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Abstract

We present neuromodeling of microwave and high frequency
circuits based on Space Mapping (SM) technology.  Neuromo-
deling of microwave circuits is briefly reviewed.  The aim of
SM is described.  An innovative scheme to combine SM techno-
logy and ANN for modeling is proposed.  SM based neuromo-
dels decrease the cost of training, improve generalization ability
and reduce the complexity of the ANN topology w.r.t. classical
neuromodeling.  Huber optimization is proposed to train the
neuro-space-mapping (NSM).  Space-Mapped Neuromodeling
(SMN) is illustrated by a microstrip line with high dielectric
constant.
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 The Aim of Space Mapping
(Bandler et al., 1994-)
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Artificial Neural Network (ANN) Modeling

Artificial Neural Networks can model high-dimensional and
highly nonlinear problems

ANN models are computationally efficient and can be more
accurate than empirical models

the size of an ANN does not grow exponentially with dimension
(White et al., 1992)

in theory, it can approximate any degree of nonlinearity to any
desired level of accuracy, provided a deterministic relationship
between input and target exists (White et al., 1992)

ANNs that are too small cannot approximate the desired input-
output relationship

ANNs with too many internal parameters perform correctly in
the learning set, but give poor generalization ability

ANNs are suitable models for microwave circuit optimization
and statistical design (Zaabab, Zhang and Nakhla, 1995, Gupta
et al., 1996, Burrascano and Mongiardo, 1998, 1999)
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Classical Neuromodeling of Microwave Components
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large amount of training data is usually needed to ensure model
accuracy

the number of learning samples needed to approximate a
function grows exponentially with the ratio between the
dimensionality  and its degree of smoothness (Stone, 1982)

even with sufficient training data, the reliability of MLP for
extrapolation may be very poor
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Neural Space Mapping
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Space Mapped Neuromodeling (SMN) Concept
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Starting Point and Learning Samples

the starting point for the optimization problem is chosen such
that fc xx ≈

to keep a reduced set of learning data samples, we consider an n-
dimensional star distribution for the learning base points
(Bandler et al., 1989)

the number of learning base points for a microwave circuit with
n design parameters is Bp = 2n + 1

1fx

2fx
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Training the ANN for SMN

the neuromapping can be found by solving the optimization
problem

TT
l

TT ][min 21 eee
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w contains the internal parameters of the ANN (weights, bias,
etc.) selected as optimization variables

l is the total number of learning samples

ek is the error vector given by
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Microstrip Line with High Dielectric Constant

W
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εr

L

region of interest
5mil ≤ W ≤ 9mil

15mil ≤ H ≤ 25mil
40mil ≤ L ≤ 60mil

20 ≤ εr ≤ 25
27GHz ≤ freq ≤ 30GHz.

“coarse” model: Pozar’s formulas (Pozar, 1998)

“fine” model: Sonnet’s em

learning set: 9 base points with “star” distribution

testing set: 50 random base points in the region of interest
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Microstrip Line Response Errors

comparison before neuromodeling between em  and Pozar’s
model at 50 random test points
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SMN Model for the Microstrip Line (3LP:4-3-4)
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SMN Model Results for the Microstrip Line

comparison between em  and the SMN model
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Other SM Based Neuromodeling techniques

four new SM based neuromodeling techniques have been
developed

Frequency-Dependent Space Mapped Neuromodeling (FDSMN)

Frequency Space Mapped Neuromodeling (FSMN)

Frequency Mapped Neuromodeling (FMN)

Frequency Partial-Space Mapped Neuromodeling (FPSMN)

they make even better use of the implicit knowledge of the
coarse model

these techniques have been applied to a microstrip right angle
bend and to an HTS filter, with excellent results
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New Results
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Conclusions

we present novel applications of Space Mapping technology to
the neuromodeling of microwave circuits

Space Mapped Neuromodels (SMN) are described and
illustrated

these techniques
exploit the vast set of empirical models already available
decrease the fine model evaluations needed for training
improve generalization ability
reduce complexity of the ANN topology

w.r.t. the classical neuromodeling approach

Huber optimization efficiently trains the neuromappings,
exploiting its robust characteristics for data fitting


