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Abstract For the first time, we present modeling of microwave circuits using Artificial Neural

Networks (ANN) based on Space Mapping (SM) technology.  SM based neuromodels decrease the cost of

training, improve generalization ability and reduce the complexity of the ANN topology with respect to

the classical neuromodeling approach.  Five creative, novel techniques are proposed to generate SM based

neuromodels: Space Mapped Neuromodeling (SMN), Frequency-Dependent Space Mapped

Neuromodeling (FDSMN), Frequency Space Mapped Neuromodeling (FSMN), Frequency Mapped

Neuromodeling (FMN) and Frequency Partial-Space Mapped Neuromodeling (FPSM).  A frequency-

sensitive neuromapping is applied to overcome the limitations of empirical models developed under

quasi-static conditions. Huber optimization is proposed to train the ANNs.  We contrast SM based

neuromodeling with the classical neuromodeling approach as well as with other state-of-the-art

neuromodeling techniques.  The SM based neuromodeling techniques are illustrated by two case studies:

a microstrip right angle bend and a high-temperature superconducting (HTS) quarter-wave parallel

coupled-line microstrip filter.
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I.  INTRODUCTION

A powerful new concept in neuromodeling of microwave circuits based on Space Mapping

technology is presented.  The ability of Artificial Neural Networks (ANN) to model high-dimensional and

highly nonlinear problems is exploited in the implementation of the Space Mapping concept.  By taking

advantage of the vast set of empirical models already available, Space Mapping based neuromodels

decrease the number of EM simulations for training, improve generalization ability and reduce the

complexity of the ANN topology with respect to the classical neuromodeling approach.

Five innovative techniques are proposed to create Space Mapping based neuromodels for

microwave circuits: Space Mapped Neuromodeling (SMN), Frequency-Dependent Space Mapped

Neuromodeling (FDSMN), Frequency Space Mapped Neuromodeling (FSMN), Frequency Mapped

Neuromodeling (FMN) and Frequency Partial-Space Mapped Neuromodeling (FPSM).  Excepting SMN,

all these approaches establish a frequency-sensitive neuromapping to expand the frequency region of

accuracy of the empirical models already available for microwave components that were developed using

quasi-static analysis.  We contrast our approach with the classical neuromodeling approach as well as

with other state-of-the-art neuromodeling techniques.

For the first time [1], Huber optimization is proposed to efficiently train the ANNs as a powerful

alternative to the popular backpropagation algorithm.  The Space Mapping based neuromodeling

techniques are illustrated by two case studies: a microstrip right angle bend and a high-temperature

superconducting (HTS) quarter-wave parallel coupled-line microstrip filter.

II.  SPACE MAPPING CONCEPT

Space Mapping (SM) is a novel concept for circuit design and optimization that combines the

computational efficiency of coarse models with the accuracy of fine models.  The coarse models are

typically empirical equivalent circuit engineering models, which are computationally very efficient but

often have a limited validity range for their parameters, beyond which the simulation results may become

inaccurate.  On the other hand, detailed or “fine” models can be provided by an electromagnetic (EM)
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simulator, or even by direct measurements: they are very accurate but CPU intensive.  The SM technique

establishes a mathematical link between the coarse and the fine models, and directs the bulk of CPU

intensive evaluations to the coarse model, while preserving the accuracy and confidence offered by the

fine model.  The SM technique was originally developed by Bandler et al. [2].

Let the vectors xc and xf represent the design parameters of the coarse and fine models,

respectively, and Rc(xc) and Rf (xf ) the corresponding model responses. Rc is much faster to calculate but

less accurate than Rf .

As illustrated in Fig. 1, the aim of SM optimization is to find an appropriate mapping P from the

fine model parameter space xf  to the coarse model parameter space xc

x P xc f= ( ) (1)

such that

R P x R xc f f f( ( ) ) ( )≈ (2)

Once the mapping is found, the coarse model can be used for fast and accurate simulations.

III.  NEUROMODELING MICROWAVE CIRCUITS

The ability to learn and generalize from data, the non-linear processing nature, and the massively

parallel structure make the ANN particularly suitable in modeling high-dimensional and highly nonlinear

problems, as in the case of microwave circuits.

The size of an ANN model does not grow exponentially with dimension and, in theory, can

approximate any degree of nonlinearity to any desired level of accuracy, provided a deterministic

relationship between input and target exists [3].  The most widely used ANN paradigm in the microwave

arena [1] is the multi-layer perceptron (MLP), which is usually trained by the well established

backpropagation algorithm.

ANN models are computationally more efficient than EM or physics-based models and can be

more accurate than empirical models.  It has been demonstrated [4, 5] that ANNs are suitable models for
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microwave circuit yield optimization and statistical design.

For microwave problems the learning data is usually obtained by either EM simulation or by

measurement.  Large amounts of learning data are typically needed to ensure model accuracy.  This is

very expensive since the simulation/measurements must be performed for many combinations of different

values of geometrical, material, process and input signal parameters.  This is the principal drawback of

classical ANN modeling.  Without sufficient learning samples, the neural models may not be reliable.

A popular alternative to reduce the dimension of the learning set is to carefully select the learning

points using the Design of Experiments (DoE) methodology.  Another way to speed up the learning

process is proposed in [1] by means of preliminary neural clusterization of similar responses using the

Self Organizing Feature Map (SOM) approach.

Innovative strategies have been proposed to reduce the learning data needed and to improve the

generalization capabilities of an ANN by incorporating empirical models: the hybrid EM-ANN modeling

approach, the PKI modeling method, and the knowledge based ANN (KBNN) approach.

In the hybrid EM-ANN modeling approach [6], the difference in S-parameters between the

available coarse model and the fine model is used to train the corresponding ANN, as illustrated in Fig. 2,

reducing the number of fine model simulations due to a simpler input-output relationship.

For the PKI method [6], the coarse model output is used as input for the ANN in addition to the

other inputs (physical parameters and frequency).  The ANN is trained such that its response is

approximately equal to the fine model response, as illustrated in Fig. 3.  The PKI approach has shown

better accuracy than the EM-ANN approach, but it requires a more complex ANN.

In the knowledge based ANN approach [7] (KBNN) the microwave empirical or semi-analytical

information is incorporated into the internal structure of the ANN, as illustrated in Fig. 4.  Knowledge

Based ANNs are non fully connected networks, with a layer assigned to the microwave knowledge in the

form of single or multidimensional functions.  Since these empirical functions are used for some neurons

instead of standard activation functions, KBNNs do not follow a regular multilayer perceptron and are

trained using other methods than the conventional backpropagation.
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IV.  SPACE MAPPING BASED NEUROMODELING

We propose innovative schemes to combine SM technology and ANN for the modeling of high

frequency components.  The fundamental idea is to construct a nonlinear multidimensional vector

mapping function P from the fine to the coarse input space using an ANN.  This can be done in a variety

of ways, to make a better use of the coarse model information for developing the neuromodel.  The

implicit knowledge in the coarse model that can be considered as an “expert”, not only allows us to

decrease the number of learning points needed, but also to reduce the complexity of the ANN and to

improve the generalization performance.

In the Space Mapped Neuromodeling (SMN) approach the mapping from the fine to the coarse

parameter space is implemented by an ANN.  Fig. 5 illustrates the SMN concept.  We have to find the

optimal set of the internal parameters of the ANN, such that the coarse model response is as close as

possible to the fine model response for all the learning points.

The mapping can be found by solving the optimization problem

TT
l

TT ][min 21 eee
w

L (3)

where vector w contains the internal parameters of the neural network (weights, bias, etc.) selected as

optimization variables, l is the total number of learning samples, and ek is the error vector given by

),(),( jccjiffk freqfreq xRxRe −=

)(
ifc xPx =

(4a)

(4b)

with

pBi ,,1 K=

pFj ,,1 K=

 )1( −+= iFjk p

(5a)

(5b)

(5c)

where Bp is the number of training base points for the input design parameters and Fp is the number of

frequency points per frequency sweep.  It is seen that the total number of learning samples is l = Bp Fp.
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The specific characteristics of P depend on the ANN paradigm chosen whose internal parameters are in

w.

Once the mapping is found, i.e., once the ANN is trained, a space mapped neuromodel for fast,

accurate evaluations is immediately available.

Including Frequency in the Neuromapping

Many of the empirical models already available for microwave circuits were developed using

methods for quasi-static analysis.  For instance, in the case of microstrip circuits, it is often assumed that

the mode of wave propagation in the microstrip is pure TEM [8].  This implies that the effective dielectric

constant εe and the characteristic impedance Zo don’t vary with frequency.  Nevertheless, non-TEM

behavior causes εe and Zo to be functions of frequency.  Therefore, these empirical models usually yield

good accuracy over a limited range of low frequencies.

A method to directly overcome this limitation is by establishing a frequency-sensitive mapping

from the fine to the coarse input spaces.  This is realized by considering frequency as an extra input

variable of the ANN that implements the mapping.

In the Frequency-Dependent Space Mapped Neuromodeling (FDSMN) approach, illustrated in

Fig. 6, both coarse and fine models are simulated at the same frequency, but the mapping from the fine to

the coarse parameter space is dependent on the frequency.  The mapping is found by solving the same

optimization problem stated in (3) but substituting (4) by

),(),( jccjiffk freqfreq xRxRe −=

),( jifc freqxPx =

(6a)

(6b)

With a more comprehensive domain, the Frequency Space Mapped Neuromodeling (FSMN)

technique establishes a mapping not only for the design parameters but also for the frequency variable,

such that the coarse model is simulated at a mapped frequency fc to match the fine model response.  This

is realized by adding an extra output to the ANN that implements the mapping, as shown in Fig. 7.  The

mapping is found by solving the same optimization problem stated in (3) but interchanging (4) by
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),(),( cccjiffk ffreq xRxRe −=

),( jif
c

c freq
f

xP
x

=







(7a)

(7b)

It is not uncommon to find microwave problems where the coarse model behaves almost as the

fine model does but with a shifted frequency response, i.e., the shapes of the responses are nearly

identical but shifted.  For those cases, a good alignment between both responses is achieved by simulating

the coarse model at a different frequency.  Frequency Mapped Neuromodeling technique implements this

strategy, as shown in Fig. 8, by simulating the coarse model with the same physical parameters used by

the fine model, but a mapped frequency fc to align both responses.  The mapping is found by solving the

same optimization problem stated in (3) but replacing (4) by

),(),( cifcjiffk ffreq xRxRe −=

),( jifc freqPf x=

(8a)

(8b)

Mapping the whole set of physical parameters, as in the SMN, FDSMN and FSMN techniques,

might lead to singularities in the coarse model response during training.  This problem is overcome by

establishing a partial mapping for the physical parameters, making even more efficient use of the implicit

knowledge in the coarse model.  Mapping only some of the physical parameters can be enough to obtain

acceptable accuracy in the neuromodel for many microwave problems.  This allows us a significant

reduction in the ANN complexity w.r.t. the SMN, FDSMN and FSMN techniques and a significant

reduction in the training time, because less optimization variables are used.  Frequency Partial-Space

Mapped Neuromodeling (FPSMN) is illustrated in Fig. 9.  The mapping for this technique is found by

solving the same optimization problem stated in (3) but replacing (4) by

),,(),( c
s
ci

s
fcjiffk ffreq xxRxRe −=

),( jif
c

s
c freq

f
xP

x =








(9a)

(9b)
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where 
i

s
fx  vector contains a suitable subset of the design physical parameters 

ifx  at the ith training base

point.

Finally, there can be microwave problems where the complete set of responses contained in Rf is

difficult to approximate using the coarse model with a single ANN.  In those cases, the learning task can

be distributed among a number of ANNs, which in turn divides the output space into a set of subspaces.

The corresponding ANNs can then be trained individually, to match each response (or subset of

responses) contained in Rf .  This implies the solution of several independent optimization problems

instead of a single one.

Starting Point and Learning Data Samples

The starting point for the optimization problem stated in (3) is the initial set of internal parameters

of the ANN, )1(w , that is chosen assuming that the coarse model is actually a good model and therefore

the mapping is not necessary.  In other words, )1(w  is chosen such that the ANN implements a unit

mapping P (xc = xf and/or fc = freq).  This is applicable to the five proposed SM based neuromodeling

techniques.

The ANN must be trained to learn the mapping between the coarse and the fine input spaces

within the region of interest.  In order to keep a reduced set of learning data samples, an n-dimensional

star distribution for the base learning points is considered in this work, as in [9] (see Fig. 10).  It is seen

that the number of learning base points for a microwave circuit with n design parameters is 12 += nBp .

Since we want to maintain a minimum number of learning points (or fine evaluations), the

complexity of the ANN is critical.  It is well known that too small an ANN cannot approximate the

desired input-output relationship, while ANNs with too many internal parameters perform correctly on the

learning set, but give poor generalization ability.  We have to use the simplest ANN that gives adequate

training error and acceptable generalization performance.

Mapping with a Three Layer Perceptron

A possible scheme to implement the mapping using a three-layer perceptron with h hidden
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neurons, for both the SMN approach as well as the FDSMN approach, is illustrated in Fig. 11.  Here, the

total number of optimization variables for (3) is nnh ++ )1(2 , where n is the number of physical

parameters to be mapped and h is the number of hidden neurons.  The adaptation of this paradigm to all

the other three cases is realized by considering an additional output for the mapped frequency fc and

disabling the corresponding inputs and/or outputs.

In this work we considered sigmoid functions as well as hyperbolic tangent functions to

implement the nonlinear activation functions for the neurons in the hidden layer.

V.  CASE STUDIES

A Microstrip Right Angle Bend

Consider a microstrip right angle bend, as illustrated in Fig. 12, with the following input

parameters: conductor width W, substrate height H, substrate dielectric constant εr, and operating

frequency freq.  Three neuromodels exploiting SM technology are developed for the region of interest

shown in Table I.

Gupta’s model [8], consisting of a lumped LC circuit whose parameter values are given by

analytical functions of the physical quantities W, H and εr is taken as the “coarse” model and

implemented in OSA90/hope  [10].  Sonnet’s em  [11] is used as the fine model.  To parameterize the

structure, the Geometry Capture [12] technique available in Empipe  [13] is utilized.

Fig. 13 shows typical responses of the coarse and fine models before any neuromodeling, using a

frequency step of 2 GHz (Fp = 21).  The coarse and fine models are compared in Fig. 14 using 50 random

test base-points with uniform statistical distribution within the region of interest (1050 test samples).

Gupta’s model, in this region of physical parameters, yields acceptable results for frequencies less than 10

GHz.

With a star distribution for the learning base points (n = 3, Bp = 7), 147 learning samples (l = 147)

are used for three SM based neuromodels, and the corresponding ANNs were implemented and trained
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within OSA90/hope .  Huber optimization was employed as the training algorithm, exploiting its robust

characteristics for data fitting [14].

Fig. 15 shows the results for the SMN model implemented with a three layer perceptron with 3

input neurons, 6 hidden neurons, and 3 output neurons (3LP:3-6-3).  A FDSMN model is developed using

a 3LP:4-7-3, and the improved results are shown in Fig. 16.  In Fig. 17 the results for the FSMN model

with a 3LP:4-8-4 are shown, that are even better (as expected).  To implement the FSMN approach, an

OSA90 child program is employed to simulate the coarse model with a different frequency variable using

Datapipe.  It is seen that the FSMN model yields excellent results for the whole frequency range of

interest, overcoming the frequency limitations of the empirical model by a factor of four.

To compare these results with those from a classical neuromodeling approach, an ANN was

developed using NeuroModeler [15].  Training the ANN with the same 147 learning samples, the best

results were obtained for a 3LP:4-15-4 trained with the conjugate gradient and quasi-Newton methods.

Due to the small number of learning samples, this approach did not provide good generalization

capabilities, as illustrated in Fig. 18.  To produce similar results to those in Fig. 17 using the same ANN

complexity, the learning samples have to increase from 147 to 315.

Fig. 19 summarizes the different neuromodeling approaches applied to this case study.

HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter

Fig. 20 illustrates a high-temperature superconducting (HTS) quarter-wave parallel coupled-line

microstrip filter to be modeled in the region of interest shown in Table II.  L1, L2 and L3 are the lengths of

the parallel coupled-line sections and S1, S2 and S3 are the gaps between the sections.  The width W is the

same for all the sections as well as for the input and output microstrip lines, of length L0.  A lanthanum

aluminate substrate with thickness H and dielectric constant εr is used.  The metalization is considered

lossless.  Two SM based neuromodels are developed in the region of interest, taking as design parameters

xf = [L1 L2 L3 S1 S2 S3] T.

It has been already shown [16] that the responses of this narrow bandwidth filter are very
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sensitive to dimensional changes.  Sonnet’s em  driven by Empipe  was employed as the fine model,

using a high-resolution grid with a 1mil×1mil cell size.

Sections of OSA90/hope  built-in linear elements MSL (microstrip line) and MSCL (two-

conductor symmetrical coupled microstrip lines) connected by circuit theory over the same MSUB

(microstrip substrate definition) are taken as the “coarse” model.

Typical responses of the coarse and fine models before any neuromodeling are shown in Fig. 21,

using a frequency step of 0.02 GHz (Fp = 14).  About 10 hrs of CPU simulation time was needed for a

single frequency sweep on an HP C200-RISC workstation.  Following a multidimensional star

distribution (n = 6), 13 learning base points are used (l = 182).  To evaluate the generalization

performance, 7 testing base points not seen in the learning set are used.

The coarse and fine models before neuromodeling are compared in Fig. 22, at both the learning

and the testing sets, showing very large errors in the coarse model with respect em  due to a shifting in

its frequency response, as seen in Fig. 21.

To explore the effects of simulating the coarse model at a mapped frequency, a FMN model (see

Fig. 8) implemented with a 3LP:7-5-1 is developed using Huber optimization.  The FMN approach yields

good frequency alignment between both responses, as shown in Fig. 23.  The corresponding training and

generalization errors are shown in Fig. 24.

Excellent results are obtained for the FPSMN modeling approach (see Fig. 9), taking xs
c = [L1c

S1c] 

T and xs
f = [L2 L3 S2 S3] 

T and using a 3LP:7-7-3 trained with Huber optimization.  As illustrated in Fig.

25, an outstanding agreement between the fine model and the FPSMN model is achieved.  The learning

and generalization performance is shown in Fig. 26.

As a final test, both the FPSMN model and the fine model are simulated at three different base

points using a very fine frequency sweep, with a frequency step of 0.005GHz.  Remarkable matching is

obtained, as illustrated in Fig. 27.
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VI.  CONCLUSIONS

We present novel applications of Space Mapping technology to the neuromodeling of microwave

circuits.  Five powerful techniques to generate SM based neuromodels are described and illustrated:

Space Mapped Neuromodeling (SMN), Frequency-Dependent Space Mapped Neuromodeling (FDSMN),

Frequency Space Mapped Neuromodeling (FSMN), Frequency Mapped Neuromodeling (FMN) and

Frequency Partial-Space Mapped Neuromodeling (FPSMN).  These techniques exploit the vast set of

empirical models already available, decrease the number of fine model evaluations needed for training,

improve generalization ability and reduce the complexity of the ANN topology w.r.t. the classical

neuromodeling approach.  Frequency-sensitive neuromapping is demonstrated to be a clever strategy to

expand the usefulness of empirical models that were developed using quasi-static analysis.  FMN is

presented as an effective method to align frequency-shifted responses.  By establishing a partial mapping

for the physical parameters, a more efficient use of the implicit knowledge in the coarse model is

achieved and singularities in the coarse model response during training can be avoided.  As an original

alternative to the classical backpropagation algorithm, Huber optimization is employed to efficiently train

the neuromapping, exploiting its robust characteristics for data fitting.
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TABLE I
REGION OF INTEREST FOR THE

MICROSTRIP RIGHT ANGLE BEND

Parameter Minimum value Maximum value

W 20 mil 30 mil
H 8 mil 16 mil
εr 8 10

freq 1 GHz 41 GHz

TABLE II
REGION OF INTEREST FOR THE HTS FILTER

Parameter Minimum value Maximum value

W 7 mil 7 mil
H 20 mil 20 mil
εr 23.425 23.425

loss tang 3×10− 5 3×10− 5

L0 50 mil 50 mil
L1 175 mil 185 mil
L2 190 mil 210 mil
L3 175 mil 185 mil
S1 18 mil 22 mil
S2 75 mil 85 mil
S3 70 mil 90 mil

freq 3.901 GHz 4.161 GHz

fx
)( ff xR

fine
model

coarse
modelcx

)( cc xR

fx cx
such that

)( fc xPx =

)())(( fffc xRxPR ≈

Fig. 1.  Illustration of the aim of Space Mapping (SM).
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Fig. 2.  EM-ANN neuromodeling concept [6].
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Fig. 5.  Space Mapped Neuromodeling (SMN) concept.
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Fig. 13.  Typical responses of the right angle bend using em  (o) and Gupta model (•)
              before any neuromodeling: (a) |S11| ,  (b) |S21| .
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Fig. 14.  Comparison between em  and Gupta model of a right angle bend:
            (a) error in |S11| with respect to em , (b) error in |S21| with respect to em .

1 6 11 16 21 26 31 36 41
frequency (GHz)

0

0.05

0.1

0.15

Er
ro

r i
n 

|S 1
1 |

(a)

1 6 11 16 21 26 31 36 41
frequency (GHz)

0

0.05

0.1

0.15

0.2

0.25

 E
rr

or
 in

 |S
21

|

1

2

3

456

7

8
9
10

11

12
13

14

15

16

17

18

19

20
21
22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

3839

40

41

42

43
44

45

46
47

48
4950

I

(b)
Fig. 15.  Comparison between em  and SMN model of a right angle bend:
             (a) error in |S11| with respect to em , (b) error in |S21| with respect to em .
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Fig. 16.  Comparison between em  and FDSMN model of a right angle bend:

                        (a) error in |S11| with respect to em , (b) error in |S21| with respect to em .
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Fig. 17.  Comparison between em  and FSMN model of a right angle bend:

            (a) error in |S11| with respect to em , (b) error in |S21| with respect to em .

1 6 11 16 21 26 31 36 41
frequency (GHz)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Er
ro

r i
n 

|S 1
1 |

(a)

1 6 11 16 21 26 31 36 41
frequency (GHz)

0

0.05

0.1

0.15

0.2

Er
ro

r i
n 

|S 2
1 |

(b)
Fig. 18.  Comparison between em  and classical neuromodel of a right angle bend:
              (a) error in |S11| with respect to em , (b) error in |S21| with respect to em .
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Fig. 19.  Different neuromodeling approaches for the right angle bend:
                 (a) SMN, (b) FDSMN, (c) FSMN, and (d) classical neuromodeling.
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Fig. 21.  Typical responses of the HTS filter using em  (•) and OSA90/hope  model (− )
 before any neuromodeling at three learning and three testing points.
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Fig. 22. Coarse model error w.r.t. em  before any neuromodeling:

     (a) in the learning set, (b) in the testing set.
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Fig. 23.  Typical responses of the HTS filter using em  (•) and FMN model (− )
         at the same three learning and three testing points as in Fig. 21.
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Fig. 24. FMN model error w.r.t. em :  (a) in the learning set, (b) in the testing set.
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Fig. 25.  Typical responses of the HTS filter using em  (•) and FPSMN model (− )
       at the same three learning and three testing points as in Fig. 21.
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Fig. 26. FPSMN model error w.r.t. em :  (a) in the learning set, (b) in the testing set.
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Fig. 27.  Comparison between the HTS filter response using em  (•) and FPSMN
        model (− ) at some learning and testing points using a fine frequency sweep.


