIGN AND THE DESIGNS

OBTAINED DURING DIFFERENT PHASES OF THE HASM ALGORITHM FOR
 THE THREE-SECTION WAVEGUIDE TRANSFORMER

Parameter x*
os x′em x ′′em x*

em

b1 0.90318 0.90331 0.90114 0.90549
b2 1.37093 1.36436 1.35687 1.35777
b3 1.73609 1.73208 1.72470 1.71866
L1 1.54879 1.46991 1.47203 1.47008
L2 1.58375 1.56402 1.56521 1.57587
L3 1.64590 1.79666 1.77744 1.78286

All values are in cm

TABLE II
THE OPTIMAL COARSE MODEL DESIGN, THE FINAL SPACE-MAPPED

 AND THE OPTIMAL FINE MODEL DESIGNS FOR THE
SIX-SECTION H-PLANE WAVEGUIDE FILTER

Parameter x*
os x′em , x ′′em x*

em

W1 0.48583 0.51326 0.51344
W2 0.43494 0.47379 0.47396
W3 0.40433 0.45091 0.45100
W4 0.39796 0.44675 0.44664
L1 0.65585 0.63701 0.63695
L2 0.65923 0.63954 0.63977
L3 0.67666 0.65704 0.65694

All values are in inches
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TABLE III
THE OPTIMAL COARSE MODEL DESIGN AND THE DESIGNS

OBTAINED DURING DIFFERENT PHASES OF THE HASM ALGORITHM FOR
 THE SEVEN-SECTION WAVEGUIDE TRANSFORMER

Parameter x*
os x′em x ′′em x*

em

b1 7.86732 7.84126 7.84321 7.84319
b2 6.61888 6.56661 6.56753 6.56746
b3 4.68540 4.63369 4.63275 4.63267
b4 2.91987 2.88266 2.88266 2.88268
b5 1.81412 1.79307 1.79273 1.79272
b6 1.27658 1.26697 1.26721 1.26723
b7 1.06847 1.06475 1.06477 1.06474
L1 7.10588 7.27059 7.27141 7.27145
L2 7.12201 7.03866 7.04043 7.04047
L3 7.11760 6.89568 6.89549 6.89552
L4 7.12331 6.89253 6.89192 6.89189
L5 7.12815 6.98273 6.97985 6.98000
L6 7.12154 7.03160 7.03020 7.03023
L7 7.12945 7.02606 7.02503 7.02509

All values are in cm

TABLE IV
THE OPTIMAL COARSE MODEL DESIGN, THE FINAL SPACE-MAPPED

 AND THE OPTIMAL FINE MODEL DESIGNS FOR THE
DFS FILTER

Parameter x*
os x′em x ′′em x*

em

L1 66.727 72.454 73.869 78.964
L2 60.228 72.728 82.939 81.210
S 9.592 7.621 8.170 7.901

All values are in mil
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Fig. 1. Different contour plots for the Rosenbrock problem for the case α = [− 0.1   − 0.1]T; (a) the
contour plot of xx *

osem −+ α 2

2
, (b) the contour plot of xxP * 2

2
)( osem −  obtained through

parameter extraction and (c) contours of the fine model Rosenbrock function.
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Fig. 2.  Different contour plots for the Rosenbrock problem for the case α = [− 1.5   − 1.5]T; (a) the contour
plot of xx *

osem −+ α 2

2
, (b) the contour plot of xxP * 2

2
)( osem −  obtained through parameter

extraction and (c) contours of the fine model Rosenbrock function.
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Fig. 3.  Illustration of the connection between SM optimization and direct optimization.
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Fig. 4.  A flow chart of the first phase of the proposed algorithm.
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Fig. 6. The coarse response R*
os  ( ) and the fine response R′em  (ο) for the three-section waveguide

transformer.
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Fig. 5.  The coarse response R*
os  ( ) and the fine response )( *xR osem  (ο) for the three-section waveguide

transformer.
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Fig. 7.  The coarse response R*
os  ( ) and the fine response R′′em  (ο) for the three-section waveguide

transformer.
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Fig. 8.  The coarse response R*
os  ( ) and the fine response R*

em  (ο) for the three-section waveguide
transformer.
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Fig. 9.  The fine model of the six-section H-plane waveguide filter [13, 14].

Fig. 10.  The coarse model of the six-section H-plane waveguide filter [16].

Fig. 11.  The coarse response R*
os  ( ) and the fine response )( *xR osem  (ο) for the six-section H-plane

waveguide filter.
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Fig. 12. The coarse response R*
os  ( ) and the fine response R′′em  (ο) for the six-section H-plane

waveguide filter.

Fig. 13. The coarse response R*
os  ( ) and the fine response R*

em  (ο) for the six-section H-plane
waveguide filter.
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Fig. 14.  The seven-section waveguide transformer [10].

Fig. 15. The coarse response R*
os  ( ) and the fine response )( *xR osem  (ο) for the seven-section

waveguide transformer.
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Fig. 16. The coarse response R*
os  ( ) and the fine response R′em  (ο) for the seven-section waveguide

transformer.

Fig. 17. The coarse response R*
os  ( ) and the fine response R′′em  (ο) for the seven-section waveguide

transformer.
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Fig. 18. The coarse response R*
os  ( ) and the fine response R*

em  (ο) for the seven-section waveguide
transformer.

Fig. 19.  The DFS filter [1, 17].

Fig. 20.  The coarse model of the DFS filter.
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Fig. 21.  The coarse response R*
os  ( ) and the fine response )( *xR osem  (ο) for the DFS filter.

Fig. 22.  The coarse response R*
os  ( ) and the fine response R′em  (ο) for the DFS filter.
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Fig. 23. A coarse contour plot of xxP * 2

2
)( osem −  in the neighborhood of x′em  for the DFS filter.

Fig. 24. The coarse response R*
os  ( ) and the fine response R′′em  (ο) for the DFS filter.

72.40 72.45 72.50 72.55 72.60 72.65 72.70 72.75 72.80
72.4

72.5

72.6

72.7

72.8

72.9

72.3

L1

L 2

8 11 14 17 205

frequency (GHz)

-70

-60

-50

-40

-30

-20

-10

0

S
21

d
B

-80



33

Fig. 25. The coarse response R*
os  ( ) and the fine response R*

em  (ο) for the DFS filter.
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